Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 24, 2014

Protective actions of melatonin and growth hormone on the aged cardiovascular system

  • Sergio D. Paredes , Katherine A. Forman , Cruz García , Elena Vara , Germaine Escames and Jesús A.F. Tresguerres EMAIL logo

Abstract

Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.


Corresponding author: Jesús A.F. Tresguerres, Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense, s/n, 28040, Madrid, Spain, E-mail:

Acknowledgments

This work was supported by research grants from Instituto de Salud Carlos III (RETICEF-RD12/0043/0032), Consejería de Innovación, Ciencia y Empresa – Junta de Andalucía (P07-CTS-03135; PI081644 I), Fondo de Investigaciones Sanitarias de la Seguridad Social (PI10/00986) and SAF 2007 66878C02-01. Grupo de investigación sobre envejecimiento y hormonas de la UCM. The authors would like to express their thanks to Daniel Campón and Rocío Campón for their technical assistance. Melatonin used in the papers from Dr. Tresguerres’ laboratory was obtained from Actafarma (Madrid, Spain).

References

1. Pugh KG, Wei JY. Clinical implications of physiological changes in the aging heart. Drugs Aging 2001;18:263–76.10.2165/00002512-200118040-00004Search in Google Scholar

2. Cheitlin MD. Cardiovascular physiology-changes with aging. Am J Geriatr Cardiol 2003;12:9–13.10.1111/j.1076-7460.2003.01751.xSearch in Google Scholar

3. Roberts WC, Shirani J. Comparison of cardiac findings at necropsy in octogenarians, nonagenerains, and centenarians. Am J Cardiol 1998;82:627–31.10.1016/S0002-9149(98)00385-3Search in Google Scholar

4. Roffe C. Ageing of the heart. Br J Biomed Sci 1998;55:136–48.Search in Google Scholar

5. Zhang Y, Herman B. Apoptosis and successful aging. Mech Ageing Dev 2002;123:563–5.10.1016/S0047-6374(02)00007-6Search in Google Scholar

6. Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech 2002;59:264–72.10.1002/jemt.10203Search in Google Scholar

7. Trifunovic A, Larsson NG. Mitochondrial dysfunction as a cause of ageing. J Intern Med 2008;263:167–78.10.1111/j.1365-2796.2007.01905.xSearch in Google Scholar

8. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–4.10.1161/01.RES.87.10.840Search in Google Scholar

9. Kumar D, Jugdutt BI. Apoptosis and oxidants in the heart. J Lab Clin Med 2003;142:288–97.10.1016/S0022-2143(03)00148-3Search in Google Scholar

10. Cuneo RC, Salomon F, Wiles CM, Sönksen PH. Skeletal muscle performance in adults with growth hormone deficiency. Horm Res 1990;33(Suppl 4):55–60.10.1159/000181585Search in Google Scholar PubMed

11. Hew FL, Koschmann M, Christopher M, Rantzau C, Vaag A, Ward G, Beck-Nielsen H, Alford F. Insulin resistance in growth hormone-deficient adults: defects in glucose utilization and glycogen synthase activity. J Clin Endocrinol Metab 1996;81: 555–64.Search in Google Scholar

12. Ariznavarreta C, Castillo C, Segovia G, Mora F, Azcoitia I, Tresguerres JA. Growth hormone and aging. Homo 2003;54: 132–41.10.1078/0018-442X-00065Search in Google Scholar

13. Smith JC, Evans LM, Wilkinson I, Goodfellow J, Cockcroft JR, Scanlon MF, Davies JS. Effects of GH replacement on endothelial function and large-artery stiffness in GH-deficient adults: a randomized, double-blind, placebo-controlled study. Clin Endocrinol (Oxf) 2002;56:493–501.10.1046/j.1365-2265.2002.01514.xSearch in Google Scholar PubMed

14. Devin JK, Young PP. The effects of growth hormone and insulin-like growth factor-1 on the aging cardiovascular system and its progenitor cells. Curr Opin Investig Drugs 2008;9:983–92.Search in Google Scholar

15. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2010;85:607–23.Search in Google Scholar

16. Reiter RJ, Paredes SD, Korkmaz A, Manchester LC, Tan DX. Melatonin in relation to the “strong” and “weak” versions of the free radical theory of aging. Adv Med Sci 2008;53:119–29.10.2478/v10039-008-0032-xSearch in Google Scholar PubMed

17. Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009;44:175–200.10.1080/10409230903044914Search in Google Scholar PubMed

18. Reiter RJ, Tan DX, Jou MJ, Korkmaz A, Manchester LC, Paredes SD. Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinol Lett 2008;29:391–8.Search in Google Scholar

19. Reiter RJ, Paredes, SD, Korkmaz A, Jou MJ, Tan DX. Melatonin combats molecular terrorism at the mitochondrial level. Interdisc Toxicol 2008;1:137–49.10.2478/v10102-010-0030-2Search in Google Scholar PubMed PubMed Central

20. Paredes SD, Reiter RJ. Melatonin: helping cells cope with oxidative disaster. Cell Membr Free Radic Res 2010;2:99–111.Search in Google Scholar

21. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R. Cardiovascular diseases: protective effects of melatonin. J Pineal Res 2008;44:16–25.Search in Google Scholar

22. Harman D. Aging: overview. Ann NY Acad Sci 2001;928:1–21.10.1111/j.1749-6632.2001.tb05631.xSearch in Google Scholar PubMed

23. Li SY, Du M, Dolence EK, Fang CX, Mayer GE, Ceylan-Isik AF, LaCour KH, Yang X, Wilbert CJ, Sreejayan N, Ren J. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification. Aging Cell 2005;4:57–64.10.1111/j.1474-9728.2005.00146.xSearch in Google Scholar PubMed

24. Fleg JL, O’Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, Lakatta EG. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol (1985) 1995;78:890–900.10.1152/jappl.1995.78.3.890Search in Google Scholar PubMed

25. Lakatta EG. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev 2002;7:29–49.10.1023/A:1013797722156Search in Google Scholar

26. Lakatta EG. Why cardiovascular function may decline with age. Geriatrics 1987;42:84–7, 91–4.Search in Google Scholar

27. Ferrari AU, Radaelli A, Centola M. Invited review: aging and the cardiovascular system. J Appl Physiol (1985) 2003;95:2591–7.10.1152/japplphysiol.00601.2003Search in Google Scholar PubMed

28. Ferrari AU. Modifications of the cardiovascular system with aging. Am J Geriatr Cardiol 2002;11:30–3.10.1111/1467-8446.00044-i1Search in Google Scholar PubMed

29. Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann NY Acad Sci 2006;1067:10–21.10.1196/annals.1354.003Search in Google Scholar PubMed

30. Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 2002;959:93–107.10.1111/j.1749-6632.2002.tb02086.xSearch in Google Scholar PubMed

31. Tresguerres JA, Kireev R, Tresguerres AF, Borras C, Vara E, Ariznavarreta C. Molecular mechanisms involved in the hormonal prevention of aging in the rat. J Steroid Biochem Mol Biol 2008;108:318–26.10.1016/j.jsbmb.2007.09.010Search in Google Scholar PubMed

32. Podlutsky A, Ballabh P, Csiszar A. Oxidative stress and endothelial dysfunction in pulmonary arteries of aged rats. Am J Physiol Heart Circ Physiol 2010;298:H346–51.10.1152/ajpheart.00972.2009Search in Google Scholar PubMed

33. Shi Y, Camici GG, Lüscher TF. Cardiovascular determinants of life span. Pflugers Arch 2010;459:315–24.10.1007/s00424-009-0727-2Search in Google Scholar PubMed

34. de Belder A, Radomski M, Hancock V, Brown A, Moncada S, Martin J. Megakaryocytes from patients with coronary atherosclerosis express the inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 1995;15:637–41.10.1161/01.ATV.15.5.637Search in Google Scholar

35. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1997;17:2479–88.10.1161/01.ATV.17.11.2479Search in Google Scholar PubMed

36. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Bräsen JH, Skatchkov M, Heitzer T, Stasch JP, Griendling KK, Harrison DG, Böhm M, Meinertz T, Münzel T. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999;99:2027–33.10.1161/01.CIR.99.15.2027Search in Google Scholar

37. Baker CS, Hall RJ, Evans TJ, Pomerance A, Maclouf J, Creminon C, Yacoub MH, Polak JM. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999;19:646–55.10.1161/01.ATV.19.3.646Search in Google Scholar

38. Valente AJ, Rozek MM, Sprague EA, Schwartz CJ. Mechanisms in intimal monocyte-macrophage recruitment. A special role for monocyte chemotactic protein-1. Circulation 1992;86(Suppl 6): III20–5.Search in Google Scholar

39. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D’Agostino RB; Framingham Heart Study. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 2003;107:1486–91.10.1161/01.CIR.0000057810.48709.F6Search in Google Scholar

40. Raymond RJ, Dehmer GJ, Theoharides TC, Deliargyris EN. Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J 2001;141:435–8.10.1067/mhj.2001.113078Search in Google Scholar PubMed

41. Kosmala W, Derzhko R, Przewlocka-Kosmala M, Orda A, Mazurek W. Plasma levels of TNF-alpha, IL-6, and IL-10 and their relationship with left ventricular diastolic function in patients with stable angina pectoris and preserved left ventricular systolic performance. Coron Artery Dis 2008;19:375–82.10.1097/MCA.0b013e3282fc617cSearch in Google Scholar PubMed

42. Williams ES, Shah SJ, Ali S, Na BY, Schiller NB, Whooley MA. C-reactive protein, diastolic dysfunction, and risk of heart failure in patients with coronary disease: Heart and Soul Study. Eur J Heart Fail 2008;10:63–9.10.1016/j.ejheart.2007.11.003Search in Google Scholar PubMed PubMed Central

43. El-Menyar AA. Cytokines and myocardial dysfunction: state of the art. J Card Fail 2008;14:61–74.10.1016/j.cardfail.2007.09.006Search in Google Scholar PubMed

44. Gustafsson AB, Gottlieb RA. Mechanisms of apoptosis in the heart. J Clin Immunol 2003;23:447–59.10.1023/B:JOCI.0000010421.56035.60Search in Google Scholar

45. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 2008;79:208–17.10.1093/cvr/cvn098Search in Google Scholar PubMed

46. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure. J Physiol 2004;555(Pt 1):1–13.10.1113/jphysiol.2003.055095Search in Google Scholar PubMed PubMed Central

47. Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med 2009;19:213–20.10.1016/j.tcm.2009.12.004Search in Google Scholar PubMed PubMed Central

48. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Lüscher TF, Cosentino F. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA 2007;104:5217–22.10.1073/pnas.0609656104Search in Google Scholar PubMed PubMed Central

49. Su J, Lucchesi PA, Gonzalez-Villalobos RA, Palen DI, Rezk BM, Suzuki Y, Boulares HA, Matrougui K. Role of advanced glycation end products with oxidative stress in resistance artery dysfunction in type 2 diabetic mice. Arterioscler Thromb Vasc Biol 2008;28:1432–8.10.1161/ATVBAHA.108.167205Search in Google Scholar PubMed PubMed Central

50. Wei Y, Whaley-Connell AT, Chen K, Habibi J, Uptergrove GM, Clark SE, Stump CS, Ferrario CM, Sowers JR. NADPH oxidase contributes to vascular inflammation, insulin resistance, and remodeling in the transgenic (mRen2) rat. Hypertension 2007;50:384–91.10.1161/HYPERTENSIONAHA.107.089284Search in Google Scholar

51. Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of Type 2 diabetes. Am J Physiol Heart Circ Physiol 2007;293:H1480–90.10.1152/ajpheart.00229.2007Search in Google Scholar

52. Gomberg-Maitland M, Frishman WH. Recombinant growth hormone: a new cardiovascular drug therapy. Am Heart J 1996;132:1244–62.10.1016/S0002-8703(96)90469-XSearch in Google Scholar

53. Pfeifer M, Verhovec R, Zizek B, Prezelj J, Poredos P, Clayton RN. Growth hormone (GH) treatment reverses early atherosclerotic changes in GH-deficient adults. J Clin Endocrinol Metab 1999;84:453–7.10.1210/jc.84.2.453Search in Google Scholar

54. Evans LM, Davies JS, Goodfellow J, Rees JA, Scanlon MF. Endothelial dysfunction in hypopituitary adults with growth hormone deficiency. Clin Endocrinol (Oxf) 1999;50:457–64.10.1046/j.1365-2265.1999.00671.xSearch in Google Scholar

55. Borson-Chazot F, Serusclat A, Kalfallah Y, Ducottet X, Sassolas G, Bernard S, Labrousse F, Pastene J, Sassolas A, Roux Y, Berthezène F. Decrease in carotid intima-media thickness after one year growth hormone (GH) treatment in adults with GH deficiency. J Clin Endocrinol Metab 1999;84:1329–33.10.1210/jc.84.4.1329Search in Google Scholar

56. Genth-Zotz S, Zotz R, Geil S, Voigtländer T, Meyer J, Darius H. Recombinant growth hormone therapy in patients with ischemic cardiomyopathy: effects on hemodynamics, left ventricular function, and cardiopulmonary exercise capacity. Circulation 1999;99:18–21.10.1161/01.CIR.99.1.18Search in Google Scholar

57. Omerovic E, Bollano E, Mobini R, Kujacic V, Madhu B, Soussi B, Fu M, Hjalmarson A, Waagstein F, Isgaard J. Growth hormone improves bioenergetics and decreases catecholamines in postinfarct rat hearts. Endocrinology 2000;141:4592–9.10.1210/endo.141.12.7803Search in Google Scholar

58. Hongo M, Sentianin EM, Tanaka N, Mao L, McKirnan MD, Clark RG, Won W, Chien KR, Ross J Jr. Angiotensin II blockade followed by growth hormone as adjunctive therapy after experimental myocardial infarction. J Card Fail 1998;4: 213–24.10.1016/S1071-9164(98)80008-0Search in Google Scholar

59. Sonntag WE, Steger RW, Forman LJ, Meites J. Decreased pulsatile release of growth hormone in old male rats. Endocrinology 1980;107:1875–9.10.1210/endo-107-6-1875Search in Google Scholar PubMed

60. Müller EE, Cella SG, De Gennaro Colonna V, Parenti M, Cocchi D, Locatelli V. Aspects of the neuroendocrine control of growth hormone secretion in ageing mammals. J Reprod Fertil Suppl 1993;46:99–114.Search in Google Scholar

61. Ghigo E, Arvat E, Gianotti L, Lanfranco F, Broglio F, Aimaretti G, Maccario M, Camanni F. Hypothalamic growth hormone-insulin-like growth factor-I axis across the human life span. J Pediatr Endocrinol Metab 2000;13(Suppl 6):1493–502.10.1515/jpem-2000-s624Search in Google Scholar

62. Nass R, Johannsson G, Christiansen JS, Kopchick JJ, Thorner MO. The aging population--is there a role for endocrine interventions? Growth Horm IGF Res 2009;19:89–100.10.1016/j.ghir.2008.09.002Search in Google Scholar

63. Sherlock M, Toogood AA. Aging and the growth hormone/insulin like growth factor-I axis. Pituitary 2007;10:189–203.10.1007/s11102-007-0039-5Search in Google Scholar

64. Rosén T, Bengtsson BA. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 1990;336:285–8.10.1016/0140-6736(90)91812-OSearch in Google Scholar

65. Rincon M, Rudin E, Barzilai N. The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol 2005;40:873–7.10.1016/j.exger.2005.06.014Search in Google Scholar

66. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 2002;54:25–35.10.1016/S0008-6363(01)00533-8Search in Google Scholar

67. Cuttica CM, Castoldi L, Gorrini GP, Peluffo F, Delitala G, Filippa P, Fanciulli G, Giusti M. Effects of six-month administration of recombinant human growth hormone to healthy elderly subjects. Aging (Milano) 1997;9:193–7.10.1007/BF03340149Search in Google Scholar

68. McCallum RW, Sainsbury CA, Spiers A, Dominiczak AF, Petrie JR, Sattar N, Connell JM. Growth hormone replacement reduces C-reactive protein and large-artery stiffness but does not alter endothelial function in patients with adult growth hormone deficiency. Clin Endocrinol (Oxf) 2005;62:473–9.10.1111/j.1365-2265.2005.02245.xSearch in Google Scholar

69. Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, Tresguerres JA. Body composition and vascular effects of growth hormone administration in old female rats. Exp Gerontol 2003;38:971–9.10.1016/S0531-5565(03)00156-6Search in Google Scholar

70. Castillo C, Ariznavarreta MC, Lahera V, Cachofeiro V, Gil-Loyzaga P, Tresguerres JA. Effects of ovariectomy and growth hormone administration on body composition and vascular function and structure in old female rats. Biogerontology 2005;6:49–60.10.1007/s10522-004-7383-xSearch in Google Scholar PubMed

71. Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, Tresguerres JA. Effect of recombinant human growth hormone administration on body composition and vascular function and structure in old male Wistar rats. Biogerontology 2005;6:303–12.10.1007/s10522-005-4805-3Search in Google Scholar

72. Khan AS, Lynch CD, Sane DC, Willingham MC, Sonntag WE. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med Sci 2001;56:B364–71.10.1093/gerona/56.8.B364Search in Google Scholar

73. Wannenburg T, Khan AS, Sane DC, Willingham MC, Faucette T, Sonntag WE. Growth hormone reverses age-related cardiac myofilament dysfunction in rats. Am J Physiol Heart Circ Physiol 2001;281:H915–22.10.1152/ajpheart.2001.281.2.H915Search in Google Scholar

74. Ren J, Samson WK, Sowers JR. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol 1999;31: 2049–61.10.1006/jmcc.1999.1036Search in Google Scholar

75. Brown-Borg HM. Hormonal regulation of aging and life span. Trends Endocrinol Metab 2003;14:151–3.10.1016/S1043-2760(03)00051-1Search in Google Scholar

76. Laron Z. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity? Mech Ageing Dev 2005;126:305–7.10.1016/j.mad.2004.08.022Search in Google Scholar PubMed

77. Li Q, Ren J. Influence of cardiac-specific overexpression of insulin-like growth factor 1 on lifespan and aging-associated changes in cardiac intracellular Ca2+ homeostasis, protein damage and apoptotic protein expression. Aging Cell 2007;6:799–806.10.1111/j.1474-9726.2007.00343.xSearch in Google Scholar PubMed

78. Paredes SD, Korkmaz A, Manchester LC, Tan DX, Reiter RJ. Phytomelatonin: a review. J Exp Bot 2009;60:57–69.10.1093/jxb/ern284Search in Google Scholar PubMed

79. Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009;81:445–56.10.1095/biolreprod.108.075655Search in Google Scholar PubMed

80. Hardeland R. Melatonin in aging and disease -multiple consequences of reduced secretion, options and limits of treatment. Aging Dis 2012;3:194–225.Search in Google Scholar

81. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in cardiovascular disease. Ann Med 2010;42: 276–85.10.3109/07853890903485748Search in Google Scholar PubMed

82. Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. J Pineal Res 1998;25:184–91.10.1111/j.1600-079X.1998.tb00558.xSearch in Google Scholar

83. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Kaski JC, Reiter RJ, Jimenez-Sosa A. A unicenter, randomized, double-blind, parallel-group, placebo-controlled study of Melatonin as an Adjunct in patients with acute myocaRdial Infarction undergoing primary Angioplasty The Melatonin Adjunct in the acute myocaRdial Infarction treated with Angioplasty (MARIA) trial: study design and rationale. Contemp Clin Trials 2007;28:532–9.10.1016/j.cct.2006.10.007Search in Google Scholar

84. Ghosh G, De K, Maity S, Bandyopadhyay D, Bhattacharya S, Reiter RJ, Bandyopadhyay A. Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res 2007;42:71–82.10.1111/j.1600-079X.2006.00386.xSearch in Google Scholar

85. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999;340:115–26.10.1056/NEJM199901143400207Search in Google Scholar

86. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Samimi-Fard S, Kaski JC, Reiter RJ. Light/dark patterns of soluble vascular cell adhesion molecule-1 in relation to melatonin in patients with ST-segment elevation myocardial infarction. J Pineal Res 2008;44:659.Search in Google Scholar

87. Salie R, Harper I, Cillie C, Genade S, Huisamen B, Moolman J, Lochner A. Melatonin protects against ischaemic-reperfusion myocardial damage. J Mol Cell Cardiol 2001;33:343–57.10.1006/jmcc.2000.1306Search in Google Scholar

88. Lochner A, Genade S, Davids A, Ytrehus K, Moolman JA. Short- and long-term effects of melatonin on myocardial post-ischemic recovery. J Pineal Res 2006;40:56–63.10.1111/j.1600-079X.2005.00280.xSearch in Google Scholar

89. Sahna E, Parlakpinar H, Ozer MK, Ozturk F, Ozugurlu F, Acet A. Melatonin protects against myocardial doxorubicin toxicity in rats: role of physiological concentrations. J Pineal Res 2003;35:257–61.10.1034/j.1600-079X.2003.00084.xSearch in Google Scholar

90. Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol 1997;32:105–9.10.1016/S0531-5565(96)00036-8Search in Google Scholar

91. Lloréns S, de Mera RM, Pascual A, Prieto-Martín A, Mendizábal Y, de Cabo C, Nava E, Jordán J. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging. Biogerontology 2007;8:663–72.10.1007/s10522-007-9108-4Search in Google Scholar PubMed

92. Forman K, Vara E, García C, Ariznavarreta C, Escames G, Tresguerres JA. Cardiological aging in SAM model: effect of chronic treatment with growth hormone. Biogerontology 2010;11:275–86.10.1007/s10522-009-9245-zSearch in Google Scholar PubMed

93. Okatani Y, Wakatsuki A, Reiter RJ. Melatonin protects hepatic mitochondrial respiratory chain activity in senescence-accelerated mice. J Pineal Res 2002;32:143–8.10.1034/j.1600-079x.2002.1o106.xSearch in Google Scholar PubMed

94. Rodríguez MI, Carretero M, Escames G, López LC, Maldonado MD, Tan DX, Reiter RJ, Acuña-Castroviejo D. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 2007;41:15–24.10.1080/10715760600936359Search in Google Scholar PubMed

95. Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, Acuña-Castroviejo D. Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res 2007;42:272–9.10.1111/j.1600-079X.2006.00416.xSearch in Google Scholar PubMed

96. Cuesta S, Kireev R, García C, Forman K, Escames G, Vara E, Tresguerres JA. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 2011;132:573–82.10.1016/j.mad.2011.10.005Search in Google Scholar PubMed

97. Cuesta S, Kireev R, García C, Rancan L, Vara E, Tresguerres JA. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8). Age (Dordr) 2013;35:659–71.10.1007/s11357-012-9397-7Search in Google Scholar PubMed PubMed Central

98. Cuesta S, Kireev R, Forman K, García C, Escames G, Ariznavarreta C, Vara E, Tresguerres JA. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8). Exp Gerontol 2010;45:950–6.10.1016/j.exger.2010.08.016Search in Google Scholar PubMed

99. Tresguerres JA, Kireev R, Forman K, Cuesta S, Tresguerres AF, Vara E. Effect of chronic melatonin administration on several physiological parameters from old Wistar rats and SAMP8 mice. Curr Aging Sci 2012;5:242–53.10.2174/1874609811205030012Search in Google Scholar PubMed

100. Kireev RA, Tresguerres AC, Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JA. Effect of exogenous administration of melatonin and growth hormone on pro-antioxidant functions of the liver in aging male rats. J Pineal Res 2007;42:64–70.10.1111/j.1600-079X.2006.00385.xSearch in Google Scholar PubMed

101. Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JA. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J Pineal Res 2010;49:312–20.10.1111/j.1600-079X.2010.00800.xSearch in Google Scholar PubMed

102. Forman K, Vara E, García C, Kireev R, Cuesta S, Escames G, Tresguerres JA. Effect of a combined treatment with growth hormone and melatonin in the cardiological aging on male SAMP8 mice. J Gerontol A Biol Sci Med Sci 2011;66: 823–34.10.1093/gerona/glr083Search in Google Scholar PubMed

103. Bellner L, Martinelli L, Halilovic A, Patil K, Puri N, Dunn MW, Regan RF, Schwartzman ML. Heme oxygenase-2 deletion causes endothelial cell activation marked by oxidative stress, inflammation, and angiogenesis. J Pharmacol Exp Ther 2009;331:925–32.10.1124/jpet.109.158352Search in Google Scholar PubMed PubMed Central

Received: 2014-4-13
Accepted: 2014-4-24
Published Online: 2014-5-24
Published in Print: 2014-5-1

©2014 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2014-0016/html
Scroll to top button