Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2005

Alteration of Nucleotide Metabolism: A New Mechanism for Mitochondrial Disorders

  • Ramon Martí , Yutaka Nishigaki , Maya R. Vilá and Michio Hirano

Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). TP deficiency alters the metabolism of the nucleosides thymidine and deoxyuridine, which, in turn, produces abnormalities of mitochondrial DNA (mtDNA) including depletion, deletions, and point mutations. MNGIE is the best characterized of the expanding number of mitochondrial disorders caused by alterations in the metabolism of nucleosides/nucleotides. Because mitochondria contain their own machinery for nucleoside and nucleotide metabolism and have physically separate nucleotide pools, it is not surprising that disorders of these pathways cause human diseases. Other diseases in this group include mtDNA depletion syndromes caused by mutations on the nuclear genes encoding the mitochondrial thymidine kinase and deoxyguanosine kinase; autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA due to mutations in the genes encoding the muscle-isoform of mitochondrial ADP/ATP translocator; and mitochondrial DNA depletion due to toxicities of nucleoside analogues. Mutations in the deoxynucleotide carrier, a transporter of deoxynucleoside diphosphates, have been identified as a cause of congenital microcephaly. However, alterations of mtDNA have not yet been established in this disorder. Future studies are likely to reveal additional diseases and provide further insight into this new subject.

:
Published Online: 2005-06-01
Published in Print: 2003-07-21

Copyright © 2003 by Walter de Gruyter GmbH & Co. KG

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2003.128/html
Scroll to top button