Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2005

Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14)

  • Nadja Leukert , Clemens Sorg and Johannes Roth
From the journal Biological Chemistry

Abstract

S100 proteins form characteristic homo- and/or heterodimers that play a role in calcium-mediated signaling. We characterized the formation of the human S100A8/S100A9 heterodimer using the yeast two-hybrid system. Employing site-directed mutagenesis we found that distinct hydrophobic amino acids of helix I/I′ are located at a crucial site of the S100A8/S100A9 dimer interface, whereas conserved residues within helix IV/IV′ are not important for heterodimerization. Furthermore, amino acids Y16 and F68 prevent homodimerization of human S100A8. These data demonstrate for the first time the functional relevance of distinct hydrophobic amino acids for human S100A8/S100A9 complex formation in vivo.

:

Corresponding author

References

Brodersen, D.E., Etzerodt, M., Madsen, P., Celis, J.E., Thogersen, H.C., Nyborg, J., and Kjeldgaard, M. (1998). EF-hands at atomic resolution: the structure of human psoriasin (S100A7) solved by MAD phasing. Structure6, 477–489.10.1016/S0969-2126(98)00049-5Search in Google Scholar

Cornish, C.J., Devery, J.M., Poronnik, P., Lackmann, M., Cook, D.I., and Geczy, C.L. (1996). S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J. Cell Physiol.166, 427–437.10.1002/(SICI)1097-4652(199602)166:2<427::AID-JCP21>3.0.CO;2-6Search in Google Scholar

Deloulme, J.C., Assard, N., Mbele, G.O., Mangin, C., Kuwano, R., and Baudier, J. (2000). S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J. Biol. Chem.275, 35302–35310.10.1074/jbc.M003943200Search in Google Scholar

Donato, R. (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol.33, 637–668.10.1016/S1357-2725(01)00046-2Search in Google Scholar

Drohat, A.C., Baldisseri, D.M., Rustandi, R.R., and Weber, D.J. (1998). Solution structure of calcium-bound rat S100B(ββ) as determined by nuclear magnetic resonance spectroscopy. Biochemistry37, 2729–2740.10.1021/bi972635pSearch in Google Scholar

Foell, D., Frosch, M., Sorg, C., and Roth, J. (2004). Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin. Chim. Acta344, 37–51.10.1016/j.cccn.2004.02.023Search in Google Scholar

Fritz, G., Mittl, P.R., Vasak, M., Grutter, M.G., and Heizmann, C.W. (2002). The crystal structure of metal-free human EF-hand protein S100A3 at 1.7-Å resolution. J. Biol. Chem.277, 33092–33098.10.1074/jbc.M200574200Search in Google Scholar

Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res.20, 1425.10.1093/nar/20.6.1425Search in Google Scholar

Heizmann, C.W., Fritz, G., and Schafer, B.W. (2002). S100 proteins: structure, functions and pathology. Front. Biosci.7, d1356–d1368.Search in Google Scholar

Hunter, M.J. and Chazin, W.J. (1998). High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J. Biol. Chem.273, 12427–12435.10.1074/jbc.273.20.12427Search in Google Scholar

Ishikawa, K., Nakagawa, A., Tanaka, I., Suzuki, M., and Nishihira, J. (2000). The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 Å resolution. Acta Crystallogr. D Biol. Crystallogr.56, 559–566.10.1107/S0907444900002833Search in Google Scholar

Itou, H., Yao, M., Fujita, I., Watanabe, N., Suzuki, M., Nishihira, J., and Tanaka, I. (2002). The crystal structure of human MRP14 (S100A9), a Ca2+-dependent regulator protein in inflammatory process. J. Mol. Biol.316, 265–276.10.1006/jmbi.2001.5340Search in Google Scholar

Kilby, P.M., Van Eldik, L.J., and Roberts, G.C. (1996). The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure4, 1041–1052.10.1016/S0969-2126(96)00111-6Search in Google Scholar

Koltzscher, M. and Gerke, V. (2000). Identification of hydrophobic amino acid residues involved in the formation of S100P homodimers in vivo. Biochemistry39, 9533–9539.10.1021/bi000257+Search in Google Scholar

Lackmann, M., Cornish, C.J., Simpson, R.J., Moritz, R.L., and Geczy, C.L. (1992). Purification and structural analysis of a murine chemotactic cytokine (CP-10) with sequence homology to S100 proteins. J. Biol. Chem.267, 7499–7504.10.1016/S0021-9258(18)42545-8Search in Google Scholar

Lackmann, M., Rajasekariah, P., Iismaa, S.E., Jones, G., Cornish, C.J., Hu, S., Simpson, R.J., Moritz, R.L., and Geczy, C.L. (1993). Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J. Immunol.150, 2981–2991.10.4049/jimmunol.150.7.2981Search in Google Scholar

Matsumura, H., Shiba, T., Inoue, T., Harada, S., and Kai, Y. (1998). A novel mode of target recognition suggested by the Å structure of holo S100B from bovine brain. Structure6, 233–241.10.1016/S0969-2126(98)00024-0Search in Google Scholar

Moroz, O.V., Antson, A.A., Murshudov, G.N., Maitland, N.J., Dodson, G.G., Wilson, K.S., Skibshoj, I., Lukanidin, E.M., and Bronstein, I.B. (2001). The three-dimensional structure of human S100A12. Acta Crystallogr. D Biol. Crystallogr.57, 20–29.10.1107/S090744490001458XSearch in Google Scholar

Newton, R.A. and Hogg, N. (1998). The human S100 protein MRP-14 is a novel activator of the β2 integrin Mac-1 on neutrophils. J. Immunol.160, 1427–1435.10.4049/jimmunol.160.3.1427Search in Google Scholar

Odink, K., Cerletti, N., Bruggen, J., Clerc, R.G., Tarcsay, L., Zwadlo, G., Gerhards, G., Schlegel, R., and Sorg, C. (1987). Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature330, 80–82.10.1038/330080a0Search in Google Scholar

Otterbein, L.R., Kordowska, J., Witte-Hoffmann, C., Wang, C.L., and Dominguez, R. (2002). Crystal structures of S100A6 in the Ca2+-free and Ca2+-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure10, 557–567.10.1016/S0969-2126(02)00740-2Search in Google Scholar

Potts, B.C., Smith, J., Akke, M., Macke, T.J., Okazaki, K., Hidaka, H., Case, D.A., and Chazin, W.J. (1995). The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat. Struct. Biol.2, 790–796.10.1038/nsb0995-790Search in Google Scholar PubMed

Potts, B.C., Carlstrom, G., Okazaki, K., Hidaka, H., and Chazin, W.J. (1996). 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100β. Protein Sci.5, 2162–2174.10.1002/pro.5560051103Search in Google Scholar PubMed PubMed Central

Pröpper, C., Huang, X., Roth, J., Sorg, C., and Nacken, W. (1999). Analysis of the MRP8-MRP14 protein-protein interaction by the two-hybrid system suggests a prominent role of the C-terminal domain of S100 proteins in dimer formation. J. Biol. Chem.274, 183–188.10.1074/jbc.274.1.183Search in Google Scholar

Roth, J., Vogl, T., Sorg, C., and Sunderkotter, C. (2003). Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol.24, 155–158.10.1016/S1471-4906(03)00062-0Search in Google Scholar

Rustandi, R.R., Baldisseri, D.M., Inman, K.G., Nizner, P., Hamilton, S.M., Landar, A., Landar, A., Zimmer, D.B., and Weber, D.J. (2002). Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry41, 788–796.10.1021/bi0118308Search in Google Scholar

Tarabykina, S., Kriajevska, M., Scott, D.J., Hill, T.J., Lafitte, D., Derrick, P.J., Dodson, G.G., Lukanidin, E., and Bronstein, I. (2000). Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. FEBS Lett.475, 187–191.10.1016/S0014-5793(00)01652-5Search in Google Scholar

Tarabykina, S., Scott, D.J., Herzyk, P., Hill, T.J., Tame, J.R., Kriajevska, M., Lafitte, D., Derrick, P.J., Dodson, G.G., Maitland, N.J., Lukanidin, E.M., and Bronstein, I.B. (2001). The dimerization interface of the metastasis-associated protein S100A4 (Mts1): in vivo and in vitro studies. J. Biol. Chem.276, 24212–24222.10.1074/jbc.M009477200Search in Google Scholar

Vallely, K.M., Rustandi, R.R., Ellis, K.C., Varlamova, O., Bresnick, A.R., and Weber, D.J. (2002). Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry41, 12670–12680.10.1021/bi020365rSearch in Google Scholar

Vogl, T., Roth, J., Sorg, C., Hillenkamp, F., and Strupat, K. (1999). Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom.10, 1124–1130.Search in Google Scholar

Vogl, T., Ludwig, S., Goebeler, M., Strey, A., Thorey, I.S., Reichelt, R., Foell, D., Gerke, V., Manitz, M.P., Nacken, W., Werner, S., Sorg, C., and Roth, J. (2004). MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood104, 4260–4268.10.1182/blood-2004-02-0446Search in Google Scholar

Wang, G., Rudland, P.S., White, M.R., and Barraclough, R. (2000). Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. J. Biol. Chem.275, 11141–11146.10.1074/jbc.275.15.11141Search in Google Scholar

Zhang, H., Wang, G., Ding, Y., Wang, Z., Barraclough, R., Rudland, P.S., Fernig, D.G., and Rao, Z. (2003). The crystal structure at 2 Å resolution of the Ca2+-binding protein S100P. J. Mol. Biol.325, 785–794.10.1016/S0022-2836(02)01278-0Search in Google Scholar

Published Online: 2005-07-05
Published in Print: 2005-05-01

© Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.051/html
Scroll to top button