Skip to main content
Log in

Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region

The action of paroxetine and dimercaptopropanol

  • Alzheimer’s Therapeutics: Anti-Amyloid
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We screened for drugs that specifically interact with the 5′-untranslated region of the mRNA encoding the Alzheimer’s amyloid precursor protein (APP). Our goal was to use newly discovered APP 5′ UTR directed compounds to limit amyloid-β (Aβ)-peptide output in cell culture systems. The APP 5′ UTR folds into a stable RNA secondary structure (Gibbs free energy: ΔG=−54.9 kcal/mol) and is an important regulator of the amount of APP translated in response to IL-1 (Nilsson et al., 1998; Rogers et al., 1999) and iron (Rogers et al., 2002). Seventeen drug “hits” were identified from a library of 1,200 FDA preapproved drugs (Rogers et al., 2002). Six of the original 17 compounds were validated for their capacity to suppress reporter gene expression in stable neuroblastoma transfectants expressing the dicistronic reporter construct shown in Fig. 2. These six leads suppressed APP 5′ UTR driven luciferase translation while causing no effect on the translation of dicistronic GFP gene translated from a viral IRES (negative control to ensure specificity during drug screens). In this report, we show that paroxetine (serotonin reuptake blocker) and dimercaptopropanol (Hg chelator) exerted significant effects on APP expression (steady-state levels of APP), whereas Azithromycin altered APP processing. None of these three compounds altered APLP-1 expression. In the future, we will identify further novel compounds that influence Aβ levels, either via translation inhibition or by changing the activity of proteins coupled between APP translation and APP processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arjona A., Pooler A., Lee R., and Wurtman R. (2002) Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res. 951, 135.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum J., Oishi M., Chen H. I., Pinkas-Kramarski R., Jaffe E. A., Gandy S. E., and Geengard P. (1992) Cholinergic agonists and interleukin-1 regulate processing and secretion of the Alzheimer βA4 amyloid precursor. Proc. Natl. Acad. Sci. USA 89, 10,075–10,078.

    Article  CAS  Google Scholar 

  • Cao X. and Sudhof T. C. (2001) A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Cherny R., Atwood C. S., Xilinas M. E., Gray D. N., Jones W. D., McLean C. A., et al. (2001) Treatment with copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 641–642.

    Article  Google Scholar 

  • Chishti M. A., Yang D. S., Janus C., Phinney A. L., Horne P., Pearson J., et al. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21,562–21,570.

    Article  CAS  Google Scholar 

  • Crapper McLachlan D. R., Dalton A. J., Kruck T. P. A., Bell M. Y., Smith W. L., Kalow, W., and Andrews, D. F. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337, 1304–1308.

  • Feng Y., Zhang F., Lokey L. K., Chastain J. L., Lakkis L., Eberhart D., and Warren S. T. (1995) Translational suppression by trinucleotide repeat expansion at FMR1. Science 268, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Fisher A., Michaelson D. M., Brandeis R., Haring R., Chapman S., and Pittel Z. (2000) M1 muscarinic agonists as potential disease-modifying agents in Alzheimer’s disease. Rationale and perspectives. Ann. NY Acad. Sci. 920, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz B. Z. and Mirkin D. B. (2001) Lead poisoning and chelation in a mother-neonate pair. J. Toxicol. Clin. Toxicol. 39, 727–731.

    Article  PubMed  CAS  Google Scholar 

  • Janus C., Pearson J., McLaurin J., Mathews P. M., Jiang Y., Schmidt S. D., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Khan W.A., Sahaa D., Rahmana A., Salama M., Bogaertsa J., and Bennish M. (2002) Comparison of single-dose azithromycin and 12-dose, 3-day erythromycin for childhood cholera: a randomised, double-blind trial. Lancet 360(9347), 1722–1727.

    Article  PubMed  CAS  Google Scholar 

  • Lim G. P., Yang F., Chu T., Chen P., Beech W., Teter B., et al. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20, 5709–5714.

    PubMed  CAS  Google Scholar 

  • Ly B. T., Williams S. R., and Clark R. F. (2002) Mercuric oxide poisoning treated with whole-bowel irrigation and chelation therapy. Ann. Emerg. Med. 39, 312–315.

    Article  PubMed  Google Scholar 

  • Moechars D. G. M., Kuiperi C., Laenen I., and Van Leuven F. (1998) Aggressive behaviour in transgenic mice expressing APP is alleviated by serotonergic drugs. Neuroreport 9, 3561–3564.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L., Rogers J., and Potter H. (1998) The essential role of inflammation and induced gene expression in the pathogenic pathway of Alzheimer’s disease. Front. Biosci. 3, 436–446.

    Google Scholar 

  • Poehlsgaard J. and Douthwaite S. (2002) The macrolide binding site on the bacterial ribosome. Curr. Drug Targets Infect. Disord. 2(1), 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J. T., Randall J. D., Leiter L. M., McPhee J., Cahill C. M., Zhan S. S., Potter H., and Nilsson L. N. (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J. Biol. Chem. 274, 6421–6431.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J. T, Randall J. D., Cahill C. M., Eder P. S., Huang X., Gunshin H., Leiter L., et al. (2002a) An ironresponsive element type II in the 5′ untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277, 45,518–45,528.

    CAS  Google Scholar 

  • Rogers J. T., Randall J. D., Eder P. S., Huang X., Bush A. I., Tanzi R. E., Venti A., et al. (2002b) Alzheimer’s disease drug discovery targeted to the APP mRNA 5′ untranslated region. J. Mol. Neurosci. 19, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Shaw K. T., Utsuki T., Rogers J., Yu Q. S., Sambamurti K., et al. (2001) Phenserine regulates translation of beta-amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development. Proc. Natl. Acad. Sci. U.S.A. 98, 7605–7610.

    Article  PubMed  CAS  Google Scholar 

  • Svitkin Y. V., Pause A., Haghighat A., Pyronnet S., Witherell G., Belsham G. J., and Sonenberg N. (2001) The requirement for eukaryotic initiation factor 4A(elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394.

    Article  PubMed  CAS  Google Scholar 

  • von Koch C. S., Zheng H., Chen H., Trumbauer M., Thinakaran G., van der Ploeg L. H., et al. (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging 18, 661–669.

    Article  Google Scholar 

  • Wasco W., Gurubhagavatula S., Paradis M. D., Romano D. M., Sisodia S. S., Hyman B. T., et al. (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid beta protein precursor. Nat. Genet. 5, 95–100.

    Article  PubMed  CAS  Google Scholar 

  • Weggen S., Eriksen J. L., Das P., Sagi S. A., Wang R., Pietrzik C. U., et al. (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414, 212–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack T. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payton, S., Cahill, C.M., Randall, J.D. et al. Drug discovery targeted to the Alzheimer’s APP mRNA 5′-untranslated region. J Mol Neurosci 20, 267–275 (2003). https://doi.org/10.1385/JMN:20:3:267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:20:3:267

Index Entries

Navigation