Skip to main content
Log in

Role of iron-ATP complex in lymphocyte proliferation and infiltration

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The roles of sodium-ATP (NaATP) and ferric-ATP complex (FeATP) on the proliferation and infiltration of lymphocytes have been studied by evaluation of the hypertrophy and histopathologic examination of spleen and liver, as well of the modifications in the elemental balance of iron, calcium, magnesium, and phosphorus. The results showed that in the implicated biochemical processes, calcium and magnesium have a principal role. An in vitro study on a cell model has permited one to evaluate the effects of deferoxamine, a known iron chelator and inhibitor of human lymphocyte proliferation, on FeATP-modified cellular calcium fluxes. These findings showing a reduced 45Ca2+ uptake in the presence of deferoxamine appear to indicate that in vivo the chelation of blood-borne iron by ATP might play a key role in proliferation and infiltration of lymphocytes, leading to lymphoma development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Anghileri, Effects of Fe3+-tumor cell interaction on Ca2+-uptake by Ehrlich ascites tumor cells, Cell Calcium 12, 371–374 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. L. J. Anghileri, P. Thouvenot, and A. Bertrand, Effects of iron complexes on brain calcium homeostasis, Ann. Clin. Lab. Sci. 27, 210–215 (1997).

    PubMed  CAS  Google Scholar 

  3. J. Weaver and S. Pollack, Low molecular weight iron isolated from guinea pig reticulocytes as AMPFe and ATPFe complexes, Biochem. J. 61, 787–792 (1989).

    Google Scholar 

  4. H. Zhan, R. K. Guppa, and J. Weaver, Iron bound to low molecular weight ligands: interaction with mitochondria and cytosolic protein, Fur. J. Haematol 44, 124–130, (1990).

    Google Scholar 

  5. L. J. Anghileri, Ph. Maincent, and A. Cordova-Martinez, On the mechanism of soft tissue calcification induced by complexed iron, Exp. Toxicol. Pathol. 45, 365–368 (1993).

    PubMed  CAS  Google Scholar 

  6. L. J. Anghileri, Ph. Maincent, and P. Thouvenot, Cardiotoxicity of parenterally administered iron complexes, Arzneim.-Foresch./Drug Res. 45, 679–681 (1995).

    CAS  Google Scholar 

  7. L. J. Anghileri, F. Plenat, E. Labouyrie, et al., Iron- and aluminum-induced carcinogenesis, Anticancer Res. 20, 3007–3012 (2000).

    PubMed  CAS  Google Scholar 

  8. L. J. Anghileri, E. Mayayo, J. L. Domingo, et al., Toxic and carcinogenic effects of parenteral and percutaneous, ATP and its iron complex, Drug Chem. Toxicol. 25, 267–279 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. L. J. Anghileri and P. Thouvenot, Molecular exchange of metal ions and tissular calcium overload, Biol. Trace Element Res. 99, 211–217 (2004).

    Article  CAS  Google Scholar 

  10. A. H. Lichtman, G. B. Segel, and M. A. Lichtman, The role of calcium in lymphocyte proliferation (an interpretive review), Blood 61, 413–422, (1983).

    PubMed  CAS  Google Scholar 

  11. L. J. Anghileri, Iron, intracellular calcium, lipid peroxidation and carcinogenesis, Anticancer Res. 15, 1395–1400 (1995).

    PubMed  CAS  Google Scholar 

  12. H. M. Lederman, A. Cohen, U. W. W. Lee, et al. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation, Blood 64, 748–753 (1984).

    PubMed  CAS  Google Scholar 

  13. L. J. Anghileri and J. Robert, In vivo distribution of ferric-ATP complex, Eur. J. Drug Metab. Pharmacokinet. 19, 1–3 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. L. K. Reitz, A. S. O'Brien, and T. L. Davis, Evaluation of three iron methods using a factorial experiment, Anal. Chem. 22 1470–1474 (1950).

    Article  CAS  Google Scholar 

  15. G. Kessler and M. Wolfman, An automated procedure for the simultaneous determination of calcium and phosphorus, Clin. Chem. 10, 686–688 (1964).

    PubMed  CAS  Google Scholar 

  16. F. Ingman and R. Ringbom, Spectrophotometric determination of small amounts of magnesium and calcium emploving Calmagite, Microchem. J. 10, 545–547 (1966).

    Article  CAS  Google Scholar 

  17. C. H. Fiske and Y. Subbarow, The colorimetric determination of phosphorus, J. Biol. Chem. 66, 375–378 (1925).

    CAS  Google Scholar 

  18. I. Fodor and J. J. M. Marx, Lipid peroxidation of rabbit small intestine microvillus membrane vesicles by iron complexes, Biochim. Biophys. Acta 961, 96–102 (1988).

    PubMed  CAS  Google Scholar 

  19. L. J. Anghileri, M. Heidbreder, G. Weiler, et al., Hepatocarcinogenesis, by thioacetamide: correlation of histological and biochemical changes, and possible role of cell injury, Exp. Cell Biol. 45, 34–47 (1979).

    Google Scholar 

  20. L. J. Anghileri, D. Stavrou, and W. Weidenbach, Phospholipids and calcification in human intracraneal tumors, Arch. Geschwultsforsch. 47, 330–334 (1977).

    CAS  Google Scholar 

  21. E. H. Morgan, Transferrin and transterrin iron in Iron in Biochemistry and Medicine, A. Jacobs and M. Worwood, eds., Academic, London, p. 58 (1974).

    Google Scholar 

  22. Cittadini, D. Bossi, F. I. Wolf, et al., The role of the intracellular Ca/Mg ratio, in bioenergetic reactions, in The Role of Calcium in Biological Systems, L. J. Anghileri and A. M. Tuffet-Anghileri, eds., CRC, Boca Raton, FL, Vol. 1, pp. 189–200 (1982).

    Google Scholar 

  23. D. W. Yang and H. J. Morton, Effects of calcium and magnesium on the morphology and growth pattern of L-M cells, J. Natl. Cancer Inst. 46, 505–507 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold J. Anghileri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anghileri, L.J., Ortal, E.M. & Thouvenot, P. Role of iron-ATP complex in lymphocyte proliferation and infiltration. Biol Trace Elem Res 108, 69–75 (2005). https://doi.org/10.1385/BTER:108:1-3:069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:108:1-3:069

Index Entries

Navigation