Skip to main content
Log in

Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization

Possible implications for drug development

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The phenomenon of receptor-receptor interactions was hypothesized by Agnati and Fuxe in the 1980s, and several indirect proofs were provided in the following years by means of in vitro binding experiments and in vivo experiments in physiological and pathological animal models. This paper aims to outline some of the most important features and consequences of this phenomenon in the frame of the structural and functional aspects of molecular networks. In particular, the concepts of receptor mosaic (RM), and of horizontal and vertical molecular networks (HMNs, VMNs, respectively) are illustrated. To discuss some aspects of the functional organization of molecular networks, not only new data on protein-protein interactions but also the biochemical mechanism of cooperativity will be used. On this basis, some theoretical deductions can be drawn that allow a tentative classification of the RMs and the proposal of the extension of the concept of branching point introduced for enzymes to the possible switching role of some RMs in directing signals to various VMNs. Finally, the cooperativity phenomenon and the so-called symmetry rule will be used to introduce a proper mathematical approach that characterizes RMs as to their receptor composition, receptor topography, and order of receptor activation inside the RM. These new data on G protein-coupled receptors and molecular network organization indicate possible new approaches for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackers G. K., Doyle M. L., Myers D., and Daugherty M. A. (1992) Molecular code of cooperativity in haemoglobin. Science 255, 54–63.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F. and Fuxe K. (1984) New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. Biosci. Rep. 4, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Ferré S., Cortelli P., and Fuxe K. (1995) A brief appraisal on some aspects of the receptor-receptor interaction. Neurochem. Int. 27, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Ferré S., Leo G., Lluis C., Canela E. I., Franco R., and Fuxe K. (2004a) On the molecular basis of the receptor mosaic hypothesis of the engram. Cell. Mol. Neurobiol. 24, 501–517.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Ferré S., Lluis C., Franco R., and Fuxe K. (2003a) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 55, 509–550.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Franzen O., Ferré S., Leo G., Franco R., and Fuxe K. (2003b) Possibile role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J. Neural Transm. 65, 195–222.

    Google Scholar 

  • Agnati L. F., Fuxe K., Zini I., Lenzi P., and Hökfelt T. (1980) Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58, 182–187.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Zoli M., Merlo Pich E., Benfenati F., Zini I., and Goldstein M. (1986) Aspects on the information handling by the central nervous system: focus on cotransmission in the aged rat brain. Coexistence of neuronal messengers. Prog. Brain Res. 68, 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Fuxe K., Zoli M., Rondanini C., and Ögren S. O. (1982) New vistas on synaptic pasticity: mosaic hypothesis on the engram. Med. Biol. 60, 183–190.

    PubMed  CAS  Google Scholar 

  • Agnati L. F., Guidolin D., Genedani S., Ferré S., Bigiani A., Woods A., and Fuxe K. (2005b) How proteins come together in the plasma membrane and function in macromolecular assemblies: focus on receptor mosaics. J. Mol. Neurosci., in press.

  • Agnati L. F., Santarossa L., Benfenati F., Ferri M., Morpurgo A., Apolloni B., and Fuxe K. (2002) Molecular basis of learning and memory: modeling based on receptor mosaics, in From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data, Apolloni, B., and Kurfess, F., eds., Kluwer Academic/Plenum Press, New York, pp. 165–196.

    Google Scholar 

  • Agnati L. F., Santarossa L., Genedani S., Canela E. I., Leo G., Franco R., et al. (2004b) On the nested hierarchical organization of CNS: basic characteristics of neuronal molecular networks, in Lecture Notes in Computer Sciences, Springer, Berlin, pp. 24–54.

    Google Scholar 

  • Agnati L. F., Tarakanov A. O., and Guidolin D. (2005a) A simple mathematical model of cooperativity in receptor mosaics based on the “Symmetry rule.” Biosystems 80(2), 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Agnati L. F., Zoli M., Merlo Pich E., Benfenati F., and Fuxe K. (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem. Int. 16, 479–500.

    Article  CAS  Google Scholar 

  • Albert R., Jeong H., and Barbasi A., L. (2000) Error and attack tolerance of complex networks. Nature 406, 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D. and Strange P. G. (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J. Biol. Chem. 276, 22621–22629.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J., Marin P., Dumuis A., and Fagni L. (2003) The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett. 546, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Borgan A. U. and Thorn K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 3, 1–9.

    Article  Google Scholar 

  • Brzostowski J. A. and Kimmel A. (2001) Signaling at zero-G: G-protein independent functions for 7-TM receptors. Trends Biol. Sci. 26, 291–297.

    Article  CAS  Google Scholar 

  • Chothia C., Gough J., Vogel C., and Teichmann S. A. (2003) Evolution of protein repertoire. Science 300, 1701–1703.

    Article  PubMed  CAS  Google Scholar 

  • Doyle D. (2004) Structural changes during ion channel gating. Trends Neurosci. 27, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Ferré S., Ciruela F., Woods A. S., Canals M., Burgueno J., Marcellino D., et al. (2003) Glutamate mGlu5-adenosine A2A-dopamine D2 receptor interactions in the striatum. Implications for drug therapy in neuropsychiatric disorders and drug abuse. Curr. Med. Chem. Central Nervous Systems Agents 33, 1–26.

    Article  Google Scholar 

  • Franco R., Canals M., Marcellino D., Ferré S., Agnati L., Mallol J., et al. (2003) Regulation of heptaspanning-membrane receptor function by dimerization and clustering. Trends Biochem. Sci. 28, 238–243.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K. and Agnati L. F. (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med. Res. Rev. 5, 441–482.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K. and Agnati L. F. (1987) Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism, Macmillan Press, London, UK.

    Google Scholar 

  • Fuxe K., Agnati L. F., Benfenati F., Cimino M., Algeri S., Hökfelt T., and Mutt V. (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta. Physiol. Scand. 113, 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov R. R., Premont R. T., Bohn L. M., Lefkowitz R. J., and Caron M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144.

    Article  PubMed  CAS  Google Scholar 

  • George S. R., O’Dowd B. F., and Lee S. P. (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820.

    Article  PubMed  CAS  Google Scholar 

  • Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., and Zuckermann M. J. (1998) Theoretical analysis of protein organization in lipid membranes. Biochim. Biophys. Acta 1376, 245–266.

    PubMed  CAS  Google Scholar 

  • Goh C. S., Milburn D., and Gerstein M. (2004) Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 14, 1–6.

    Article  CAS  Google Scholar 

  • Greengard P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin A. L. and Huxley A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Ishii M. and Kurachi Y. (2003) Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci. 74, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • James J. C. and Tawfik D. S. (2003) Conformational diversity and protein evolution: a 60-year old hypothesis revisited. Trends Biochem. 28, 361–368.

    Article  CAS  Google Scholar 

  • Jeong H., Mason S. P., Barabasi Z. N., and Oltvai Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41,42.

  • Kitano H. (2002a) Computational systems in biology. Nature 420, 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Kitano H. (2002b) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr. Genet. 41, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T. and Baker D. (2002) A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. U. S. A. 99, 14116–14121.

    Article  PubMed  CAS  Google Scholar 

  • Koshland D. E., Jr., and Hamadani K. (2002) Proteomics and models for enzyme cooperativity. J. Biol. Chem. 277, 46841–46844.

    Article  PubMed  CAS  Google Scholar 

  • Koshland D. E., Nemethy G., and Filmer D. (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385.

    Article  PubMed  CAS  Google Scholar 

  • Lauffenburger D. A. (2000) Cell signalling pathways as control modules: complexity for simplicity? Proc. Natl. Acad. Sci. U. S. A. 97, 5031–5033.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. P., O’Dowd B. F., and George S. R. (2003) Homo-and hetero-oligomerization of G protein-coupled receptors. Life Sci. 74, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Lewis R. N., Zhang Y. P., Hodges R. S., Subczynski W. K., Kusumi A., Flach C. R., et al. (2001) A polyalanine-based peptide cannot form a stable transmembrane alphahelix in fully hydrated phospholipid bilayers. Biochemistry 40, 12103–12111.

    Article  PubMed  CAS  Google Scholar 

  • Limbird L. E. and Lefkowitz R. J. (1976) Negative cooperativity among β-adrenergic receptors in frog erythrocyte membranes. J. Biol. Chem. 251, 5007–5014.

    PubMed  CAS  Google Scholar 

  • Limbird L. E., Mayts P. D., and Lefkowitz R. J. (1975) Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 64, 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch W. S. and Pitts W. H. (1943) A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 5, 111–133.

    Article  Google Scholar 

  • Miller W. E. and Lefkowitz R. J. (2001) Expanding roles for -arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell. Biol. 13, 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T., Schlegel A., Scherer P. E., and Lisanti M. P. (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273, 5419–5422.

    Article  PubMed  CAS  Google Scholar 

  • Paratcha G. and Ibanez C. F. (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr. Opin. Neurobiol. 12, 542–549.

    Article  PubMed  CAS  Google Scholar 

  • Park J., Lappe M., and Teichmann S. A. (2001) mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in PDB and yeast. J. Mol. Biol. 307, 929–938.

    Article  PubMed  CAS  Google Scholar 

  • Parmentier M. L., Prezeau L., Bockaert J., and Pin J. (2002) A model for the functioning of family 3 GPCRs. Trends Pharmacol. Sci. 23, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Pasko G. A. and Ringe D. (2004) Protein Structure and Function, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Penela P., Ribas C., and Mayor F., Jr. (2003) Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal. 15, 973–981.

    Article  PubMed  CAS  Google Scholar 

  • Popper K. (1935) Logik der Forshung, Springer, Vienna.

    Google Scholar 

  • Ravasz E., Somera A. L., Mongru D. A., Oltvai Z. N., and Barabasi A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd G. (1983) Neurobiology, Oxford University Press, New York.

    Google Scholar 

  • Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387, 569–72.

    Article  PubMed  CAS  Google Scholar 

  • Smith A. D. (1997) Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press, Oxford, UK.

    Google Scholar 

  • Terrillon S. and Bouvier M. (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34.

    Article  PubMed  CAS  Google Scholar 

  • van Holde K. E., Miller K. I., and van Olden E. (2000) Allostery in very large molecular assemblies. Biophys. Chem. 86, 165–172.

    Article  PubMed  Google Scholar 

  • Virtanen J. A., Cheng K. H., and Somerharju P. (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc. Natl. Acad. Sci. U. S. A. 95, 4964–4969.

    Article  PubMed  CAS  Google Scholar 

  • Watts D. J. and Strogatz S. H. (1998) Collective dynamics of "small-world" networks. Nature 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Weng G., Bhalla U. S., and Iyengar R. (1999) Complexity in biological signalling systems. Science 284, 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S. (2001) Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi F. Agnati.

Additional information

This paper is dedicated to Professor Ermanno Manni, former Professor of Human Physiology in Rome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnati, L.F., Tarakanov, A.O., Ferré, S. et al. Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization. J Mol Neurosci 26, 193–208 (2005). https://doi.org/10.1385/JMN:26:2-3:193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:193

Index Entries

Navigation