Skip to main content
Log in

MALDI-TOF mass spectrometry

A versatile tool for high-performance DNA analysis

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has developed during the past decade into a versatile tool for biopolymer analysis. The aim of this review is to summarize this development and outline the applications, which have been enabled for routine use in the field of nucleic acid analysis. These include the anlaysis of mutations, the resequencing of amplicons with a known reference sequence, and the quantitative analysis of gene expression and allelic frequencies in complex DNA mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeda, N., Pomerantz, S. C., and McCloskey, J. A. (1991) Detection of ribose-methylated nucleotides in enzymatic hydrolysates of RNA by thermospray liquid chromatography-mass spectrometry. J. Chromatogr. 562, 225–235.

    Article  PubMed  CAS  Google Scholar 

  2. Viari, A., Ballini, J. P., Meleard, P., et al. (1988) Characterization and sequencing of normal and modified oligonucleotides by 252Cf plasma desorption mass spectrometry. Biomed. Environ. Mass Spectrom. 16, 225–228.

    Article  PubMed  CAS  Google Scholar 

  3. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299–2301.

    Article  PubMed  CAS  Google Scholar 

  4. Börnsen, K. O., Gass, M. A. S., Bruin, G. J. M., et al. (1997) Influence of solvents and detergents on matrix-assisted laser desorption/ionization mass spectrometry measurements of proteins and oligonucleotides. Rapid Commun. Mass Spectrom. 11, 603–309.

    Article  PubMed  Google Scholar 

  5. Nordhoff, E., Ingendoh, A., Cramer, R., et al. (1992) Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun. Mass Spectrom. 6, 771–776.

    Article  PubMed  CAS  Google Scholar 

  6. Little, D. P., Braun, A., O’Donnell, M. J., and Koster, H. (1997) Mass spectrometry from miniaturized arrays for full comparative DNA analysis. Nat. Med. 3, 1413–1416.

    Article  PubMed  CAS  Google Scholar 

  7. Chaurand, P., Luetzenkirchen, F., and Spengler, B. (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 91–103.

    Article  PubMed  CAS  Google Scholar 

  8. Griffin, T. J., Goodlett, D. R., and Aebersold, R. (2001) Advances in proteome analysis by mass spectrometry. Curr. Opin. Biotechnol. 12, 607–612.

    Article  PubMed  CAS  Google Scholar 

  9. Tang, K., Fu, D. J., Kotter, S., Cotter, R. J., Cantor, C. R., and Koster, H. (1995) Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 23, 3126–3131.

    Article  PubMed  CAS  Google Scholar 

  10. Gut, I. G. and Beck, S. (1995) A procedure for selective DNA alkylation and detection by mass spectrometry. Nucleic Acids Res. 23, 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  11. Pieles, U., Zürcher, W., Schär, M., and Moser, H. E. (1993) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 21, 3191–3196.

    Article  PubMed  CAS  Google Scholar 

  12. Lecchi, P. and Pannell, L. K. (1995) 6-Aza-2-thiothymine: a matrix for MALDI spectra of oligonucleotides. J. Am. Soc. Mass Spectrom. 6, 1276–1277.

    Article  Google Scholar 

  13. Jurinke, C., van den Boom, D., Collazo, V., Lüchow, A., Jacob, A., and Koster, H. (1997) Recovery of nucleic acids from immobilized biotin-streptavidin complexes using ammonium hydroxide and applications in MALDI-TOF mass spectrometry. Anal. Chem. 69, 904–910.

    Article  PubMed  CAS  Google Scholar 

  14. Gross, J., Leisner, A., Hillenkamp, F., et al. (1998) Investigations of the metastable decay of DNA under ultraviolet matrix-assisted laser desorption/ionization conditions with post-source-decay analysis and hydrogen/deuterium exchange. J. Am. Soc. Mass Spectrom. 9, 866–878.

    Article  PubMed  CAS  Google Scholar 

  15. Nordhoff, E., Cramer, R., Karas, M., et al. (1993) Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 21, 3347–3357.

    Article  PubMed  CAS  Google Scholar 

  16. Kirpekar, F., Nordhoff, E., Kristiansen, K., Roepstorff, P., Hahner, S., and Hillenkamp, F. (1995) 7-Deaza purine bases offer a higher ion stability in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 525–531.

    Article  PubMed  CAS  Google Scholar 

  17. Siegert, C., Jacob, A., and Köster, H. (1996) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the detection of polymerase chain reaction products containing 7-deazapurine moieties. Anal. Biochem. 243, 55–65.

    Article  PubMed  CAS  Google Scholar 

  18. Wiley, W. C. and McLaren, I. H. (1955) Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26, 1150.

    Article  CAS  Google Scholar 

  19. Wu, K. J., Steding, A., and Becker, C. H. (1993) Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7, 142–146.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu, Y. F., Chung, C. N., Taranenko, N. I., et al. (1996) The study of 2,3,4-trihydroxyacetophenone and 2,4,6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 10, 383–388.

    Article  PubMed  CAS  Google Scholar 

  21. Berkenkamp, S., Kirpekar, F., and Hillenkamp, F. (1998) Infrared MALDI mass spectrometry of large nucleic acids. Science 281, 260–262.

    Article  PubMed  CAS  Google Scholar 

  22. Jannavi, R. Srinivasan, J. R., Liu, Y., et al. (1997) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a rapid screening method to detect mutations causing Tay-Sachs disease. Rapid Commun. Mass Spectrom. 11, 1144–1150.

    Article  Google Scholar 

  23. Koster, H., van den Boom, D., Braun, A., et al. (1997) DNA analysis by mass spectrometry: applications in DNA sequencing and DNA diagnostics. Nucleosides & Nucleotides 16, 563–571.

    CAS  Google Scholar 

  24. Jurinke, C., van den Boom, D., and Koster, H. (1998) Asymmetric PCR improves streptavidin-biotin based purification of PCR products prior to MALDI-TOF mass spectrometric analysis. Rapid Comm. Mass Spectrom. 12, 50–52.

    Article  CAS  Google Scholar 

  25. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, Y. H., Bai, J., Zhu, Y., et al. (1995) Rapid screening of genetic polymorphisms using buccal cell DNA with detection by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 735–743.

    Article  PubMed  CAS  Google Scholar 

  27. Faulstich, K., Worner, K., Brill, H., and Engels, J. W. (1997) A sequencing method for RNA oligonucleotides based on mass spectrometry. Anal. Chem. 69, 4349–4353.

    Article  PubMed  CAS  Google Scholar 

  28. Tang, K., Taranenko, N. I., Allmann, S. L., Ch’ang, L. Y., and Chen, C. H. (1994) Detection of 500-nucleotide DNA by laser desorption mass spectrometry. Rapid Commun. Mass Spectrom. 8, 727–730.

    Article  PubMed  CAS  Google Scholar 

  29. Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wörl, R., and Köster, H. (1996) Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry. Anal. Biochem. 237, 174–181.

    Article  PubMed  CAS  Google Scholar 

  30. Koster, H., Tang, K., Fu, D. J., et al. (1996) A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat. Biotechnol. 14, 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  31. Little, D. P., Braun, A., Darnhofer-Demar, B., et al. (1997) Detection of RET proto-oncogene codon 634 mutations using mass spectrometry. J. Mol. Med. 75, 745–750.

    Article  PubMed  CAS  Google Scholar 

  32. Higgins, G. S., Little, D. P., and Koster, H. (1997) Competitive oligonucleotide single-base extension combined with mass spectrometric detection for mutation screening. Biotechniques 23, 710–714.

    PubMed  CAS  Google Scholar 

  33. Jurinke, C., Zöllner, B., Feucht, H. H., et al. (1998) Application of nested PCR and mass spectrometry for DNA-based virus detection: HBV-DNA detected in the majority of isolated anti-HBc positive sera. Genet. Anal. 14, 97–102.

    PubMed  CAS  Google Scholar 

  34. Braun, A., Little, D. P., and Köster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.

    PubMed  CAS  Google Scholar 

  35. van den Boom, D., Jurinke, C., Higgins, G. S., Becker, T., and Koster, H. (1998) Mass spectrometric DNA diagnostics. Nucleosides & Nucleotides 17, 2157–2164.

    Article  Google Scholar 

  36. Little, D. P., Braun, A., Darnhofer-Demar, B., and Koster, H. (1997) Identification of apolipoprotein E polymorphisms using temperature cycled primer oligo base extension and mass spectrometry. Eur. J. Clin. Chem. Clin. Biochem. 35, 545–548.

    PubMed  CAS  Google Scholar 

  37. Storm, N., Darnhofer-Patel, B., van den Boom, D., and Rodi, C. P. (2003) MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol. Biol. 212, 241–262.

    PubMed  CAS  Google Scholar 

  38. Ross, P., Hall, L., Smirnov, I., and Haff, L. (1998) High-level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16, 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  39. Sauer, S., Lechner, D., Berlin, K., Lehrach, H., et al. (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res. 28, E13

    Google Scholar 

  40. Tost, J., Brandt, O., Boussicault, F., et al. (2002) Molecular haplotyping at high throughput. Nucleic Acids Res. 30, E96

    Google Scholar 

  41. Sauer, S., Gelfand, D. H., Boussicault, F., Bauer, K., Reichert, F., and Gut, I. G. (2002) Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nucleic Acid Res. 30, E22

    Google Scholar 

  42. Griffin, T. J. and Smith, L. M. (2000) Genetic identification by mass spectrometric analysis of single-nucleotide polymorphisms: ternary encoding of genotypes. Anal. Chem. 72, 3298–3302.

    Article  PubMed  CAS  Google Scholar 

  43. Berggren, W. T., Takova, T., Olson, M. C., Eis, P. S., Kwiatkowski, R. W., and Smith, L. M. (2002) Multiplexed gene expression analysis using the invader RNA assay with MALDI-TOF mass spectrometry detection. Anal. Chem. 74, 1745–1750.

    Article  PubMed  CAS  Google Scholar 

  44. Dib, C., Faure, S., Fizames, C., et al. (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154.

    Article  PubMed  CAS  Google Scholar 

  45. Sunden, S. L., Businga, T., Beck, J., et al. (1996) Chromosomal assignment of 2900 tri- and tetra-nucleotide repeat markers using NIGMS somatic cell hybrid panel 2. Genomics 32, 15–20.

    Article  PubMed  CAS  Google Scholar 

  46. Epplen, J. T., Buitkamp, J., Epplen, C., Maueler, W., and Riess, O. (1995) Indirect DNA/gene diagnoses via electrophoresis—an obsolete principle? Electrophoresis 16, 683–690.

    Article  PubMed  CAS  Google Scholar 

  47. Wells, R. D. and Warren, S. T. (1998) Genetic Instabilities and Neurological Diseases. Academic Press, San Diego, CA.

    Google Scholar 

  48. Canzian, F., Salovaara, R., Hemminki, A., et al. (1996) Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 56, 3331–3337.

    PubMed  CAS  Google Scholar 

  49. Ziegle, J. S., Su, Y., Corcoran, K. P., et al. (1992) Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14, 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  50. Reed, P. W., Davies, J. L., Copeman, J. B., et al. (1994) Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat. Genet. 7, 390–395.

    Article  PubMed  CAS  Google Scholar 

  51. Braun, A., Little, D. P., Reuter, D., Muller-Mysok, B., and Koster, H. (1997) Improved analysis of microsatellites using mass spectrometry. Genomics 46, 18–23.

    Article  PubMed  CAS  Google Scholar 

  52. Krebs, S., Seichter, D., and Forster, M. (2001) Genotyping of dinucleotide tandem repeats by MALDI mass spectrometry of ribozyme-cleaved RNA transcripts. Nat. Biotechnol. 19, 877–880.

    Article  PubMed  CAS  Google Scholar 

  53. van den Boom, D., Jurinke, C., McGinness, M. J., and Berkenkamp, S. (2001) Microsatellites: perspectives and potentials of mass spectrometric analysis. Expert Rev. Mol. Diagn. 1, 383–393.

    Article  PubMed  Google Scholar 

  54. Kirpekar, F., Nordhoff, E., Larsen, L. K., Krisitansen, K., Roepstorff, P., and Hillenkamp, F. (1998) Rapid determination of short DNA sequences by the use of MALDI-MS. Nucleic Acids Res. 26, 2554–2559.

    Article  PubMed  CAS  Google Scholar 

  55. Nordhoff, E., Luebbert, C., Thiele, G., Heiser, V., and Lehrach, H. (2000) Rapid determination of short DNA sequences by the use of MALDI-MS. Nucleic Acids Res. 28, E86

    Google Scholar 

  56. Taranenko, N. I., Allman, S. L., Golovlev, V. V., Taranenko, N. V., Isola, N. R., and Chen, C. H. (1998) Sequencing DNA using mass spectrometry for ladder detection. Nucleic Acids Res. 26, 2488–2490.

    Article  PubMed  CAS  Google Scholar 

  57. Maxam, A. M. and Gilbert, W. (1977) A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.

    Article  PubMed  CAS  Google Scholar 

  58. von Wintzingerode, F., Bocker, S., Schlotelburg, C., et al. (2002) Base-specific fragmentation of amplified 16S rRNA genes analyzed by mass spectrometry: a tool for rapid bacterial identification. Proc. Natl. Acad. Sci. USA 99, 7039–7044.

    Article  CAS  Google Scholar 

  59. Elso, C., Toohey, B., Reid, G. E., Poetter, K., Simpson, R. J., and Foote, S. J. (2002) Mutation detection using mass spectrometric separation of tiny oligonucleotide fragments. Genome Res. 12, 1428–1433.

    Article  PubMed  CAS  Google Scholar 

  60. Shchepinov, M. S., Denissenko, M. F., Smylie, K. J., et al. (2001) Matrix-induced fragmentation of P3′-N5′ phosphoramidate-containing DNA: high-throughput MALDI-TOF analysis of genomic sequence polymorphisms. Nucl. Acids Res. 25, 3864–3872.

    Article  Google Scholar 

  61. Hahner, S., Ludemann, H. C., Kirpekar, F., et al. (1997) Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) of endonuclease digests of RNA. Nucleic Acids Res. 25, 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  62. Krebs, S., Medugorac, I., Seichter, D., and Forster, M. (2003) RNaseCut: a MALDI mass spectrometry-based method for SNP discovery. Nucl. Acids Res. 31, E37

    Google Scholar 

  63. Hartmer, R., Storm, N., Boecker, S., et al. (2003) RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. Nucl. Acids Res., 31, E47.

    Google Scholar 

  64. Buetow, K. H., Edmonson, M., MacDonald, R., et al. (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 98, 581–584.

    Article  PubMed  CAS  Google Scholar 

  65. Werner, M., Sych, M., Herbon, N., Illig, T., Konig, I. R., and Wjst, M. (2002) Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry. Human Mutation 20, 57–64.

    Article  PubMed  CAS  Google Scholar 

  66. Mohlke, K. L., Erdos, M. R., Scott, L. J., et al. (2002) High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc. Natl. Acad. Sci. USA 99, 16,928–16,933.

    Article  CAS  Google Scholar 

  67. Ding, C. and Cantor, C. R. (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc. Natl. Acad. Sci. USA 100, 3059–3064.

    Article  PubMed  CAS  Google Scholar 

  68. Ross, P., Hall, L., and Haff, L. A. (2000) Quantitative approach to single-nucleotide polymorphism analysis using MALDI-TOF mass spectrometry. Biotechniques 29, 620–626.

    PubMed  CAS  Google Scholar 

  69. Le Hellard, S., Ballereau, S. J., Visscher, P. M., et al. (2002) SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi-automated method for data storage and analysis. Nucleic Acids Res. 30, E74.

    Google Scholar 

  70. Shifman, S., Pisante-Shalom, A., Yakir, B., and Darvasi, A. (2002) Quantitative technologies for allele frequency estimation of SNPs in DNA pools. Mol. Cell. Probes 16, 429–434.

    Article  PubMed  CAS  Google Scholar 

  71. Sham, P., Bader, J. S., Craig, I., O’Donovan, M., and Owen, M. (2002) DNA pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3, 862–871.

    Article  PubMed  CAS  Google Scholar 

  72. Barratt, B. J., Payne, F., Rance, H. E., Nutland, S., Todd, J. A., and Clayton, D. G. (2002) Identification of the sources of error in allele frequency estimations from pooled DNA indicates an optimal experimental design. Ann. Hum. Genet. 66, 393–405.

    Article  PubMed  CAS  Google Scholar 

  73. Knight, J. C., Keating, B. J., Rockett, K. A., and Kwiatkowski,, P. D. (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantitation of RNA polymerase loading. Nat. Genet. 33, 469–475.

    Article  PubMed  CAS  Google Scholar 

  74. Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex disease. Nat. Rev. Genet. 2, 91–99.

    Article  PubMed  CAS  Google Scholar 

  75. Tabor, H. K., Risch, N. J., and Myer, R. M. (2002) Candidate-gene approaches for studying complex traits: practical considerations. Nat. Rev. Genet. 3, 391–397.

    Article  PubMed  CAS  Google Scholar 

  76. Bansal, A., van den Boom, D., Kammerer, S., et al. (2002) Association testing by DNA pooling—an effective initial screen. Proc. Natl. Acad. Sci. USA 99, 16,871–16,874.

    Article  CAS  Google Scholar 

  77. Kammerer, S., Burns-Hamuro, L., Ma, Y., et al. (2003) Amino acid variant in the kinase binding domain of dual-specific A kinase-anchoring protein 2, a disease susceptibility polymorphism. Proc. Natl. Acad. Sci. USA 100, 4066–4071.

    Article  PubMed  CAS  Google Scholar 

  78. Jurinke, C., van den Boom, D., Cantor, C. R., and Köster, H. (2002) Automated genotyping using DNA mass-ARRAY technology. Methods Mol. Biol. 187, 179–192.

    PubMed  CAS  Google Scholar 

  79. Amexis, G., Oeth, P., Abel, K., et al. (2001) Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 98, 12,097–12,102.

    Article  CAS  Google Scholar 

  80. Bucknall, M., Fung, K. Y. C., and Duncan, M. W. (2002) Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 1015–1027.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jurinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurinke, C., Oeth, P. & van den Boom, D. MALDI-TOF mass spectrometry. Mol Biotechnol 26, 147–163 (2004). https://doi.org/10.1385/MB:26:2:147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:26:2:147

Index Entries

Navigation