Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 7, 2014

The influence of sex steroids on adipose tissue growth and function

  • James Law , Ian Bloor , Helen Budge and Michael E. Symonds EMAIL logo

Abstract

Obesity remains a major global health concern. Understanding the metabolic influences of the obesity epidemic in the human population on maintenance of a healthy weight and metabolic profile is still of great significance. The importance and role of white adipose tissue has been long established, particularly with excess adiposity. Brown adipose tissue (BAT), however, has only recently been shown to contribute significantly to the metabolic signature of mammals outside the previously recognised role in small mammals and neonates. BAT’s detection in adults has led to a renewed interest and is now considered to be a potential therapeutic target to prevent excess white fat accumulation in obesity, a theory further promoted by the recent discovery of beige fat. Adipose tissue distribution varies significantly between genders. Pre-menopausal females often show enhanced lower and peripheral fat deposition in adiposity deposition compared to the male profile of central and visceral fat accumulation with obesity. This sex disparity is partly attributed to the different effects of sex hormone profiles and interactions on the adipose tissue system. In this review, we explore this intricate relationship and show how modifications in the effects of sex hormones impact on both brown and white adipose tissues. We also discuss the impact of sex hormones on activation of the hypothalamic-pituitary-adrenal (HPA) axis and how the three pathways between adiposity, HPA and sex steroids can have a major contribution to the prevention or maintenance of obesity and therefore on overall health.


Corresponding author: Michael E. Symonds, Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen’s Medical Centre, The University of Nottingham, E-floor, East Block, Nottingham, NG7 2UH, UK, E-mail:

References

1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among us adults, 1999–2010. J Am Med Assoc 2012;307:491–7.10.1001/jama.2012.39Search in Google Scholar PubMed

2. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 2005;352:1138–45.10.1056/NEJMsr043743Search in Google Scholar PubMed

3. Galani C, Schneider H. Prevention and treatment of obesity with lifestyle interventions: review and meta-analysis. Int J Public Health 2007;52:348–59.10.1007/s00038-007-7015-8Search in Google Scholar PubMed

4. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev 2006;27:762–78.10.1210/er.2006-0033Search in Google Scholar PubMed

5. Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 2006;83:461S–5S.10.1093/ajcn/83.2.461SSearch in Google Scholar PubMed

6. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–25.10.1056/NEJMoa0808949Search in Google Scholar PubMed

7. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.10.1056/NEJMoa0810780Search in Google Scholar PubMed PubMed Central

8. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009;360:1500–8.10.1056/NEJMoa0808718Search in Google Scholar PubMed

9. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature 1979;281:31–5.10.1038/281031a0Search in Google Scholar PubMed

10. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrila A, Hasselgren PO, Mori MA, Molla M, Tseng YH. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 2013;19:635–9.10.1038/nm.3112Search in Google Scholar PubMed PubMed Central

11. Klingenberg M, Huang S-G. Structure and function of the uncoupling protein from brown adipose tissue. BBA Biomembranes 1999;1415:271–96.10.1016/S0005-2736(98)00232-6Search in Google Scholar

12. Clarke L, Heasman L, Firth K, Symonds ME. Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs. Am J Physiol Regul Integr Comp Physiol 1997;272:R1931–R9.10.1152/ajpregu.1997.272.6.R1931Search in Google Scholar

13. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol 2003;179:293–9.10.1677/joe.0.1790293Search in Google Scholar

14. Mostyn A, Pearce S, Stephenson T, Symonds ME. Hormonal and nutritional regulation of adipose tissue mitochondrial development and function in the newborn. Exp Clin Endocrinol Diabetes 2004;112:2–9.10.1055/s-2004-815719Search in Google Scholar

15. Lafontan M, Barbe P, Galitzky J, Tavernier G, Langin D, Carpéné C, Bousquet-Melou A, Berlan M. Adrenergic regulation of adipocyte metabolism. Hum Reprod 1997;12(Suppl 1):6–20.10.1093/humrep/12.suppl_1.6Search in Google Scholar

16. Lafontan MA, Berlan M. Fat cell α2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocr Rev 1995;16:716–38.Search in Google Scholar

17. Symonds ME, Bird JA, Sullivan C, Wilson V, Clarke L, Stephenson T. Effect of delivery temperature on endocrine stimulation of thermoregulation in lambs born by cesarean section. J Appl Physiol 2000;88:47–53.10.1152/jappl.2000.88.1.47Search in Google Scholar

18. Minokoshi Y, Saito M, Shimazu T. Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation. Am J Physiol 1986;251(5 Pt 2):R1005–8.10.1152/ajpregu.1986.251.5.R1005Search in Google Scholar

19. Bertin R, De F, Portet R. Effects of partial sympathectomy of brown fat or of adrenomedullectomy on catecholamine metabolism in cold-reared rats. Comp Biochem Phys A 1996;114:251–6.10.1016/0300-9629(95)02138-8Search in Google Scholar

20. Denjean F, Lachuer J, Geloen A, Cohen-Adad F, Moulin C, Barre H, Duchamp C. Differential regulation of uncoupling protein-1, -2 and -3 gene expression by sympathetic innervation in brown adipose tissue of thermoneutral or cold-exposed rats. FEBS Lett 1999;444:181–5.10.1016/S0014-5793(99)00056-3Search in Google Scholar

21. Li G, Klein RL, Matheny M, King MA, Meyer EM, Scarpace PJ. Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 2002;115:879–89.10.1016/S0306-4522(02)00447-5Search in Google Scholar

22. Harris RB. Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots. Obesity 2012;20:1355–64.10.1038/oby.2012.95Search in Google Scholar PubMed PubMed Central

23. Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Pénicaud L, Casteilla L. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 1992;103:931–42.10.1242/jcs.103.4.931Search in Google Scholar PubMed

24. Gilsanz V, Hu HH, Kajimura S. Relevance of brown adipose tissue in infancy and adolescence. Pediatr Res 2013;73:3–9.10.1038/pr.2012.141Search in Google Scholar PubMed PubMed Central

25. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013;19:1338–44.10.1038/nm.3324Search in Google Scholar PubMed PubMed Central

26. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252–63.10.1038/nm.3361Search in Google Scholar PubMed

27. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008;454:961–7.10.1038/nature07182Search in Google Scholar PubMed PubMed Central

28. Wu J, Boström P, Sparks Lauren M, Ye L, Choi Jang H, Giang A-H, Khandekar M, Virtanen Kirsi A, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt Wouter D, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman Bruce M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366–76.10.1016/j.cell.2012.05.016Search in Google Scholar PubMed PubMed Central

29. Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 2014;66:95–103.10.1016/j.yhbeh.2014.02.007Search in Google Scholar PubMed

30. Rodriguez-Cuenca S, Monjo M, Frontera M, Gianotti M, Proenza AM, Roca P. Sex steroid receptor expression profile in brown adipose tissue. Effects of hormonal status. Cell Physiol Biochem 2007;20:877–86.10.1159/000110448Search in Google Scholar PubMed

31. Rodríguez-Cuenca S, Monjo M, Gianotti M, Proenza AM, Roca P. Expression of mitochondrial biogenesis-signaling factors in brown adipocytes is influenced specifically by 17β-estradiol, testosterone, and progesterone. Am J Physiol Endocrinol Metab 2007;292:E340–E6.10.1152/ajpendo.00175.2006Search in Google Scholar PubMed

32. Rodriguez AM, Monjo M, Roca P, Palou A. Opposite actions of testosterone and progesterone on UCP1 mRNA expression in cultured brown adipocytes. Cell Mol Life Sci 2002;59:1714–23.10.1007/PL00012499Search in Google Scholar

33. Rodríguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 2002;277:42958–63.10.1074/jbc.M207229200Search in Google Scholar

34. Monjo M, Rodriguez AM, Palou A, Roca P. Direct effects of testosterone, 17 beta-estradiol, and progesterone on adrenergic regulation in cultured brown adipocytes: potential mechanism for gender-dependent thermogenesis. Endocrinology 2003;144:4923–30.10.1210/en.2003-0537Search in Google Scholar

35. Pelletier G, Li S, Luu-The V, Labrie F. Oestrogenic regulation of pro-opiomelanocortin, neuropeptide Y and corticotrophin-releasing hormone mRNAs in mouse hypothalamus. J Neuroendocrinol 2007;19:426–31.10.1111/j.1365-2826.2007.01548.xSearch in Google Scholar

36. Wade GN, Gray JM. Gonadal effects on food intake and adiposity: a metabolic hypothesis. Physiol Behav 1979;22:583–93.10.1016/0031-9384(79)90028-3Search in Google Scholar

37. Zengin A, Zhang L, Herzog H, Baldock PA, Sainsbury A. Neuropeptide Y and sex hormone interactions in humoral and neuronal regulation of bone and fat. Trends Endocrinol Metab 2010;21:411–8.10.1016/j.tem.2010.02.004Search in Google Scholar PubMed

38. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes 2009;58:2583–7.10.2337/db09-0833Search in Google Scholar PubMed PubMed Central

39. Perkins AC, Mshelia DS, Symonds ME, Sathekge M. Prevalence and pattern of brown adipose tissue distribution of 18F-FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl Med Commun 2013;34:168–74.10.1097/MNM.0b013e32835bbbf0Search in Google Scholar PubMed

40. Persichetti A, Sciuto R, Rea S, Basciani S, Lubrano C, Mariani S, Ulisse S, Nofroni I, Maini CL, Gnessi L. Prevalence, mass, and glucose-uptake activity of 8F-FDG-detected brown adipose tissue in humans living in a temperate zone of Italy. PLoS One 2013;8:e63391.10.1371/journal.pone.0063391Search in Google Scholar PubMed PubMed Central

41. Skillen A, Currie GM, Wheat JM. Thermal control of brown adipose tissue in 18F-FDG PET. J Nucl Med Tech 2012;40:99–103.10.2967/jnmt.111.098780Search in Google Scholar PubMed

42. McArdle WD, Magel JR, Gergley TJ, Spina RJ, Toner MM. Thermal adjustment to cold-water exposure in resting men and women. J Appl Physiol 1984;56:1565–71.10.1152/jappl.1984.56.6.1565Search in Google Scholar PubMed

43. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerback S, Virtanen KA. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metabolism 2011;14:272–9.10.1016/j.cmet.2011.06.012Search in Google Scholar PubMed

44. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009;58: 1526–31.10.2337/db09-0530Search in Google Scholar PubMed PubMed Central

45. Pearce S, Dieguez C, Gualillo O, Symonds ME, Stephenson T. Differential effects of age and sex on the postnatal responsiveness of brown adipose tissue to prolactin administration in rats. Exp Physiol 2003;88:527–31.10.1113/eph8802575Search in Google Scholar PubMed

46. Justo R, Frontera M, Pujol E, Rodriguez-Cuenca S, Llado I, Garcia-Palmer FJ, Roca P, Gianotti M. Gender-related differences in morphology and thermogenic capacity of brown adipose tissue mitochondrial subpopulations. Life Sci 2005;76:1147–58.10.1016/j.lfs.2004.08.019Search in Google Scholar PubMed

47. Rodriguez E, Monjo M, Rodriguez-Cuenca S, Pujol E, Amengual B, Roca P, Palou A. Sexual dimorphism in the adrenergic control of rat brown adipose tissue response to overfeeding. Pflugers Arch 2001;442:396–403.10.1007/s004240100556Search in Google Scholar PubMed

48. Quevedo S, Roca P, Pico C, Palou A. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 1998;436:689–95.10.1007/s004240050690Search in Google Scholar PubMed

49. Choi DK, Oh TS, Choi JW, Mukherjee R, Wang X, Liu H, Yun JW. Gender difference in proteome of brown adipose tissues between male and female rats exposed to a high fat diet. Cell Physiol Biochem 2011;28:933–48.10.1159/000335807Search in Google Scholar PubMed

50. Toth MJ, Tchernof A, Sites CK, Poehlman ET. Menopause-related changes in body fat distribution. Ann N Y Acad Sci 2000;904:502–6.10.1111/j.1749-6632.2000.tb06506.xSearch in Google Scholar PubMed

51. Nadal-Casellas A, Bauzá-Thorbrügge M, Proenza AM, Gianotti M, Lladó I. Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet. Mol Cell Biochem 2013;373:125–35.10.1007/s11010-012-1481-xSearch in Google Scholar PubMed

52. Lomax MA, Sadiq F, Karamanlidis G, Karamitri A, Trayhurn P, Hazlerigg DG. Ontogenic loss of brown adipose tissue sensitivity to beta-adrenergic stimulation in the ovine. Endocrinology 2007;148:461–8.10.1210/en.2006-0918Search in Google Scholar PubMed

53. Heaton JM. The distribution of brown adipose tissue in the human. J Anat 1972;112:35–9.Search in Google Scholar

54. Mostyn A, Bispham J, Pearce S, Evens Y, Raver N, Keisler DH, Webb R, Stephenson T, Symonds ME. Differential effects of leptin on thermoregulation and uncoupling protein abundance in the neonatal lamb. FASEB J 2002;16:1438–40.10.1096/fj.02-0077fjeSearch in Google Scholar PubMed

55. Pearce S, Mostyn A, Alves-Guerra MC, Pecqueur C, Miroux B, Webb R, Stephenson T, Symond ME. Prolactin, prolactin receptor and uncoupling proteins during fetal and neonatal development. Proc Nutr Soc 2003;62:421–7.10.1079/PNS2003246Search in Google Scholar

56. Emery JL, Dinsdale F. Structure of periadrenal brown fat in childhood in both expected and cot deaths. Arch Dis Child 1978;53:154–8.10.1136/adc.53.2.154Search in Google Scholar PubMed PubMed Central

57. Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 1986;71:291–7.10.1042/cs0710291Search in Google Scholar PubMed

58. Drubach LA, Palmer EL, 3rd, Connolly LP, Baker A, Zurakowski D, Cypess AM. Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr 2011;159:939–44.10.1016/j.jpeds.2011.06.028Search in Google Scholar PubMed

59. Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH. Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 2011;158:722–6.10.1016/j.jpeds.2010.11.020Search in Google Scholar PubMed PubMed Central

60. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010;299:E601–6.10.1152/ajpendo.00298.2010Search in Google Scholar PubMed

61. Pace L, Nicolai E, D’Amico D, Ibello F, Della AM, Salvatore B, Pizzuti LM, Salvatore M, Soricelli A. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imag Biol 2011;13:1029–35.10.1007/s11307-010-0431-9Search in Google Scholar PubMed

62. Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TA, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 2012;160:604–9.e1.10.1016/j.jpeds.2011.09.035Search in Google Scholar PubMed PubMed Central

63. Valle A, Santandreu FM, Garcia-Palmer FJ, Roca P, Oliver J. The serum levels of 17beta-estradiol, progesterone and triiodothyronine correlate with brown adipose tissue thermogenic parameters during aging. Cell Physiol Biochem 2008;22:337–46.10.1159/000149812Search in Google Scholar PubMed

64. Puerta M, Abelenda M, Nava MP, Fernandez A. Reduced noradrenaline responsiveness of brown adipocytes isolated from estradiol-treated rats. Can J Physiol Pharmacol 1993;71:858–61.10.1139/y93-129Search in Google Scholar PubMed

65. Nava MP, Fernandez A, Abelenda M, Puerta M. Dissociation between brown adipose tissue thermogenesis and sympathetic activity in rats with high plasma levels of oestradiol. Pflugers Archiv 1994;426:40–3.10.1007/BF00374668Search in Google Scholar PubMed

66. Velickovic K, Cvoro A, Srdic B, Stokic E, Markelic M, Golic I, Otasevic V, Stancic A, Jankovic A, Vucetic M, Buzadzic B, Korac B, Korac A. Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue. J Clin Endocrinol Metab 2014;99:151–9.10.1210/jc.2013-2017Search in Google Scholar PubMed

67. Frontera M, Pujol E, Rodriguez-Cuenca S, Catala-Niell A, Roca P, Garcia-Palmer FJ, Gianotti M. Rat brown adipose tissue thermogenic features are altered during mid-pregnancy. Cell Physiol Biochem 2005;15:203–10.10.1159/000086407Search in Google Scholar PubMed

68. Krol E, Martin SA, Huhtaniemi IT, Douglas A, Speakman JR. Negative correlation between milk production and brown adipose tissue gene expression in lactating mice. J Exp Biol 2011;214:4160–70.10.1242/jeb.061382Search in Google Scholar PubMed

69. Goldberg GR, Prentice AM, Coward WA, Davies HL, Murgatroyd PR, Wensing C, Black AE, Harding M, Sawyer M. Longitudinal assessment of energy expenditure in pregnancy by the doubly labeled water method. Am J Clin Nutr 1993;57:494–505.10.1093/ajcn/57.4.494Search in Google Scholar PubMed

70. Gamo Y, Bernard A, Mitchell SE, Hambly C, Al Jothery A, Vaanholt LM, Król E, Speakman JR. Limits to sustained energy intake. XVI. Body temperature and physical activity of female mice during pregnancy. J Exp Biol 2013;216:2328–38.10.1242/jeb.078410Search in Google Scholar PubMed

71. Smith MS, Neill JD. Inhibition of gonadotropin secretion during lactation in the rat: relative contribution of suckling and ovarian Steroids. Biol Reprod 1977;17:255–61.10.1095/biolreprod17.2.255Search in Google Scholar PubMed

72. Grota LJ, Eik-Nes KB. Plasma progesterone concentrations during pregnancy and lactation in the rat. J Reprod Fertil 1967;13:83–91.10.1530/jrf.0.0130083Search in Google Scholar PubMed

73. Budge H, Bispham J, Dandrea J, Evans E, Heasman L, Ingleton PM, Sullivan C, Wilson V, Stephenson T, Symonds ME. Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb. Pediatr Res 2000;47:781–6.10.1203/00006450-200006000-00017Search in Google Scholar PubMed

74. Cao Q, Hersl J, La H, Smith M, Jenkins J, Goloubeva O, Dilsizian V, Tkaczuk K, Chen W, Jones L. A pilot study of FDG PET/CT detects a link between brown adipose tissue and breast cancer. BMC Cancer 2014;14:126.10.1186/1471-2407-14-126Search in Google Scholar PubMed PubMed Central

75. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc Natl Acad Sci USA 2000;97: 12729–34.10.1073/pnas.97.23.12729Search in Google Scholar PubMed PubMed Central

76. O’Lone R, Knorr K, Jaffe IZ, Schaffer ME, Martini PG, Karas RH, Bienkowska J, Mendelsohn ME, Hansen U. Estrogen receptors α and β mediate distinct pathways of vascular gene expression, including genes involved in mitochondrial electron transport and generation of reactive oxygen species. Mol Endocrinol 2007;21:1281–96.10.1210/me.2006-0497Search in Google Scholar PubMed

77. Malo A, Puerta M. Oestradiol and progesterone change beta3-adrenergic receptor affinity and density in brown adipocytes. Eur J Endocrinol 2001;145:87–91.10.1530/eje.0.1450087Search in Google Scholar PubMed

78. Nadal-Casellas A, Proenza AM, Llado I, Gianotti M. Effects of ovariectomy and 17-beta estradiol replacement on rat brown adipose tissue mitochondrial function. Steroids 2011;76: 1051–6.10.1016/j.steroids.2011.04.009Search in Google Scholar PubMed

79. Pedersen SB, Bruun JM, Kristensen K, Richelsen B. Regulation of UCP1, UCP2, and UCP3 mRNA expression in brown adipose tissue, white adipose tissue, and skeletal muscle in rats by estrogen. Biochem Biophys Res Commun 2001;288:191–7.10.1006/bbrc.2001.5763Search in Google Scholar PubMed

80. Tagliaferro AR, Davis JR, Truchon S, Van Hamont N. Effects of dehydroepiandrosterone acetate on metabolism, body weight and composition of male and female rats. J Nutr 1986;116:1977–83.10.1093/jn/116.10.1977Search in Google Scholar PubMed

81. Abelenda M, Nava MP, Fernandez A, Puerta ML. Brown adipose tissue thermogenesis in testosterone-treated rats. Acta Endocrinol 1992;126:434–7.10.1530/acta.0.1260434Search in Google Scholar PubMed

82. LeBlanc J, Arvaniti K, Richard D. Effect of dehydroepiandrosterone on brown adipose tissue and energy balance in mice. Horm Metab Res 1998;30:236–40.10.1055/s-2007-978873Search in Google Scholar PubMed

83. Ryu JW, Kim MS, Kim CH, Song KH, Park JY, Lee JD, Kim JB, Lee KU. DHEA administration increases brown fat uncoupling protein 1 levels in obese OLETF rats. Biochem Biophys Res Commun 2003;303:726–31.10.1016/S0006-291X(03)00409-1Search in Google Scholar

84. Symonds ME, Sebert S, Budge H. The obesity epidemic: from the environment to epigenetics – not simply a response to dietary manipulation in a thermoneutral environment. Front Genet 2011;2:1–10.10.3389/fgene.2011.00024Search in Google Scholar

85. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277–359.10.1152/physrev.00015.2003Search in Google Scholar

86. Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S, Nawata H. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 2005;54:1000–8.10.2337/diabetes.54.4.1000Search in Google Scholar

87. Yanase T, Fan W, Kyoya K, Min L, Takayanagi R, Kato S, Nawata H. Androgens and metabolic syndrome: lessons from androgen receptor knock out (ARKO) mice. J Steroid Biochem Mol Biol 2008;109:254–7.10.1016/j.jsbmb.2008.03.017Search in Google Scholar

88. Machida T, Yonezawa Y, Noumura T. Age-associated changes in plasma testosterone levels in male mice and their relation to social dominance or subordinance. Horm Behav 1981;15: 238–45.10.1016/0018-506X(81)90013-1Search in Google Scholar

89. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463–8.10.1038/nature10777Search in Google Scholar PubMed PubMed Central

90. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Crujeiras AB, Seoane LM, Casanueva FF, Pardo M. FNDC5/Irisin is not only a myokine but also an adipokine. PLoS One 2013;8:e60563.10.1371/journal.pone.0060563Search in Google Scholar PubMed PubMed Central

91. Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature 2012;488:E9–10.10.1038/nature11364Search in Google Scholar PubMed

92. Payette C, Blackburn P, Lamarche B, Tremblay A, Bergeron J, Lemieux I, Despres JP, Couillard C. Sex differences in postprandial plasma tumor necrosis factor-alpha, interleukin-6, and C-reactive protein concentrations. Metab Clin Exper 2009;58:1593–601.10.1016/j.metabol.2009.05.011Search in Google Scholar PubMed

93. Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 2010;34:989–1000.10.1038/ijo.2010.12Search in Google Scholar

94. Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 2009;58:803–12.10.2337/db08-1054Search in Google Scholar

95. Davis KE, Neinast MD, Sun K, Skiles WM, Bills JD, Zehr JA, Zeve D, Hahner LD, Cox DW, Gent LM, Xu Y, Wang ZV, Khan SA, Clegg DJ. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2013;2:227–42.10.1016/j.molmet.2013.05.006Search in Google Scholar

96. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male 2002;5:98–102.10.1080/tam.5.2.98.102Search in Google Scholar

97. Lee CC, Kasa-Vubu JZ, Supiano MA. Androgenicity and obesity are independently associated with insulin sensitivity in postmenopausal women. Metab Clin Exp 2004;53:507–12.10.1016/j.metabol.2003.10.018Search in Google Scholar

98. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt–a major factor in the genesis of morbid obesity. Med Hypotheses 1999;52:49–51.10.1054/mehy.1997.0624Search in Google Scholar

99. Pantaleao TU, Mousovich F, Rosenthal D, Padron AS, Carvalho DP, da Costa VM. Effect of serum estradiol and leptin levels on thyroid function, food intake and body weight gain in female Wistar rats. Steroids 2010;75:638–42.10.1016/j.steroids.2010.03.009Search in Google Scholar

100. Gonzalez C, Alonso A, Grueso NA, Diaz F, Esteban MM, Fernandez S, Patterson AM. Role of 17beta-estradiol administration on insulin sensitivity in the rat: implications for the insulin receptor. Steroids 2002;67:993–1005.10.1016/S0039-128X(02)00073-9Search in Google Scholar

101. Gonzalez C, Alonso A, Diaz F, Patterson AM. Dose- and time-dependent effects of 17beta-oestradiol on insulin sensitivity in insulin-dependent tissues of rat: implications of IRS-1. J Endocrinol 2003;176:367–79.10.1677/joe.0.1760367Search in Google Scholar PubMed

102. Gonzalez C, Alonso A, Grueso NA, Diaz F, Esteban MM, Fernandez S, Patterson AM. Effect of treatment with different doses of 17-beta-estradiol on insulin receptor substrate-1. J Pancreas 2001;2:140–9.Search in Google Scholar

103. Krakower GR, Meier DA, Kissebah AH. Female sex hormones, perinatal, and peripubertal androgenization on hepatocyte insulin dynamics in rats. Am J Physiol 1993;264:E342–7.10.1152/ajpendo.1993.264.3.E342Search in Google Scholar PubMed

104. Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O’Rourke RW, Roberts CT. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012;153:3100–10.10.1210/en.2011-2111Search in Google Scholar PubMed PubMed Central

105. Chechi K, Nedergaard J, Richard D. Brown adipose tissue as an anti-obesity tissue in humans. Obes Rev 2014;15:92–106.10.1111/obr.12116Search in Google Scholar PubMed

106. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20:68–100.Search in Google Scholar

107. Sebert S, Sharkey D, Budge H, Symonds ME. The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr 2011;94:1953S–8S.10.3945/ajcn.110.001040Search in Google Scholar PubMed

108. Ste. Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000;97:12339–44.10.1073/pnas.220409497Search in Google Scholar PubMed PubMed Central

109. Pasquali R, Vicennati V, Cacciari M, Pagotto U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann NY Acad Sci 2006;1083:111–28.10.1196/annals.1367.009Search in Google Scholar PubMed

110. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann NY Acad Sci 1995;771:665–76.10.1111/j.1749-6632.1995.tb44719.xSearch in Google Scholar PubMed

111. Ritzel K, Beuschlein F, Mickisch A, Osswald A, Schneider HJ, Schopohl J, Reincke M. Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metabol 2013;98:3939–48.10.1210/jc.2013-1470Search in Google Scholar PubMed

112. Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, Labate AM, Barbara L. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metabol 1993;77:341–6.Search in Google Scholar

113. Vettor R, Vicennati V, Gambineri A, Pagano C, Calzoni F, Pasquali R. Leptin and the hypothalamic-pituitary-adrenal axis activity in women with different obesity phenotypes. Int J Obes Relat Metab Disord 1997;21:708–11.10.1038/sj.ijo.0800452Search in Google Scholar PubMed

114. Rutters F, Nieuwenhuizen AG, Lemmens SG, Born JM, Westerterp-Plantenga MS. Hypothalamic-pituitary-adrenal (HPA) axis functioning in relation to body fat distribution. Clin Endocrinol 2010;72:738–43.10.1111/j.1365-2265.2009.03712.xSearch in Google Scholar PubMed

115. Vicennati V, Ceroni L, Genghini S, Patton L, Pagotto U, Pasquali R. Sex difference in the relationship between the hypothalamic-pituitary-adrenal axis and sex hormones in obesity. Obesity (Silver Spring) 2006;14:235–43.10.1038/oby.2006.30Search in Google Scholar PubMed

116. Pasquali R. The hypothalamic-pituitary-adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects. Ann NY Acad Sci 2012;1264:20–35.10.1111/j.1749-6632.2012.06569.xSearch in Google Scholar

117. Seidell JC, Bjorntorp P, Sjostrom L, Kvist H, Sannerstedt R. Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels. Metab Clin Exp 1990;39:897–901.10.1016/0026-0495(90)90297-PSearch in Google Scholar

118. Rubinow DR, Roca CA, Schmidt PJ, Danaceau MA, Putnam K, Cizza G, Chrousos G, Nieman L. Testosterone suppression of CRH-stimulated cortisol in men. Neuropsychopharmacol 2005;30:1906–12.10.1038/sj.npp.1300742Search in Google Scholar PubMed PubMed Central

119. Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007;13:803–11.10.1038/nm1611Search in Google Scholar PubMed

120. Sahu A, Kalra SP, Crowley WR, Kalra PS. Testosterone raises neuropeptide-Y concentration in selected hypothalamic sites and in vitro release from the medial basal hypothalamus of castrated male rats. Endocrinology 1989;124:410–4.10.1210/endo-124-1-410Search in Google Scholar PubMed

121. Lalmansingh AS, Uht RM. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3’,5’-cyclic adenosine 5’-monophosphate regulatory region of the proximal crh promoter. Endocrinology 2008;149:346–57.10.1210/en.2007-0372Search in Google Scholar PubMed PubMed Central

122. Bose M, Olivan B, Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabet Obes 2009;16:340–6.10.1097/MED.0b013e32832fa137Search in Google Scholar PubMed PubMed Central

123. Drapeau V, Therrien F, Richard D, Tremblay A. Is visceral obesity a physiological adaptation to stress? Panminerva Medica 2003;45:189–95.Search in Google Scholar

124. Puder JJ, Freda PU, Goland RS, Wardlaw SL. Estrogen modulates the hypothalamic-pituitary-adrenal and inflammatory cytokine responses to endotoxin in women. J Clin Endocrinol Metabol 2001;86:2403–8.10.1210/jc.86.6.2403Search in Google Scholar

Received: 2014-4-3
Accepted: 2014-6-3
Published Online: 2014-7-7
Published in Print: 2014-7-1

©2014 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2014-0015/html
Scroll to top button