Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2006

Mitochondrial signaling, TOR, and life span

  • Stefan M. Schieke and Toren Finkel
From the journal Biological Chemistry

Abstract

Growing evidence supports the concept that mitochondrial metabolism and reactive oxygen species (ROS) play a major role in aging and determination of an organism's life span. Cellular signaling pathways regulating mitochondrial activity, and hence the generation of ROS and retrograde signaling events originating in mitochondria, have recently moved into the spotlight in aging research. Involvement of the energy-sensing TOR pathway in both mitochondrial signaling and determination of life span has been shown in several studies. This brief review summarizes the recent progress on how mitochondrial signaling might contribute to the aging process with a particular emphasis on TOR signaling from invertebrates to humans.

:

Corresponding author

References

Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell120, 483–495.10.1016/j.cell.2005.02.001Search in Google Scholar

Biswas, G., Adebanjo, O.A., Freedman, B.D., Anandatheerthavarada, H.K., Vijayasarathy, C., Zaidi, M., Kotlikoff, M., and Avadhani, N.G. (1999). Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J.18, 522–533.10.1093/emboj/18.3.522Search in Google Scholar

Biswas, G., Anandatheerthavarada, H.K., Zaidi, M., and Avadhani, N.G. (2003). Mitochondria to nucleus stress signaling: a distinctive mechanism of NF-κB/Rel activation through calcineurin-mediated inactivation of IκBβ. J. Cell Biol.161, 507–519.10.1083/jcb.200211104Search in Google Scholar

Brand, M.D. (2000). Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol.35, 811–820.10.1016/S0531-5565(00)00135-2Search in Google Scholar

Butow, R.A. and Avadhani, N.G. (2004). Mitochondrial signaling: the retrograde response. Mol. Cell14, 1–15.Search in Google Scholar

Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol. Rev.3, 527–605.10.1152/physrev.1979.59.3.527Search in Google Scholar

Corton, J.C. and Brown-Borg, H.M. (2005). Peroxisome proliferator-activated receptor γ coactivator 1 in caloric restriction and other models of longevity. J. Gerontol. A Biol. Sci. Med. Sci.60, 1494–1509.10.1093/gerona/60.12.1494Search in Google Scholar

Defossez, P.A., Prusty, R., Kaeberlein, M., Lin, S.J., Ferrigno, P., Silver, P.A., Keil, R.L., and Guarente, L. (1999). Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell3, 447–455.10.1016/S1097-2765(00)80472-4Search in Google Scholar

Dennis, P.B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S.C., and Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science294, 1102–1105.10.1126/science.1063518Search in Google Scholar PubMed

Desai, B.N., Myers, B.R., and Schreiber, S.L. (2002). FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA99, 4319–4324.10.1073/pnas.261702698Search in Google Scholar PubMed PubMed Central

Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science298, 2398–2401.10.1126/science.1077780Search in Google Scholar PubMed

Epstein, C.B., Waddle, J.A., Hale, W.T., Dave, V., Thornton, J., Macatee, T.L., Garner, H.R., and Butow, R.A. (2001). Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell12, 297–308.10.1091/mbc.12.2.297Search in Google Scholar

Feng, J., Bussiere, F., and Hekimi, S. (2001). Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell1, 633–644.10.1016/S1534-5807(01)00071-5Search in Google Scholar

Finck, B.N. and Kelly, D.P. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest.116, 615–622.10.1172/JCI27794Search in Google Scholar

Finkel, T. and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247.10.1038/35041687Search in Google Scholar

Guarente, L. and Picard, F. (2005). Calorie restriction – the SIR2 connection. Cell120, 473–482.10.1016/j.cell.2005.01.029Search in Google Scholar

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol.11, 298–300.10.1093/geronj/11.3.298Search in Google Scholar

Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell115, 577–590.10.1016/S0092-8674(03)00929-2Search in Google Scholar

Jazwinski, S.M. (2005a). The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene354, 22–27.10.1016/j.gene.2005.03.040Search in Google Scholar PubMed

Jazwinski, S.M. (2005b). Yeast longevity and aging – the mitochondrial connection. Mech. Ageing Dev.126, 243–248.10.1016/j.mad.2004.08.016Search in Google Scholar PubMed

Jia, K., Chen, D., and Riddle, D.L. (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906.10.1242/dev.01255Search in Google Scholar PubMed

Kaeberlein, M., Powers, R.W. III, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science310, 1193–1196.10.1126/science.1115535Search in Google Scholar

Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol.14, 885–890.10.1016/j.cub.2004.03.059Search in Google Scholar

Kelly, D.P. and Scarpulla, R.C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev.18, 357–368.10.1101/gad.1177604Search in Google Scholar

Kenyon, C. (2005). The plasticity of aging: insights from long-lived mutants. Cell120, 449–460.10.1016/j.cell.2005.02.002Search in Google Scholar

Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.10.1016/S0092-8674(02)00808-5Search in Google Scholar

Kirchman, P.A., Kim, S., Lai, C.Y., and Jazwinski, S.M. (1999). Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics152, 179–190.10.1093/genetics/152.1.179Search in Google Scholar PubMed PubMed Central

Lee, S.S., Lee, R.Y., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet.33, 40–48.Search in Google Scholar

Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P.A., Culotta, V.C., Fink, G.R., and Guarente, L. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature418, 344–348.10.1038/nature00829Search in Google Scholar PubMed

Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem.280, 16456–16460.10.1074/jbc.M501485200Search in Google Scholar PubMed

Nemoto, S., Takeda, K., Yu, Z.X., Ferrans, V.J., and Finkel, T. (2000). Role for mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol.20, 7311–7318.10.1128/MCB.20.19.7311-7318.2000Search in Google Scholar PubMed PubMed Central

Parikh, V.S., Morgan, M.M., Scott, R., Clements, L.S., and Butow, R.A. (1987). The mitochondrial genotype can influence nuclear gene expression in yeast. Science235, 576–580.10.1126/science.3027892Search in Google Scholar PubMed

Pearl, R. (1928). The Rate of Living (London, UK: University of London Press).Search in Google Scholar

Powers, R.W. III, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev.20, 174–184.10.1101/gad.1381406Search in Google Scholar

Rea, S. and Johnson, T.E. (2003). A metabolic model for life span determination in Caenorhabditis elegans. Dev. Cell5, 197–203.10.1016/S1534-5807(03)00242-9Search in Google Scholar

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118.10.1038/nature03354Search in Google Scholar PubMed

Sarbassov, D.D. and Sabatini, D.M. (2005). Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J. Biol. Chem.280, 39505–39509.10.1074/jbc.M506096200Search in Google Scholar PubMed

Sarbassov, D.D., Ali, S.M., and Sabatini, D.M. (2005). Growing roles for the mTOR pathway. Curr. Opin. Cell Biol.17, 596–603.10.1016/j.ceb.2005.09.009Search in Google Scholar PubMed

Schieke, S.M., Phillips, D., McCoy, J.P. Jr., Aponte, A.M., Shen, R.F., Balaban, R.S., and Finkel, T. (2006). The mTOR pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem.281, 27643–27652.10.1074/jbc.M603536200Search in Google Scholar PubMed

Speakman, J.R., Talbot, D.A., Selman, C., Snart, S., McLaren, J.S., Redman, P., Krol, E., Jackson, D.M., Johnson, M.S., and Brand, M.D. (2004). Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell3, 87–95.10.1111/j.1474-9728.2004.00097.xSearch in Google Scholar PubMed

St-Pierre, J., Buckingham, J.A., Roebuck, S.J., and Brand, M.D. (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem.277, 44784–44790.10.1074/jbc.M207217200Search in Google Scholar PubMed

Staniek, K. and Nohl, H. (2000). Are mitochondria a permanent source of reactive oxygen species? Biochim. Biophys. Acta1460, 268–275.Search in Google Scholar

Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature426, 620.10.1038/426620aSearch in Google Scholar PubMed

Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet.39, 359–407.10.1146/annurev.genet.39.110304.095751Search in Google Scholar PubMed PubMed Central

Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell124, 471–484.10.1016/j.cell.2006.01.016Search in Google Scholar

Xu, D. and Finkel, T. (2002). A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun.294, 245–248.10.1016/S0006-291X(02)00464-3Search in Google Scholar

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.170/html
Scroll to top button