Skip to main content
Log in

The unfolded protein response

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The unfolded protein response (UPR) is a signal transduction network activated by inhibition of protein folding in the endoplasmic reticulum (ER). The UPR coordinates adaptive responses to this stress situation, including induction of ER resident molecular chaperone and protein foldase expression to increase the protein folding capacity of the ER, induction of phospholipid synthesis, attenuation of general translation, and upregulation of ER-associated degradation to decrease the unfolded protein load of the ER, and an antioxidant response. Upon severe or prolonged ER stress the UPR induces apoptosis to eliminate unhealthy cells from an organism or a population. In this review, I will summarize our current knowledge about signal transduction pathways involved in transducing the unfolded protein signal from the ER to the nucleus or the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schröder, M., and Kaufman, R. J. (2005) ER stress and the unfolded protein response. Mutat. Res. 569, 29–63.

    PubMed  Google Scholar 

  2. Schröder, M. and Kaufman, R. J. (2006) Divergent roles of Ire1α and PERK in the unfolded protein response. Curr. Mol. Med. 6, 5–36.

    Article  PubMed  Google Scholar 

  3. Cox, J. S., Shamu, C. E. and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase, Cell 73, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  4. Mori, K., Ma, W., Gething, M.-J. and Sambrook, J. (1993) Atransmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756.

    Article  PubMed  CAS  Google Scholar 

  5. Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmc-reticulum-resident kinase. Nature 397, 271–274.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida, H., Okada, T., Haze, K., et al. (2000) ATF6 activated by proteolysis binds in the presence of NFY (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767.

    Article  PubMed  CAS  Google Scholar 

  7. Kondo, S., Murakami, T., Tatsumi, K., et al. (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat. Cell Biol. 7, 186–194.

    Article  PubMed  CAS  Google Scholar 

  8. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., and Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332.

    Article  PubMed  CAS  Google Scholar 

  9. Shen, J., Chen, X., Hendershot, L. and Prywes, R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111/

    Article  PubMed  CAS  Google Scholar 

  10. Hong, M., Luo, S., Baumeister, P., et al. (2004) Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11,345–11,363.

    Google Scholar 

  11. Hong, M., Li, M., Mao, C. and Lee, A. S. (2004) Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. J. Cell. Biochem. 92, 723–732.

    Article  PubMed  CAS  Google Scholar 

  12. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M., and Walter, P. (2005) Inaugural Article: on the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 102, 18,773–18,784.

    Article  CAS  Google Scholar 

  13. Liu, C. Y., Schröder, M. and Kaufman, R. J. (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275, 24,881–24,885.

    CAS  Google Scholar 

  14. Haze, K., Okada, T., Yoshida, H., et al. (2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J. 355, 19–28.

    Article  PubMed  CAS  Google Scholar 

  15. Ye, J., Rawson, R. B., Komuro, R., et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, Y., Shen, J., Arenzana, N., Tirasophon, W., Kaufman, R. J. and Prywes, R. (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27,013–27,020.

    CAS  Google Scholar 

  17. Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33,741–33,749.

    CAS  Google Scholar 

  18. Kokame, K., Kato, H. and Miyata, T. (2001) Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response. J. Biol. Chem. 276, 9199–9205.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida, H., Okada, T., Haze, K., et al. (2001) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6a and 6b that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239–1248.

    Article  PubMed  CAS  Google Scholar 

  20. Okada, T., Yoshida, H., Akazawa, R., Negishi, M., and Mori, K. (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stransded RNA-activated protein kinase-like endoplasmic reticulum kinas (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366, 585–594.

    Article  PubMed  CAS  Google Scholar 

  21. Ma, Y. and Hendershot, L. M. (2004) Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and branch that is shared with other cellular stress pathways. J. Biol. Chem. 279, 13,792–13,799.

    CAS  Google Scholar 

  22. Yan, W., Frank, C. L., Korth, M. J. et al. (2002) Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl. Acad. Sci. USA 99, 15,920–15,925.

    CAS  Google Scholar 

  23. Zeng, L., Lu, M., Mori, K., et al. (2004) ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 23, 950–958.

    Article  PubMed  CAS  Google Scholar 

  24. Pouysségur, J., Shiu, R. P. and Pastan, I. (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11, 941–947.

    Article  PubMed  Google Scholar 

  25. Shiu, R. P., Pouyssegur, J. and Pastan, L. (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74, 3840–3844.

    Article  PubMed  CAS  Google Scholar 

  26. Stirling, J. and O'Hare, P. (2005) CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by SIP. Mol. Biol. Cell 17, 413–426.

    Article  PubMed  Google Scholar 

  27. Raggo, C., Rapin, N., Stirling, J., et al. (2002) Luman, the cellular counterpart of herpes simples virus VP16 is processed by regulated intramembrane proteolysis. Mol. Cell. Biol. 22, 5639–5649.

    Article  PubMed  CAS  Google Scholar 

  28. Omori,Y., Imai, J., Watanabe, M., et al. (2001) CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 29, 2154–2162.

    Article  PubMed  CAS  Google Scholar 

  29. Storlazzi, C. T., Mertens, F., Nascimento, A., et al. (2003) Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum. Mol. Genet. 12, 2349–2358.

    Article  PubMed  CAS  Google Scholar 

  30. Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H. D. and Jentsch, S. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586.

    Article  PubMed  CAS  Google Scholar 

  31. Iwata, Y. and Koizumi, N. (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in amanner unique to plants. Proc. Natl. Acad. Sci. USA 102, 5280–5285.

    Article  PubMed  CAS  Google Scholar 

  32. Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A., and Kaufman, R. J. (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, X. Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M., Kuroda, M. and Ron, D. (1998) Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717.

    Article  PubMed  CAS  Google Scholar 

  34. Papa, F. R., Zhang, C., Shokat, K. and Walter, P. (2003) Bypassing a kinase activity with an ATP-competitive drug. Science 302, 1533–1537.

    Article  PubMed  CAS  Google Scholar 

  35. Cox, J. S. and Walter, P. (1996) A novel mechanism for regulating activity a transcription factor that controls the unfolded protein response. Cell 87, 391–404.

    Article  PubMed  CAS  Google Scholar 

  36. Kawahara, T., Mori, T., Yanagi, H. and Yura, T. (1977) ER stres-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8, 354a.

    Google Scholar 

  37. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.

    Article  PubMed  CAS  Google Scholar 

  38. Calfon, M., Zeng, H., Urano, F., et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96.

    Article  PubMed  CAS  Google Scholar 

  39. Sidrauski, C., Cox, J. S. and Walter, P. (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87, 405–413.

    Article  PubMed  CAS  Google Scholar 

  40. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T. (2000) mRNA splicing-mediated C-treminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc. Natl. Acad. Sci. USA 97, 4660–4665.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, K., Tirasophon, W., Shen, X., et al. (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466.

    Article  PubMed  CAS  Google Scholar 

  42. Chapman, R. E. and Walter, P. (1997) Translational attenuation mediated by an mRNA intron. Curr. Biol. 7, 850–859.

    Article  PubMed  CAS  Google Scholar 

  43. Rüegsegger, U., Leber, J. H. and Walter, P. (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107, 103–114.

    Article  PubMed  Google Scholar 

  44. Welihinda, A. A., Tirasophon, W., Green, S. R., and Kaufman, R. J. (1998) Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Mol. Cell. Biol. 18, 1967–1977.

    PubMed  CAS  Google Scholar 

  45. Nguyên, D. T., Kebache, S., Fazel, A., et al. (2004) Nck-dependent activation of extracellular signal regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol. Biol. Cell 15, 4248–4260.

    Article  PubMed  Google Scholar 

  46. Oono, K., Yoneda, T., Manabe, T., et al. (2004) JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem. Int. 45, 765–772.

    Article  PubMed  CAS  Google Scholar 

  47. Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., and Walter, P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459.

    Article  PubMed  CAS  Google Scholar 

  49. Shen, X., Ellis, R. E., Sakaki, K., and Kaufman, R. J. (2005) Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans. PLoS Genet. 1, e37.

    Article  PubMed  Google Scholar 

  50. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T. (1998) Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J. Biol. Chem. 273, 9912–9920.

    Article  PubMed  CAS  Google Scholar 

  51. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C., and Sommer, T. (2000) A regulatory link between ER-associated protein degradation and the unfoldedprotein response. Nat. Cell Biol. 2, 379–384.

    Article  PubMed  CAS  Google Scholar 

  52. Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271.

    Article  PubMed  CAS  Google Scholar 

  53. Sriburi, R., Jackowski, S., Mori, K., and Brewer, J. W. (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 167, 35–41.

    Article  PubMed  CAS  Google Scholar 

  54. Cox, J. S., Chapman, R. E., and Walter, P. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8, 1805–1814.

    PubMed  CAS  Google Scholar 

  55. Lee, A. H., Iwakoshi, N. N., Anderson, K. C., and Glimcher, L. H. (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl. Acad. Sci. USA 100, 9946–9951.

    Article  PubMed  CAS  Google Scholar 

  56. Clauss, I. M., Chu, M., Zhao, J.-L., and Glimcher, L. H. (1996) The basic domain/leucine zipper protein hXBP-1 preferentially binds to and trnasactivates CRE-like sequences containing an ACGT core. Nucleic Acids Res. 24, 1855–1864.

    Article  PubMed  CAS  Google Scholar 

  57. Schröder, M., Clark, R., Liu, C. Y., and Kaufman, R. J. (2004) The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase. EMBO J. 23, 2281–2292.

    Article  PubMed  Google Scholar 

  58. Mitchell, A. P. (1994) Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58, 56–70.

    PubMed  CAS  Google Scholar 

  59. Williams, R. M., Primig, M., Washburn, B. K., et al. (2002) The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc. Natl. Acad. Sci. USA 99, 13,431–13,436.

    CAS  Google Scholar 

  60. Schröder, M., Chang, J. S., and Kaufman, R. J. (2000) The unfolded protein response represses nitrogenstarvation induced developmental differentiation in yeast. Genes Dev. 14, 2962–2975.

    Article  PubMed  Google Scholar 

  61. Martínez, I. M. and Chrispeels, M. J. (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15, 561–576.

    Article  PubMed  Google Scholar 

  62. Pakula, T. M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., and Penttilä, M. (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for downregulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278, 45,011–45,020.

    Article  CAS  Google Scholar 

  63. Kimata, Y., Ishiwata-Kimata, Y., Yamada, S., and Kohno, K. (2006) Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins. Genes Cells 11, 59–69.

    Article  PubMed  CAS  Google Scholar 

  64. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J., and Diehl, J. A. (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209.

    Article  PubMed  CAS  Google Scholar 

  65. Nguyen, T., Sherratt, P. J., and Pickett, C. B. (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43, 233–260.

    Article  PubMed  CAS  Google Scholar 

  66. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for trnaslational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904.

    Article  PubMed  CAS  Google Scholar 

  67. Brewer, J. W., Hendershot, L. M., Sherr, C. J., and Diehl, J. A. (1999) Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc. Natl. Acad. Sci. USA 96, 8505–8510.

    Article  PubMed  CAS  Google Scholar 

  68. Deng, J., Lu, P. D., Zhang, Y., et al. (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10,161–10,168.

    Article  CAS  Google Scholar 

  69. Ma, Y., Brewer, J. W., Diehl, J. A., and Hendershot, L. M. (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365.

    Article  PubMed  CAS  Google Scholar 

  70. Ron, D. and Habener, J. F. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6, 439–453.

    PubMed  CAS  Google Scholar 

  71. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bc12 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  72. Novoa, I., Zeng, H., Harding, H. P., and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022.

    Article  PubMed  CAS  Google Scholar 

  73. Kebache, S., Cardin, E., Nguyên, D. T., Chevet, E. and Larose, L. (2004) Nck-1 antagonizes the endoplasmic reticulum stress-induced inhibition of trnaslation. J. Biol. Chem. 279, 9662–9671.

    Article  PubMed  CAS  Google Scholar 

  74. Jousse, C., Oyadomari, S., Novoa, I., et al. (2003) Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767–775.

    Article  PubMed  CAS  Google Scholar 

  75. van Huizen, R., Martindale, J. L., Gorospe, M., and Holbrook, N. J. (2003) P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2α signaling. J. Biol. Chem. 278, 15,558–15,564.

    Article  Google Scholar 

  76. Gale, M., Jr., Blakely, C. M., Darveau, A., Romano, P. R., Korth, M. J., and Katze, M. G. (2002) P52rIPK regulates the molecular cochaperone P58IPK to mediate control of the RNA-dependent protein kinase in response to cytoplasmic stress. Biochemistry 41, 11,878–11,887.

    Article  CAS  Google Scholar 

  77. Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005) Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664.

    Article  PubMed  CAS  Google Scholar 

  78. Oyadomari, S. and Mori, M. (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381–389.

    Article  PubMed  CAS  Google Scholar 

  79. Scheuner, D., Song, B., McEwen, E., et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176.

    Article  PubMed  CAS  Google Scholar 

  80. Caamano, J. and Hunter, C. A. (2002) NF-κB family of trnascription factors: central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 15, 414–429.

    Article  PubMed  CAS  Google Scholar 

  81. Urano, F., Wang, X., Bertolotti, A., et al. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666.

    Article  PubMed  CAS  Google Scholar 

  82. Nishitoh, H., Matsuzawa, A., Tobiume, K., et al. (2002) ASK1 is essential for endoplasmic reticulum stressinduced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355.

    Article  PubMed  CAS  Google Scholar 

  83. DeVries-Seimon, T., Li, Y., Yao, P. M., et al. (2005) Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J. Cell Biol. 171, 61–73.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, X. Z. and Ron, D. (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272, 1347–1349.

    Article  PubMed  CAS  Google Scholar 

  85. Chen, K. D., Chen, L. Y., Huang, H. L., et al. (1998) Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J. Biol. Chem. 273, 749–755.

    Article  PubMed  CAS  Google Scholar 

  86. Dunn, C., Wiltshire, C., MacLaren, A., and Gillespie, D. A. (2002) Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell. Signal. 14, 585–593.

    Article  PubMed  CAS  Google Scholar 

  87. Yoneda, T., Imaizumi, K., Oono, K., et al. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13,935–13,940.

    CAS  Google Scholar 

  88. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., and Yasuhiko, Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34,287–34,294.

    Article  CAS  Google Scholar 

  89. Rao, R. V., Castro-Obregon, S., Frankowski, H., et al. (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277, 21,836–21,842.

    CAS  Google Scholar 

  90. Nguyen, M., Breckenridge, D. G., Ducret, A., and Shore, G. C. (2000) Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol. 20, 6731–6740.

    Article  PubMed  CAS  Google Scholar 

  91. Ng, F. W., Nguyen, M., Kwan, T., et al. (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol. 139, 327–338.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang, H., Xu, Q., Krajewski, S., et al. (2000) BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc. Natl. Acad. Sci. USA 97, 2597–2602.

    Article  PubMed  CAS  Google Scholar 

  93. Ito, Y., Pandey, P., Mishra, N., et al. (2001) Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21, 6233–6242.

    Article  PubMed  CAS  Google Scholar 

  94. Tenev, T., Zachariou, A., Wilson, R., Paul, A., and Meier, P. (2002) Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J. 21, 5118–5129.

    Article  PubMed  CAS  Google Scholar 

  95. Liu, C. Y., Wong, H. N., Schauerte, J. A., and Kaufman, R. J. (2002) The protein kinase/endoribonuclease IRE1α that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J. Biol. Chem. 277, 18,346–18,356.

    CAS  Google Scholar 

  96. Kimata, Y., Oikawa, D., Shimizu, Y., Ishiwata-Kimata, Y., and Kohno, K. (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Irel. J. Cell Biol. 167, 445–456.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, M. The unfolded protein response. Mol Biotechnol 34, 279–290 (2006). https://doi.org/10.1385/MB:34:2:279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:2:279

Index Entries

Navigation