Skip to main content
Log in

Tau neurofibrillary pathology and microtubule stability

  • Lead Discovery And Optimization
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We previously reported that nonomolar concentrations of Taxol and several structurally diverse microtubule (MT)-stabilizing agents significantly enhanced the survival of neurons in the presence of fibrils of amyloid β peptide (Aβ). Pretreatment of neurons with MT-stabilizing drugs also blocked Aβ-induced activation of tau hyperphosphorylation. Although tau is a substrate for several kinases, we initially focused on cdk5, as this tau kinase has been shown to be activated in Aβ-treated neurons and Alzheimer’s disease (AD) brain. In an in vitro kinase assay, Taxol inhibited activation of cdk5 by Aβ. In addition, the proposed cellular cascade in which calpain activation leads to cleavage of the cdk5 regulator, p35, to the strong kinase activator p25 was also prevented. Taxol did not directly inhibit the activity of either cdk5 or calpain, indicating that other cellular components are required for the effect of the drug on Aβ activation of tau phosphorylation. Our results suggest that drugs that interact with MTs can alter signaling events in neurons, possibly because some MTs play a role in organizing protein complexes involved in responses to Aβ. Thus the cytoskeletal network may serve as a biosensor of cellular well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlijanian M. K., Barrezueta N. X., Williams R. D., Jakowski A., Kowsz K. P., McCarthy S., et al. (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc. Natl. Acad. Sci. USA 97, 2910–2915.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez A., Munoz J. P., and Maccioni R. B. (2001) A Cdk5-p35 stable complex is involved in the beta-amyloid-induced deregulation of Cdk5 activity in hippocampal neurons. Exp. Cell Res. 264, 266–274.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez A., Toro R., Caceres A., and Maccioni R. B. (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett. 459, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Billingsley M. L. and Kincaid R. L. (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 323, 577–591.

    PubMed  CAS  Google Scholar 

  • Busciglio J., Lorenzo A., Yeh J., and Yanker B. A. (1995) β-Amyloid fibrils induce Tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y., Moore-Nichols D., Robertson T., Bechtel M., and Michaelis M. L. (1999) Effects of Aβ and microtubule-stabilizing drugs on the microtubule network in primary neurons. Soc. Neurosci. Abstr. 25, 2125.

    Google Scholar 

  • Chen Y., Liu Y., Reiff E., Himes R., Georg G., and Michaelis M. L. (2000) Protection of primary neurons against Aβ-induced toxicity by structurally diverse microtubule-stabilizing drugs. Soc. Neurosci. 26, 664.13.

    Google Scholar 

  • Chen Y., Hill S., Faibushevich A., and Michaelis M. L. (2001) Effects of Taxol on Aβ-induced activation of caspase-8 in primary neurons. Soc. Neurosci. Abstr. 27, 963.1.

    Google Scholar 

  • Dhavan R. and Tsai L. H. (2001) A decade of cdk5. Nat. Rev. Mol. Cell. Biol. 2, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., et al. (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Jackson G. R., Wiedau-Pazos M., Sang T.-K., Wagle N., Brown C. A., Massachi S., et al. (2002) Human wildtype Tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34, 509–519.

    Article  PubMed  CAS  Google Scholar 

  • Lee K. Y., Clark A. W., Rosales J. L., Chapman K., Fung T., and Johnston R. N. (1999) Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neurosci. Res. 34, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Lee M. S., Kwon Y. T., Li M., Peng J., Friedlander R. M., and Tsai L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Lee V. M., Daughenbaugh R., and Trojanowski J. Q. (1994) Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol. Aging 2(Suppl.), S87-S89.

    Article  Google Scholar 

  • Michaelis M. L., Ranciat N., Chen Y., Bechtel M., Ragan R., Hepperle M., et al. (1998a) Protection against β-amyloid toxicity in primary neurons by paclitaxel [Taxol®]. J. Neurochem. 70, 1623–1627.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M. L., Chen Y., and Ranciat N. (1998b) Microtubule stabilization and protection against apoptosis in primary neurons. Soc. Neurosci. 24, 1457.

    Google Scholar 

  • Niethammer M., Smith D. S., Ayala R., Peng J., Ko J., Lee M. S., et al. (2000) NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711.

    Article  PubMed  CAS  Google Scholar 

  • Patrick G. N., Zukerberg L., Nikolic M., de La Monte S., Dikkes P., and Tsai L. H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Patzke and Tsai (2002). Calpain-medicated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J. Biol. Chem. 277, 8054–8060.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (2001) Clearing the brain’s amyloid cobwebs. Neuron 32, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Sobue K., Agarwal-Mawal A., Li W., Sun W., Miura Y., and Paudel H. K. (2000) Interaction of neuronal Cdc2-like protein kinase with microtubule-associated protein tau. J. Biol. Chem. 275, 16,673–16,680.

    Article  CAS  Google Scholar 

  • Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., and Ghetti B. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl. Acad. Sci. USA 95, 7737–7741.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi S., Fujita Y., Hayashi S., Kakita A., Takahashi H., Murayama S., et al. (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett. 489, 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q. and Lee V. M. (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann. NY Acad. Sci. 924, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Yoo B. C. and Lubec G. (2001) p25 protein in neurodegeneration. Nature 411, 763–764.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Michaelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, M.L., Dobrowsky, R.T. & Li, G. Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci 19, 289–293 (2002). https://doi.org/10.1385/JMN:19:3:289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:19:3:289

Index Entries

Navigation