Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2013

Rho-kinase: regulation, (dys)function, and inhibition

  • Ehsan Amin , Badri Nath Dubey , Si-Cai Zhang , Lothar Gremer , Radovan Dvorsky , Jens M. Moll , Mohamed S. Taha , Luitgard Nagel-Steger , Roland P. Piekorz , Avril V. Somlyo and Mohammad R. Ahmadian EMAIL logo
From the journal Biological Chemistry

Abstract

In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.


Corresponding author: Mohammad R. Ahmadian, Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, D-40255 Düsseldorf, Germany, e-mail:

We thank our colleagues Astrid Hoeppner, Georg Groth, Cordula Kruse, Sander H. Smits, and Jürgen Scheller for their support and the discussions. We apologize for not being able to cite all the relevant publications due to space limits. We gratefully acknowledge the support and training from the International NRW Research School BioStruct, granted by the Ministry of Innovation, Science and Research of the State North Rhine-Westphalia, the Heinrich-Heine-University of Düsseldorf, and the Entrepreneur Foundation at the Heinrich-Heine-University of Düsseldorf. We also thank the Research Committee of the Medical Faculty of the Heinrich-Heine University of Düsseldorf, the NGFNplus program of the German Ministry of Science and Education (BMBF; grant 01GS08100), USA National Institutes of Health grant R01GM086457 and the International Research Training Group 1902 (IRGT1902) of the German Research Foundation (DFG).

References

Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249.10.1074/jbc.271.34.20246Search in Google Scholar PubMed

Amano, M., Chihara, K., Nakamura, N., Kaneko, T., Matsuura, Y., and Kaibuchi, K. (1999). The COOH-terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274, 32418–32424.10.1074/jbc.274.45.32418Search in Google Scholar PubMed

Amano, M., Nakayama, M., and Kaibuchi, K. (2010). Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67, 545–554.10.1002/cm.20472Search in Google Scholar PubMed PubMed Central

Antoniu, S.A. (2012). Targeting RhoA/ROCK pathway in pulmonary arterial hypertension. Expert Opin. Ther. Targets 16, 355–363.10.1517/14728222.2012.671811Search in Google Scholar PubMed

Appels, N.M., Bolijn, M.J., van Eijndhoven, M.A., Stephens, T.C., Beijnen, J.H., and Schellens, J.H. (2011). Characterization of the in vitro activity of AZD3409, a novel prenyl transferase inhibitor. Cancer Chemother. Pharmacol. 67, 137–145.10.1007/s00280-010-1300-6Search in Google Scholar PubMed

Baranwal, S. and Alahari, S.K. (2011). Rho GTPase effector functions in tumor cell invasion and metastasis. Curr. Drug Targets 12, 1194–1201.10.2174/138945011795906534Search in Google Scholar PubMed

Begum, N., Sandu, O.A., Ito, M., Lohmann, S.M., and Smolenski, A. (2002). Active Rho kinase (ROK-a) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J. Biol. Chem. 277, 6214–6222.10.1074/jbc.M110508200Search in Google Scholar PubMed

Bishop, A.L. and Hall, A. (2000). Rho GTPases and their effector proteins. Biochem. J. 348, 241–255.10.1042/bj3480241Search in Google Scholar

Blum, R., Cox, A.D., and Kloog, Y. (2008). Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Pat. Anticancer Drug Discov. 3, 31–47.10.2174/157489208783478702Search in Google Scholar PubMed

Blumenstein, L. and Ahmadian, M.R. (2004). Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation. J. Biol. Chem. 279, 53419–53426.10.1074/jbc.M409551200Search in Google Scholar PubMed

Brunsveld, L., Kuhlmann, J., Alexandrov, K., Wittinghofer, A., Goody, R.S., and Waldmann, H. (2006). Lipidated ras and rab peptides and proteins – synthesis, structure, and function. Angew. Chem. 45, 6622–6646.10.1002/anie.200600855Search in Google Scholar PubMed

Chen, X.Q., Tan, I., Ng, C.H., Hall, C., Lim, L., and Leung, T. (2002). Characterization of RhoA-binding kinase ROKa implication of the pleckstrin homology domain in ROKa function using region-specific antibodies. J. Biol. Chem. 277, 12680–12688.10.1074/jbc.M109839200Search in Google Scholar PubMed

Chiba, Y., Matsusue, K., and Misawa, M. (2010). RhoA, a possible target for treatment of airway hyperresponsiveness in bronchial asthma. J. Pharmacol. Sci. 114, 239–247.10.1254/jphs.10R03CRSearch in Google Scholar

Coleman, M.L., Sahai, E.A., Yeo, M., Bosch, M., Dewar, A., and Olson, M.F. (2001). Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3, 339–345.10.1038/35070009Search in Google Scholar PubMed

Croft, D.R. and Olson, M.F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol. Cell. Biol. 26, 4612–4627.10.1128/MCB.02061-05Search in Google Scholar PubMed PubMed Central

David, M., Petit, D., and Bertoglio, J. (2012). Cell cycle regulation of Rho signaling pathways. Cell Cycle 11, 3003–3010.10.4161/cc.21088Search in Google Scholar PubMed PubMed Central

Davies, S.P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105.10.1042/bj3510095Search in Google Scholar

Diviani, D., Soderling, J., and Scott, J.D. (2001). AKAP-Lbc anchors protein kinase A and nucleates Ga 12-selective Rho-mediated stress fiber formation. J. Biol. Chem. 276, 44247–44257.10.1074/jbc.M106629200Search in Google Scholar PubMed

Doran, J.D., Liu, X., Taslimi, P., Saadat, A., and Fox, T. (2004). New insights into the structure-function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem. J. 384, 255–262.10.1042/BJ20040344Search in Google Scholar PubMed PubMed Central

Dvorsky, R. and Ahmadian, M.R. (2004). Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep. 5, 1130–1136.10.1038/sj.embor.7400293Search in Google Scholar PubMed PubMed Central

Dvorsky, R., Blumenstein, L., Vetter, I.R., and Ahmadian, M.R. (2004). Structural insights into the interaction of ROCKI with the switch regions of RhoA. J. Biol. Chem. 279, 7098–7104.10.1074/jbc.M311911200Search in Google Scholar PubMed

Ehrenschwender, M., Siegmund, D., Wicovsky, A., Kracht, M., Dittrich-Breiholz, O., Spindler, V., Waschke, J., Kalthoff, H., Trauzold, A., and Wajant, H. (2010). Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation. Cell Death Differ. 17, 1435–1447.10.1038/cdd.2010.36Search in Google Scholar PubMed

Eto, M., Ohmori, T., Suzuki, M., Furuya, K., and Morita, F. (1995). A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J. Biochem. (Tokyo) 118, 1104–1107.10.1093/oxfordjournals.jbchem.a124993Search in Google Scholar PubMed

Eto, M., Barandier, C., Rathgeb, L., Kozai, T., Joch, H., Yang, Z., and Luscher, T.F. (2001). Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ. Res. 89, 583–590.10.1161/hh1901.097084Search in Google Scholar PubMed

Faiz, F., Hooper, A.J., and van Bockxmeer, F.M. (2012). Molecular pathology of familial hypercholesterolemia, related dyslipidemias and therapies beyond the statins. Crit. Rev. Clin. Lab. Sci. 49, 1–17.10.3109/10408363.2011.646942Search in Google Scholar PubMed

Ferretti, R., Palumbo, V., Di Savino, A., Velasco, S., Sbroggio, M., Sportoletti, P., Micale, L., Turco, E., Silengo, L., Palumbo, G., et al. (2010). Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev. Cell 18, 486–495.10.1016/j.devcel.2009.12.020Search in Google Scholar PubMed

Fried, L.F. (2008). Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease. Kidney Int. 74, 571–576.10.1038/ki.2008.231Search in Google Scholar PubMed

Fukasawa, K. (2011). Aberrant activation of cell cycle regulators, centrosome amplification, and mitotic defects. Horm. Cancer 2, 104–112.10.1007/s12672-010-0060-4Search in Google Scholar PubMed

Furukawa, N., Ongusaha, P., Jahng, W.J., Araki, K., Choi, C.S., Kim, H.J., Lee, Y.H., Kaibuchi, K., Kahn, B.B., Masuzaki, H., et al. (2005). Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab. 2, 119–129.10.1016/j.cmet.2005.06.011Search in Google Scholar PubMed

Gelb, M.H., Brunsveld, L., Hrycyna, C.A., Michaelis, S., Tamanoi, F., Van Voorhis, W.C., and Waldmann, H. (2006). Therapeutic intervention based on protein prenylation and associated modifications. Nat. Chem. Biol. 2, 518–528.10.1038/nchembio818Search in Google Scholar PubMed PubMed Central

Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakurai, M., Amano, M., Kaibuchi, K., and Inagaki, M. (1998). Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J. Biol. Chem. 273, 11728–11736.10.1074/jbc.273.19.11728Search in Google Scholar PubMed

Hahmann, C. and Schroeter, T. (2010). Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell. Mol. Life Sci. 67, 171–177.10.1007/s00018-009-0189-xSearch in Google Scholar PubMed

Hanashiro, K., Brancaccio, M., and Fukasawa, K. (2011). Activated ROCK II by-passes the requirement of the CDK2 activity for centrosome duplication and amplification. Oncogene 30, 2188–2197.10.1038/onc.2010.607Search in Google Scholar PubMed

Heasman, S.J. and Ridley, A.J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701.10.1038/nrm2476Search in Google Scholar PubMed

Hendrix, A., Maynard, D., Pauwels, P., Braems, G., Denys, H., Van den Broecke, R., Lambert, J., Van Belle, S., Cocquyt, V., Gespach, C., et al. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J. Natl. Cancer Inst. 102, 866–880.10.1093/jnci/djq153Search in Google Scholar PubMed PubMed Central

Herbrand, U. and Ahmadian, M.R. (2006). p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho. Biol. Chem. 387, 311–317.10.1515/BC.2006.041Search in Google Scholar PubMed

Hidalgo-Carcedo, C., Hooper, S., Chaudhry, S.I., Williamson, P., Harrington, K., Leitinger, B., and Sahai, E. (2011). Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat. Cell Biol. 13, 49–58.10.1038/ncb2133Search in Google Scholar PubMed PubMed Central

Iden, S. and Collard, J.G. (2008). Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9, 846–859.10.1038/nrm2521Search in Google Scholar PubMed

Itzen, A. and Goody, R.S. (2011). Covalent coercion by Legionella pneumophila. Cell Host Microbe 10, 89–91.10.1016/j.chom.2011.08.002Search in Google Scholar PubMed

Jaiswal, M., Gremer, L., Dvorsky, R., Haeusler, L.C., Cirstea, I.C., Uhlenbrock, K., and Ahmadian, M.R. (2011). Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J. Biol. Chem. 286, 18202–18212.10.1074/jbc.M111.226431Search in Google Scholar PubMed PubMed Central

Jaiswal, M., Dvorsky, R., and Ahmadian, M.R. (2013a). Deciphering the molecular and functional basis of Dbl family proteins: a novel systematic approach toward classification of selective activation of the Rho family proteins. J. Biol. Chem. 288, 4486–4500.10.1074/jbc.M112.429746Search in Google Scholar PubMed PubMed Central

Jaiswal, M., Fansa, E.K., Dvorsky, R., and Ahmadian, M.R. (2013b). New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol. Chem. 394, 89–95.10.1515/hsz-2012-0207Search in Google Scholar PubMed

Jin, S. and Exton, J.H. (2000). Activation of RhoA by association of Ga(13) with Dbl. Biochem. Biophys. Res. Commun. 277, 718–721.10.1006/bbrc.2000.3744Search in Google Scholar PubMed

Joyce, P.L. and Cox, A.D. (2003). Rac1 and Rac3 are targets for geranylgeranyltransferase I inhibitor-mediated inhibition of signaling, transformation, and membrane ruffling. Cancer Res. 63, 7959–7967.Search in Google Scholar

Karnoub, A.E., Symons, M., Campbell, S.L., and Der, C.J. (2004). Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res. Treat. 84, 61–71.10.1023/B:BREA.0000018427.84929.5cSearch in Google Scholar

Khan, O.M., Ibrahim, M.X., Jonsson, I.M., Karlsson, C., Liu, M., Sjogren, A.K., Olofsson, F.J., Brisslert, M., Andersson, S., Ohlsson, C., et al. (2011). Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J. Clin. Invest. 121, 628–639.10.1172/JCI43758Search in Google Scholar PubMed PubMed Central

Khwaja, A., Sharpe, C.C., Noor, M., and Hendry, B.M. (2006). The role of geranylgeranylated proteins in human mesangial cell proliferation. Kidney Int. 70, 1296–1304.10.1038/sj.ki.5001713Search in Google Scholar PubMed

Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248.10.1126/science.273.5272.245Search in Google Scholar PubMed

Kimura, K., Fukata, Y., Matsuoka, Y., Bennett, V., Matsuura, Y., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1998). Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. J. Biol. Chem. 273, 5542–5548.10.1074/jbc.273.10.5542Search in Google Scholar PubMed

Klein, R.M., Spofford, L.S., Abel, E.V., Ortiz, A., and Aplin, A.E. (2008). B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization. Mol. Biol. Cell 19, 498–508.10.1091/mbc.e07-09-0895Search in Google Scholar PubMed PubMed Central

Komers, R. (2011). Rho kinase inhibition in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 20, 77–83.10.1097/MNH.0b013e32834131f8Search in Google Scholar PubMed

Konstantinopoulos, P.A., Karamouzis, M.V., and Papavassiliou, A.G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov. 6, 541–555.10.1038/nrd2221Search in Google Scholar

Koyama, M., Ito, M., Feng, J., Seko, T., Shiraki, K., Takase, K., Hartshorne, D.J., and Nakano, T. (2000). Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 475, 197–200.10.1016/S0014-5793(00)01654-9Search in Google Scholar

Lane, K.T. and Beese, L.S. (2006). Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 47, 681–699.10.1194/jlr.R600002-JLR200Search in Google Scholar PubMed

Larrea, M.D., Hong, F., Wander, S.A., da Silva, T.G., Helfman, D., Lannigan, D., Smith, J.A., and Slingerland, J.M. (2009). RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc. Natl. Acad. Sci. USA 106, 9268–9273.10.1073/pnas.0805057106Search in Google Scholar PubMed PubMed Central

Lee, D.H., Shi, J., Jeoung, N.H., Kim, M.S., Zabolotny, J.M., Lee, S.W., White, M.F., Wei, L., and Kim, Y.B. (2009). Targeted disruption of ROCK1 causes insulin resistance in vivo. J. Biol. Chem. 284, 11776–11780.10.1074/jbc.C900014200Search in Google Scholar PubMed PubMed Central

Li, Z., Dong, X., Wang, Z., Liu, W., Deng, N., Ding, Y., Tang, L., Hla, T., Zeng, R., Li, L., et al. (2005). Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404.10.1038/ncb1236Search in Google Scholar PubMed

Liao, J.K., Seto, M., and Noma, K. (2007). Rho kinase (ROCK) inhibitors. J. Cardiovasc. Pharmacol. 50, 17–24.10.1097/FJC.0b013e318070d1bdSearch in Google Scholar PubMed PubMed Central

Ligeti, E., Welti, S., and Scheffzek, K. (2012). Inhibition and termination of physiological responses by GTPase activating proteins. Physiol. Rev. 92, 237–272.10.1152/physrev.00045.2010Search in Google Scholar PubMed

Litosch, I. (2011). RhoA co-ordinates with heterotrimeric G proteins to regulate efficacy. Biochem. Biophys. Res. Commun. 415, 215–219.10.1016/j.bbrc.2011.10.063Search in Google Scholar PubMed

Loirand, G., Guerin, P., and Pacaud, P. (2006). Rho kinases in cardiovascular physiology and pathophysiology. Circ. Res. 98, 322–334.10.1161/01.RES.0000201960.04223.3cSearch in Google Scholar PubMed

Lopez-Pedrera, C., Ruiz-Limon, P., Valverde-Estepa, A., Barbarroja, N., and Rodriguez-Ariza, A. (2012). To cardiovascular disease and beyond: new therapeutic perspectives of statins in autoimmune diseases and cancer. Curr. Drug Targets 13, 829–841.10.2174/138945012800564112Search in Google Scholar PubMed

Ma, Z., Kanai, M., Kawamura, K., Kaibuchi, K., Ye, K., and Fukasawa, K. (2006). Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol. Cell. Biol. 26, 9016–9034.10.1128/MCB.01383-06Search in Google Scholar PubMed PubMed Central

Madigan, J.P., Bodemann, B.O., Brady, D.C., Dewar, B.J., Keller, P.J., Leitges, M., Philips, M.R., Ridley, A.J., Der, C.J., and Cox, A.D. (2009). Regulation of Rnd3 localization and function by protein kinase Ca-mediated phosphorylation. Biochem. J. 424, 153–161.10.1042/BJ20082377Search in Google Scholar PubMed PubMed Central

Mardilovich, K., Olson, M.F., and Baugh, M. (2012). Targeting Rho GTPase signaling for cancer therapy. Future Oncol. 8, 165–177.10.2217/fon.11.143Search in Google Scholar PubMed

Marrari, Y., Crouthamel, M., Irannejad, R., and Wedegaertner, P.B. (2007). Assembly and trafficking of heterotrimeric G proteins. Biochemistry (Mosc.) 46, 7665–7677.10.1021/bi700338mSearch in Google Scholar PubMed PubMed Central

Matsui, T., Maeda, M., Doi, Y., Yonemura, S., Amano, M., Kaibuchi, K., and Tsukita, S. (1998). Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657.10.1083/jcb.140.3.647Search in Google Scholar PubMed PubMed Central

Meiri, D., Greeve, M.A., Brunet, A., Finan, D., Wells, C.D., LaRose, J., and Rottapel, R. (2009). Modulation of Rho guanine exchange factor Lfc activity by protein kinase A-mediated phosphorylation. Mol. Cell. Biol. 29, 5963–5973.10.1128/MCB.01268-08Search in Google Scholar PubMed PubMed Central

Mikelis, C.M., Palmby, T.R., Simaan, M., Li, W., Szabo, R., Lyons, R., Martin, D., Yagi, H., Fukuhara, S., Chikumi, H., et al. (2013). PDZ-RhoGEF and LARG are essential for embryonic development and provide a link between thrombin and LPA receptors and Rho activation. J. Biol. Chem. 288, 12232–12243.10.1074/jbc.M112.428599Search in Google Scholar PubMed PubMed Central

Miyamoto, S., Del Re, D.P., Xiang, S.Y., Zhao, X., Florholmen, G., and Brown, J.H. (2010). Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc. Transl. Res. 3, 330–343.10.1007/s12265-010-9192-8Search in Google Scholar PubMed PubMed Central

Momotani, K. and Somlyo, A.V. (2012). p63RhoGEF: a new switch for Gq-mediated activation of smooth muscle. Trends Cardiovasc. Med. 22, 122–127.10.1016/j.tcm.2012.07.007Search in Google Scholar PubMed PubMed Central

Momotani, K., Artamonov, M.V., Utepbergenov, D., Derewenda, U., Derewenda, Z.S., and Somlyo, A.V. (2011). p63RhoGEF couples Ga(q/11)-mediated signaling to Ca2+ sensitization of vascular smooth muscle contractility. Circ. Res. 109, 993–1002.10.1161/CIRCRESAHA.111.248898Search in Google Scholar

Morgan-Fisher, M., Wewer, U.M., and Yoneda, A. (2013). Regulation of ROCK activity in cancer. J. Histochem. Cytochem. 61, 185–198.10.1369/0022155412470834Search in Google Scholar

Mueller, B.K., Mack, H., and Teusch, N. (2005). Rho kinase, a promising drug target for neurological disorders. Nat. Rev. Drug Discov. 4, 387–398.10.1038/nrd1719Search in Google Scholar

Nakamura, H., Arakawa, K., Itakura, H., Kitabatake, A., Goto, Y., Toyota, T., Nakaya, N., Nishimoto, S., Muranaka, M., Yamamoto, A., et al. (2006) Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet 368, 1155–1163.10.1016/S0140-6736(06)69472-5Search in Google Scholar

Narumiya, S., Tanji, M., and Ishizaki, T. (2009). Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 28, 65–76.10.1007/s10555-008-9170-7Search in Google Scholar PubMed

Niault, T.S. and Baccarini, M. (2010). Targets of Raf in tumorigenesis. Carcinogenesis 31, 1165–1174.10.1093/carcin/bgp337Search in Google Scholar PubMed

Nimnual, A.S., Taylor, L.J., and Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nat. Cell Biol. 5, 236–241.10.1038/ncb938Search in Google Scholar PubMed

Noma, K., Kihara, Y., and Higashi, Y. (2012). Striking crosstalk of ROCK signaling with endothelial function. J. Cardiol. 60, 1–6.10.1016/j.jjcc.2012.03.005Search in Google Scholar PubMed

Nunes, K.P., Rigsby, C.S., and Webb, R.C. (2010). RhoA/Rho-kinase and vascular diseases: what is the link? Cell. Mol. Life Sci. 67, 3823–3836.10.1007/s00018-010-0460-1Search in Google Scholar PubMed PubMed Central

Ohgushi, M. and Sasai, Y. (2011). Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol. 21, 274–282.10.1016/j.tcb.2011.02.004Search in Google Scholar PubMed

Oka, M., Fagan, K.A., Jones, P.L., and McMurtry, I.F. (2008). Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br. J. Pharmacol. 155, 444–454.10.1038/bjp.2008.239Search in Google Scholar PubMed PubMed Central

Olson, M.F. (2008). Applications for ROCK kinase inhibition. Curr. Opin. Cell Biol. 20, 242–248.10.1016/j.ceb.2008.01.002Search in Google Scholar PubMed PubMed Central

Park, H.J., Zhang, Y., Georgescu, S.P., Johnson, K.L., Kong, D., and Galper, J.B. (2006). Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2, 93–102.10.1007/s12015-006-0015-xSearch in Google Scholar PubMed

Raper, A., Kolansky, D.M., and Cuchel, M. (2012). Treatment of familial hypercholesterolemia: is there a need beyond statin therapy? Curr. Atheroscler. Rep. 14, 11–16.10.1007/s11883-011-0215-ySearch in Google Scholar PubMed

Raptis, L., Arulanandam, R., Geletu, M., and Turkson, J. (2011). The R(h)oads to Stat3: Stat3 activation by the Rho GTPases. Exp. Cell Res. 317, 1787–1795.10.1016/j.yexcr.2011.05.008Search in Google Scholar PubMed PubMed Central

Rath, N. and Olson, M.F. (2012). Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep. 13, 900–908.10.1038/embor.2012.127Search in Google Scholar PubMed PubMed Central

Reddy, R., Chahoud, G., and Mehta, J.L. (2005). Modulation of cardiovascular remodeling with statins: fact or fiction? Curr. Vasc. Pharmacol. 3, 69–79.10.2174/1570161052773915Search in Google Scholar PubMed

Resh, M.D. (2012). Targeting protein lipidation in disease. Trends Mol. Med. 18, 206–214.10.1016/j.molmed.2012.01.007Search in Google Scholar PubMed PubMed Central

Richardson, B.T., Dibble, C.F., Borikova, A.L., and Johnson, G.L. (2013). Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biol. Chem. 394, 35–42.10.1515/hsz-2012-0243Search in Google Scholar PubMed PubMed Central

Riento, K. and Ridley, A.J. (2003). Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456.10.1038/nrm1128Search in Google Scholar PubMed

Riento, K., Guasch, R.M., Garg, R., Jin, B., and Ridley, A.J. (2003). RhoE binds to ROCK I and inhibits downstream signaling. Mol. Cell. Biol. 23, 4219–4229.10.1128/MCB.23.12.4219-4229.2003Search in Google Scholar

Riganti, C., Aldieri, E., Doublier, S., Bosia, A., and Ghigo, D. (2008). Statins-mediated inhibition of rho GTPases as a potential tool in anti-tumor therapy. Mini Rev. Med. Chem. 8, 609–618.10.2174/138955708784534436Search in Google Scholar

Rikitake, Y. and Liao, J.K. (2005). Rho GTPases, statins, and nitric oxide. Circ. Res. 97, 1232–1235.10.1161/01.RES.0000196564.18314.23Search in Google Scholar

Rikitake, Y., Kim, H.H., Huang, Z., Seto, M., Yano, K., Asano, T., Moskowitz, M.A., and Liao, J.K. (2005). Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36, 2251–2257.10.1161/01.STR.0000181077.84981.11Search in Google Scholar

Rizzino, A. (2010). Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors. Regen. Med. 5, 799–807.10.2217/rme.10.45Search in Google Scholar

Roberts, P.J., Mitin, N., Keller, P.J., Chenette, E.J., Madigan, J.P., Currin, R.O., Cox, A.D., Wilson, O., Kirschmeier, P., and Der, C.J. (2008). Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283, 25150–25163.10.1074/jbc.M800882200Search in Google Scholar

Roskoski, R., Jr. (2003). Protein prenylation: a pivotal posttranslational process. Biochem. Biophys. Res. Commun. 303, 1–7.10.1016/S0006-291X(03)00323-1Search in Google Scholar

Rossman, K.L., Der, C.J., and Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180.10.1038/nrm1587Search in Google Scholar PubMed

Roy, M., Kung, H.J., and Ghosh, P.M. (2011). Statins and prostate cancer: role of cholesterol inhibition vs. prevention of small GTP-binding proteins. Am. J. Cancer Res. 1, 542–561.Search in Google Scholar

Salminen, A., Suuronen, T., and Kaarniranta, K. (2008). ROCK, PAK, and Toll of synapses in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 371, 587–590.10.1016/j.bbrc.2008.04.148Search in Google Scholar PubMed

Satoh, K., Fukumoto, Y., and Shimokawa, H. (2011). Rho-kinase: important new therapeutic target in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 301, H287–H296.10.1152/ajpheart.00327.2011Search in Google Scholar PubMed

Sawada, N. and Liao, J.K. (2009). Targeting eNOS and beyond: emerging heterogeneity of the role of endothelial Rho proteins in stroke protection. Expert Rev. Neurother. 9, 1171–1186.10.1586/ern.09.70Search in Google Scholar

Schmandke, A. and Strittmatter, S.M. (2007). ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13, 454–469.10.1177/1073858407303611Search in Google Scholar

Schofield, A.V. and Bernard, O. (2013). Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit. Rev. Biochem. Mol. Biol. 48, 301–316.10.3109/10409238.2013.786671Search in Google Scholar

Sebti, S.M. and Hamilton, A.D. (2000a). Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: important mechanistic and bench to bedside issues. Expert. Opin. Invest. Drugs 9, 2767–2782.10.1517/13543784.9.12.2767Search in Google Scholar

Sebti, S.M. and Hamilton, A.D. (2000b). Inhibition of Rho GTPases using protein geranylgeranyltransferase I inhibitors. Methods Enzymol. 325, 381–388.10.1016/S0076-6879(00)25459-1Search in Google Scholar

Shi, J., Zhang, L., and Wei, L. (2011). Rho-kinase in development and heart failure: insights from genetic models. Pediatr. Cardiol. 32, 297–304.10.1007/s00246-011-9920-0Search in Google Scholar PubMed PubMed Central

Shimokawa, H. and Rashid, M. (2007). Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol. Sci. 28, 296–302.10.1016/j.tips.2007.04.006Search in Google Scholar PubMed

Somlyo, A.P. (1997). Signal transduction. Rhomantic interludes raise blood pressure. Nature 389, 908–909, 911.Search in Google Scholar

Somlyo, A.P. and Somlyo, A.V. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522 Pt 2, 177–185.10.1111/j.1469-7793.2000.t01-2-00177.xSearch in Google Scholar PubMed PubMed Central

Somlyo, A.P. and Somlyo, A.V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358.10.1152/physrev.00023.2003Search in Google Scholar PubMed

Somlyo, A.P. and Somlyo, A.V. (2004). Signal transduction through the RhoA/Rho-kinase pathway in smooth muscle. J. Muscle Res. Cell Motil. 25, 613–615.Search in Google Scholar

Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525.10.1038/nrm2728Search in Google Scholar PubMed

Street, C.A. and Bryan, B.A. (2011). Rho kinase proteins – pleiotropic modulators of cell survival and apoptosis. Anticancer Res. 31, 3645–3657.Search in Google Scholar

Sugimoto, M., Nakayama, M., Goto, T.M., Amano, M., Komori, K., and Kaibuchi, K. (2007). Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells. Biochem. Biophys. Res. Commun. 361, 462–467.10.1016/j.bbrc.2007.07.030Search in Google Scholar PubMed

Suzuki, Y., Yamamoto, M., Wada, H., Ito, M., Nakano, T., Sasaki, Y., Narumiya, S., Shiku, H., and Nishikawa, M. (1999). Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 93, 3408–3417.10.1182/blood.V93.10.3408.410k37_3408_3417Search in Google Scholar

Takefuji, M., Kruger, M., Sivaraj, K.K., Kaibuchi, K., Offermanns, S., and Wettschureck, N. (2013). RhoGEF12 controls cardiac remodeling by integrating G protein- and integrin-dependent signaling cascades. J. Exp. Med. 210, 665–673.10.1084/jem.20122126Search in Google Scholar PubMed PubMed Central

Takeya, R., Taniguchi, K., Narumiya, S., and Sumimoto, H. (2008). The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J. 27, 618–628.10.1038/emboj.2008.7Search in Google Scholar PubMed PubMed Central

Tan, H.B., Zhong, Y.S., Cheng, Y., and Shen, X. (2011). Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int. J. Ophthalmol. 4, 652–657.Search in Google Scholar

Tang, B.L. (2005). Alzheimer’s disease: channeling APP to non-amyloidogenic processing. Biochem. Biophys. Res. Commun. 331, 375–378.10.1016/j.bbrc.2005.03.074Search in Google Scholar PubMed

Tesfamariam, B. (2006). The effects of HMG-CoA reductase inhibitors on endothelial function. Am. J. Cardiovasc. Drugs 6, 115–120.10.2165/00129784-200606020-00005Search in Google Scholar PubMed

Tonges, L., Koch, J.C., Bahr, M., and Lingor, P. (2011). ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration. Front. Mol. Neurosci. 4, 39.10.3389/fnmol.2011.00039Search in Google Scholar PubMed PubMed Central

Triola, G., Waldmann, H., and Hedberg, C. (2012). Chemical biology of lipidated proteins. ACS Chem. Biol. 7, 87–99.10.1021/cb200460uSearch in Google Scholar PubMed

Tybulewicz, V.L. and Henderson, R.B. (2009). Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9, 630–644.10.1038/nri2606Search in Google Scholar PubMed PubMed Central

Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994.10.1038/40187Search in Google Scholar PubMed

Valderrama, F., Cordeiro, J.V., Schleich, S., Frischknecht, F., and Way, M. (2006). Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311, 377–381.10.1126/science.1122411Search in Google Scholar PubMed

Vanni, C., Mancini, P., Ottaviano, C., Ognibene, M., Parodi, A., Merello, E., Russo, C., Varesio, L., Zheng, Y., Torrisi, M.R., et al. (2007). Ga13 regulation of proto-Dbl signaling. Cell Cycle 6, 2058–2070.10.4161/cc.6.16.4574Search in Google Scholar PubMed

Walsh, M.P. (2011). Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life 63, 987–1000.10.1002/iub.527Search in Google Scholar PubMed

Wang, Q.M. and Liao, J.K. (2012). ROCKs as immunomodulators of stroke. Expert Opin. Ther. Targets 16, 1013–1025.10.1517/14728222.2012.715149Search in Google Scholar PubMed PubMed Central

Wang, Y., Zheng, X.R., Riddick, N., Bryden, M., Baur, W., Zhang, X., and Surks, H.K. (2009). ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ. Res. 104, 531–540.10.1161/CIRCRESAHA.108.188524Search in Google Scholar PubMed PubMed Central

Ward, Y., Yap, S.F., Ravichandran, V., Matsumura, F., Ito, M., Spinelli, B., and Kelly, K. (2002). The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J. Cell Biol. 157, 291–302.10.1083/jcb.200111026Search in Google Scholar PubMed PubMed Central

Wen, W., Liu, W., Yan, J., and Zhang, M. (2008). Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J. Biol. Chem. 283, 26263–26273.10.1074/jbc.M803417200Search in Google Scholar PubMed PubMed Central

Wettschureck, N. and Offermanns, S. (2002). Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J. Mol. Med. 80, 629–638.10.1007/s00109-002-0370-2Search in Google Scholar PubMed

While, A. and Keen, L. (2012). The effects of statins on mood: a review of the literature. Eur. J. Cardiovasc. Nurs. 11, 85–96.10.1016/j.ejcnurse.2010.08.008Search in Google Scholar PubMed

Wiemer, A.J., Hohl, R.J., and Wiemer, D.F. (2009). The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anticancer Agents Med. Chem. 9, 526–542.10.2174/187152009788451860Search in Google Scholar PubMed

Wiemer, A.J., Wiemer, D.F., and Hohl, R.J. (2011). Geranylgeranyl diphosphate synthase: an emerging therapeutic target. Clin. Pharmacol. Ther. 90, 804–812.10.1038/clpt.2011.215Search in Google Scholar PubMed

Winter-Vann, A.M. and Casey, P.J. (2005). Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412.10.1038/nrc1612Search in Google Scholar PubMed

Wirth, A., Benyo, Z., Lukasova, M., Leutgeb, B., Wettschureck, N., Gorbey, S., Orsy, P., Horvath, B., Maser-Gluth, C., Greiner, E., et al. (2008). G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68.10.1038/nm1666Search in Google Scholar PubMed

Wittinghofer, A. and Vetter, I.R. (2011). Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971.10.1146/annurev-biochem-062708-134043Search in Google Scholar PubMed

Yasui, Y., Amano, M., Nagata, K., Inagaki, N., Nakamura, H., Saya, H., Kaibuchi, K., and Inagaki, M. (1998). Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J. Cell Biol. 143, 1249–1258.10.1083/jcb.143.5.1249Search in Google Scholar PubMed PubMed Central

Young, S.G., Yang, S.H., Davies, B.S., Jung, H.J., and Fong, L.G. (2013). Targeting protein prenylation in progeria. Sci. Transl. Med. 5, 171–173.10.1126/scitranslmed.3005229Search in Google Scholar PubMed PubMed Central

Zhang, H., Sawashita, J., Fu, X., Korenaga, T., Yan, J., Mori, M., and Higuchi, K. (2006). Transmissibility of mouse AApoAII amyloid fibrils: inactivation by physical and chemical methods. FASEB J. 20, 1012–1014.10.1096/fj.05-4890fjeSearch in Google Scholar PubMed

Zhao, T.T., Le Francois, B.G., Goss, G., Ding, K., Bradbury, P.A., and Dimitroulakos, J. (2010). Lovastatin inhibits EGFR dimerization and AKT activation in squamous cell carcinoma cells: potential regulation by targeting rho proteins. Oncogene 29, 4682–4692.10.1038/onc.2010.219Search in Google Scholar PubMed

Zhou, H. and Li, Y. (2011). Long-term diabetic complications may be ameliorated by targeting Rho kinase. Diabetes Metab. Res. Rev. 27, 318–330.10.1002/dmrr.1182Search in Google Scholar PubMed

Zhou, H. and Li, Y.J. (2012). Rho kinase inhibitors: potential treatments for diabetes and diabetic complications. Curr. Pharm. Des. 18, 2964–2973.10.2174/138161212800672688Search in Google Scholar PubMed

Zhou, Q. and Liao, J.K. (2009). Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr. Pharm. Des. 15, 467–478.10.2174/138161209787315684Search in Google Scholar PubMed PubMed Central

Zhou, Q. and Liao, J.K. (2010). Pleiotropic effects of statins. Basic research and clinical perspectives. Circ. J. 74, 818–826.10.1253/circj.CJ-10-0110Search in Google Scholar PubMed PubMed Central

Zhou, Q., Gensch, C., and Liao, J.K. (2011). Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol. Sci. 32, 167–173.10.1016/j.tips.2010.12.006Search in Google Scholar PubMed PubMed Central

Zieba, B.J., Artamonov, M.V., Jin, L., Momotani, K., Ho, R., Franke, A.S., Neppl, R.L., Stevenson, A.S., Khromov, A.S., Chrzanowska-Wodnicka, M., et al. (2011). The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J. Biol. Chem. 286, 16681–16692.10.1074/jbc.M110.205062Search in Google Scholar PubMed PubMed Central

Zou, W. and Teitelbaum, S.L. (2010). Integrins, growth factors, and the osteoclast cytoskeleton. Ann. NY Acad. Sci. 1192, 27–31.10.1111/j.1749-6632.2009.05245.xSearch in Google Scholar PubMed

Received: 2013-5-15
Accepted: 2013-8-9
Published Online: 2013-08-14
Published in Print: 2013-11-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0181/html
Scroll to top button