Skip to main content
Log in

A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In vitro cultures of primary, human trabecular bone-derived cells represent a useful system for investigation of the biology of osteoblasts. Our recent discovery of the multilineage mesenchymal differentiation potential of trabecular bone-derived cells suggests the potential application of these cells as mesenchymal progenitors for tissue repair and regeneration. Such applications are crucially dependent on efficient cellisolation protocols to yield cells that optimally proliferate and differentiate. In this study, we describe a simple, high-yield procedure, requiring minimal culture expansion, for the isolation of mesenchymal progenitor cells from human trabecular bone. Moreover, these cells retain their ability to differentiate along multiple mesenchymal lineages through successive subculturing. Cell populations isolated and cultured as described here allow the efficient acquisition of a clinically significant number of cells, which may be used as the cell source for tissue-engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gundle, R. and Beresford, J.N. (1995) The isolation and culture of cells from explants of human trabecular bone. Calcif. Tissue Int. 56, 8–10.

    Google Scholar 

  2. Mills, B.G., Singer, F.R., Weiner, L.P., and Holst, P.A. (1979) Long-term cultures of cells from bone affected by Paget’s disease. Calcif. Tissue Int. 29, 79–87.

    Article  PubMed  CAS  Google Scholar 

  3. Beresford, J.N., Gallagher, J.A., Poser, J.W., and Russell, R.G.G. (1984) Production of osteocalcin by human bone cells in vitro: Effects of 1,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab. Bone Dis. Relat. Res. 5, 229–234.

    Article  PubMed  CAS  Google Scholar 

  4. Ashton, B.A., Abdullah, F., Cave, J., et al. (1985) Characterization of cells with high alkaline phosphatase activity derived from human bone and marrow: Preliminary assessment of their osteogenicity. Bone 6, 313–319.

    Article  PubMed  CAS  Google Scholar 

  5. Beresford, J.N., Gallagher, J.A., and Russell, R.G.G. (1986) 1,25-dihydroxyvitamin D3 and human bone-derived cells in vitro: Effects on alkaline phosphatase, type I collagen and proliferation. Endocrinology 119, 1776–1785.

    Article  PubMed  CAS  Google Scholar 

  6. Weinreb, M., Shinar, D., and Rodan, G.A. (1990) Different patterns of alkaline phosphatase, osteopontin and osteocalcin expression in developing rat bone by in situ hybridization. J. Bone Miner. Res. 5, 831–842.

    PubMed  CAS  Google Scholar 

  7. Gundle, R., Jouner, C., Bradley, J., Francis, M., Triffitt, J., and Beresford, J.N. (1994) Bone formation in vivo by cultured human marrow stromal and trabecular bone-derived cells. Bone 15, 230 abstract.

    Article  Google Scholar 

  8. Robey, P. and Termine, J. (1985) Human bone cells in vitro. Calcif. Tissue Int. 37, 453–460.

    Article  PubMed  CAS  Google Scholar 

  9. Kirkpatrick, C.J., Wagner, M., Kohler, H., Bittinger, F., Otto, M., and Klein, C.L. (1997) The cell and molecular biological approach to biomaterial research: a perspective. J. Mater. Sci. Mater. Med. 8, 131–141.

    Article  PubMed  CAS  Google Scholar 

  10. Robey, P.G., Young, M.F., Flanders, K.C., et al. (1987) Osteoblasts synthesize and respond to TGF-β in vitro. J. Cell. Biol. 105, 457–463.

    Article  PubMed  CAS  Google Scholar 

  11. Grzesik, W.J. and Robey, P.G. (1994) Bone matrix RGD-glycoproteins: immunolocalization and their interaction with human primary osteoblastic bone cells in vitro. J. Bone Miner. Res. 9, 487–496.

    PubMed  CAS  Google Scholar 

  12. Sinha, R.K., Morris, F., Shah, S.A., and Tuan, R.S. (1994) Surface composition of orthopaedic metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin. Orthop. 305, 258–272.

    PubMed  Google Scholar 

  13. Noth, U., Osyczka, A.M., Tuli, R., Hickok, N.J., Danielson, K.G., and Tuan, R.S. (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20, 1060–1069.

    Article  PubMed  Google Scholar 

  14. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell. Res. 37, 614–636.

    Article  PubMed  CAS  Google Scholar 

  15. Freshney, R.I. (1994) The culture environment: substrate, gas phase, medium and temperature. In Culture of Animal Cells: A Manual of Basic Technique, Wiley-Liss, New York, pp. 71–101.

    Google Scholar 

  16. Caterson, E.J., Nesti, L.J., Danielson, K.G., and Tuan, R.S. (2002) Human marrow-derived mesenchymal progenitor cells. Mol. Biotechnol. 20, 245–256.

    Article  PubMed  CAS  Google Scholar 

  17. Sinha, R.K. and Tuan, R.S. (1996) Regulation of human osteoblast integrin expression by orthopaedic implant materials. Bone 18, 451–457.

    Article  PubMed  CAS  Google Scholar 

  18. Pittenger, M.F., Mackay, A.M., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  19. Johnstone, B., Hering, M.H., Caplan, A.I., Goldberg, V.M., and Yoo, J.U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272.

    Article  PubMed  CAS  Google Scholar 

  20. Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., and Pittenger, M.F. (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428.

    Article  PubMed  CAS  Google Scholar 

  21. Yoo, J.U., Barthel, T.S., Nishimura, K., et al. (1998) The chondrogenic potential of human bone marrow-derived mesenchymal progenitor cells. J. Bone Jt. Surg. 80, 1745–1757.

    CAS  Google Scholar 

  22. Wong, M.M., Rao, L.G., Ly, H., Hamilton, L., Tong, J., Aubin, J.E., Turksen, K., and Heersch, J.N.M. (1993) Osteoblastic cell lineage. In: Cellular and Molecular Biology of Bone (Noda, M., ed.), Academic Press, Tokyo, pp. 1–45.

    Google Scholar 

  23. Matsuyama, T., Lau, K-H.W., and Wergedal, J.E. (1990) Monolayer cultures of normal human bone cells contain multiple subpopulations of alkaline phosphatase positive cells. Calcif. Tissue Int. 47, 276–283.

    Article  PubMed  CAS  Google Scholar 

  24. Young, M.F., Kerr, J.M., Ibaraki, K., Heegaard, A.M., and Robey, P.G. (1992) Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin. Orthop. 281, 275–294.

    PubMed  Google Scholar 

  25. Mills, B.G., Singer, F.R., Weiner, L.P., and Holst, P.A. (1979) Long-term culture of cells from bone affected by Paget’s disease. Calcif. Tissue Int. 29, 79–87.

    Article  PubMed  CAS  Google Scholar 

  26. Gallagher, J.A., Beresford, J.N., Poser, J., Coulton, L.A., Kanis, J.A., and Russell, R.G.G. (1982) Human bone cell cultures—studies of steroid action. Calcif. Tissue Int. 34(Suppl), 33.

    Google Scholar 

  27. Beresford, J.N., Gallagher, J.A., Poser, J.W., and Russell, R.G.G. (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25-(OH)2D3, 24,25-(OH)2D3, parathyroid hormone, and glucocorticoids. Metab. Bone Dis. Rel. Res. 5, 229–234.

    Article  CAS  Google Scholar 

  28. Wergedal, J.E. and Baylink, D.J. (1984) Characterization of cells isolated and cultured from human bones. Proc. Soc. Exp. Biol. Med. 176, 27–31.

    Google Scholar 

  29. Bard, D.R., Dickens, M.J., Smith, A.U., and Zarek, J. M. (1972) Isolation of living cells from mature mammalian bone. Nature 236, 314.

    Article  PubMed  CAS  Google Scholar 

  30. Robey, P.G. (1995) Collagenase-treated trabecular bone fragments: A reproducible source of cells in the osteoblast lineage. Calcif. Tissue Int. 56(Suppl 1), S11-S12.

    PubMed  CAS  Google Scholar 

  31. Brighton, C.T., Lorich, D.G., Kupcha, R., Reilly, T.M., Jones, A.R., and Woodbury, R.A. (1990) The pericyte as a possible osteoblast progenitor cell. Clin. Orthop. 275, 287–299.

    Google Scholar 

  32. Doherty, M.J., Ashton, B.A., Walsh, S., Beresford, J.N., Grant, M.E., and Canfield, A.E. (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828–838.

    Article  PubMed  CAS  Google Scholar 

  33. Reilly, T.M., Seldes, R., Luchetti, W., and Brighton, C.T. (1998) Similarities in the phenotypic expression of pericytes and bone cells. Clin. Orthop. 346, 95–103.

    PubMed  Google Scholar 

  34. Diefenderfer, D.L. and Brighton, C.T. (2000) Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochem. Biophys. Res. Commun. 269, 172–178.

    Article  PubMed  CAS  Google Scholar 

  35. Manduca, P., Sanguineti, C., Pistone, M., et al. (1993) Differential expression of alkaline phosphatase in clones of human osteoblast-like cells. J. Bone Miner. Res. 8, 291–300.

    PubMed  CAS  Google Scholar 

  36. Martin, T.J., Findlay, D.M., Heath, J.K., and Ng, K.W. (1993) Osteoblasts: differentiation and function. In: Handbook of Experimental Pharmacology (Mundy, J.R. and Martin, T.J., ed.), Springer, Berlin, pp. 149–183.

    Google Scholar 

  37. Stein, G.S. and Lian, J.B. (1995) Molecular mechanisms mediated proliferation-differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 4, 290–297.

    CAS  Google Scholar 

  38. Rodan, G.A. and Rodan, S.B. (1983) Expression of the osteoblastic phenotype. In: Annual Advances in Bone and Mineral Research, vol. 2 (Peck, W.A., ed.), Elsevier Science Publishers, Amsterdam, pp. 244–285.

    Google Scholar 

  39. Wong, M.M., Rao, L.G., Ly, H., et al. (1990) Long-term effects of physiologic concentrations of dexamethasone on human bone-derived cells. J. Bone Miner. Res. 5, 803–813.

    Article  PubMed  CAS  Google Scholar 

  40. Nakahara, H., Goldberg, V.M., and Caplan, A.I. (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9, 465–476.

    Article  PubMed  CAS  Google Scholar 

  41. Zuk, P.A., Zhu, M., Mizuno, H., et al. (2001) Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  42. Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., and Goldberg, V.M. (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76, 579–592.

    PubMed  CAS  Google Scholar 

  43. Vogel, G. (2000) Cell biology. Stem Cells: New excitement, persistent questions. Science 290, 1672–1674.

    Article  PubMed  CAS  Google Scholar 

  44. Muschler, G.F., Boehm, C.A., and Easley, K.A. (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J. Bone Joint Surg. Am. 79-A, 1699–1709.

    Google Scholar 

  45. Muschler, G.F., Nitto, H., and Boehm, C.A. (2001) Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J. Orthop. Res. 19, 117–125.

    Article  PubMed  CAS  Google Scholar 

  46. Iwamoto, I., Douchi, T., Kosha, S., Murakami, M., Fujino, T., and Nagata, Y. (2000) Relationship between serum leptin level and regional bone mineral density, bone metabolic markers in healthy women. Acta. Obstet. Gynecol. Scand. 79, 1060–1064.

    Article  PubMed  CAS  Google Scholar 

  47. Krischak, G.D., Augat, P., Wachter, N.J., Kinzl, L., and Claes, L.E. (1999) Predictive value of bone mineral density and Singh Index for the in vitro mechanical properties of cancellous bone in the femoral head. Clin. Biomech., 14, 346–351.

    Article  CAS  Google Scholar 

  48. Chaffai, S., Peyrin, F., Nuzzo, S., Porcher, R., Berger, G., and Laugier, P. (2002) Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. Bone 30, 229–237.

    Article  PubMed  CAS  Google Scholar 

  49. Hordon, L.D., Raisi, M., Aaron, J.E., Paxton, S.K., Beneton, M., and Kanis, J.A. (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27, 271–276.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky S. Tuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuli, R., Seghatoleslami, M.R., Tuli, S. et al. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 23, 37–49 (2003). https://doi.org/10.1385/MB:23:1:37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:23:1:37

Index Entries

Navigation