Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 13, 2016

Tetraspanin 8 is an interactor of the metalloprotease meprin β within tetraspanin-enriched microdomains

  • Frederike Schmidt , Miryam Müller , Johannes Prox , Philipp Arnold , Caroline Schönherr , Claudia Tredup , Petra Minder , Henriette Ebsen , Ottmar Janssen , Wim Annaert , Claus Pietrzik , Dirk Schmidt-Arras , Erwin E. Sterchi and Christoph Becker-Pauly EMAIL logo
From the journal Biological Chemistry

Abstract

Meprin β is a dimeric type I transmembrane protein and acts as an ectodomain sheddase at the cell surface. It has been shown that meprin β cleaves the amyloid precursor protein (APP), thereby releasing neurotoxic amyloid β peptides and implicating a role of meprin β in Alzheimer’s disease. In order to identify non-proteolytic regulators of meprin β, we performed a split ubiquitin yeast two-hybrid screen using a small intestinal cDNA library. In this screen we identified tetraspanin 8 (TSPAN8) as interaction partner for meprin β. As several members of the tetraspanin family were described to interact with metalloproteases thereby affecting their localization and/or activity, we hypothesized similar functions of TSPAN8 in the regulation of meprin β. We employed cell biological methods to confirm direct binding of TSPAN8 to meprin β. Surprisingly, we did not observe an effect of TSPAN8 on the catalytic activity of meprin β nor on the specific cleavage of its substrate APP. However, both proteins were identified as present in tetraspanin-enriched microdomains. Therefore we hypothesize that TSPAN8 might be important for the orchestration of meprin β at the cell surface with impact on certain proteolytic processes that have to be further identified.

Acknowledgments

The authors thank Björn Rabe (Kiel, Germany) for providing the CD9 antibody, Xavier Gomis-Rüth (Barcelona, Spain) for the pdb file of membrane-bound dimeric meprin β and Yves Jacob (Paris, France) as well as Jörg Müller (Jena, Germany) for providing plasmids. This work was supported by the SFB877 ‘Proteolysis as a Regulatory Event in Pathophysiology’ (project A9), grant BE 4086/2-1 (to C.B.-P.), grant PI 379/6-1 (to C.U.P.) and SFB841 (project C1, to D.S.-A.). W.A. is supported by KULeuven (C16/15/073), VIB, SAO (S#14017) and the federal government (IAP P7/16).

References

Alford, S.C., Abdelfattah, A.S., Ding, Y., and Campbell, R.E. (2012). A fluorogenic red fluorescent protein heterodimer. Chem. Biol. 19, 353–360.10.1016/j.chembiol.2012.01.006Search in Google Scholar PubMed PubMed Central

Arnold, P., Schmidt, F., Prox, J., Zunke, F., Pietrzik, C., Lucius, R., and Becker-Pauly, C. (2015). Calcium negatively regulates meprin beta activity and attenuates substrate cleavage. FASEB J. 29, 3549–3557.10.1096/fj.15-272310Search in Google Scholar PubMed

Arolas, J.L., Broder, C., Jefferson, T., Guevara, T., Sterchi, E.E., Bode, W., Stocker, W., Becker-Pauly, C., and Gomis-Ruth, F.X. (2012). Structural basis for the sheddase function of human meprin beta metalloproteinase at the plasma membrane. Proc. Natl. Acad. Sci. USA. 109, 16131–16136.10.1073/pnas.1211076109Search in Google Scholar PubMed PubMed Central

Becker-Pauly, C. and Rose-John, S. (2013). TNFalpha cleavage beyond TACE/ADAM17: matrix metalloproteinase 13 is a potential therapeutic target in sepsis and colitis. EMBO Mol. Med. 5, 902–904.10.1002/emmm.201302899Search in Google Scholar PubMed PubMed Central

Biasin, V., Marsh, L.M., Egemnazarov, B., Wilhelm, J., Ghanim, B., Klepetko, W., Wygrecka, M., Olschewski, H., Eferl, R., Olschewski, A., et al. (2014). Meprin beta, a novel mediator of vascular remodelling underlying pulmonary hypertension. J. Pathol. 233, 7–17.10.1002/path.4303Search in Google Scholar PubMed

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L., et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–258.10.1093/nar/gku340Search in Google Scholar PubMed PubMed Central

Bien, J., Jefferson, T., Causevic, M., Jumpertz, T., Munter, L., Multhaup, G., Weggen, S., Becker-Pauly, C., and Pietrzik, C.U. (2012). The metalloprotease meprin β generates amino terminal-truncated amyloid β peptide species. J. Biol. Chem. 287, 33304–33313.10.1074/jbc.M112.395608Search in Google Scholar PubMed PubMed Central

Broder, C. and Becker-Pauly, C. (2013). The metalloproteases meprin alpha and meprin beta: unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem. J. 450, 253–264.10.1042/BJ20121751Search in Google Scholar PubMed PubMed Central

Broder, C., Arnold, P., Vadon-Le Goff, S., Konerding, M.A., Bahr, K., Muller, S., Overall, C.M., Bond, J.S., Koudelka, T., Tholey, A., et al. (2013). Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc. Natl. Acad. Sci. USA. 110, 14219–14224.10.1073/pnas.1305464110Search in Google Scholar PubMed PubMed Central

Cassonnet, P., Rolloy, C., Neveu, G., Vidalain, P.O., Chantier, T., Pellet, J., Jones, L., Muller, M., Demeret, C., Gaud, G., et al. (2011). Benchmarking a luciferase complementation assay for detecting protein complexes. Nat. Methods 8, 990–992.10.1038/nmeth.1773Search in Google Scholar PubMed

Charrin, S., Jouannet, S., Boucheix, C., and Rubinstein, E. (2014). Tetraspanins at a glance. J. Cell Sci. 127, 3641–3648.10.1242/jcs.154906Search in Google Scholar PubMed

Charrin, S., le Naour, F., Silvie, O., Milhiet, P. E., Boucheix, C., and Rubinstein, E. (2009). Lateral organization of membrane proteins: tetraspanins spin their web. Biochem. J. 420, 133–154.10.1042/BJ20082422Search in Google Scholar PubMed

Chen, A.C., Kim, S., Shepardson, N., Patel, S., Hong, S., and Selkoe, D.J. (2015). Physical and functional interaction between the α- and γ-secretases: a new model of regulated intramembrane proteolysis. J. Cell Biol. 211, 1157–1176.10.1083/jcb.201502001Search in Google Scholar PubMed PubMed Central

Dietrich, J.M., Jiang, W., and Bond, J.S. (1996). A novel meprin β′ mRNA in mouse embryonal and human colon carcinoma cells. J. Biol. Chem. 271, 2271–2278.10.1074/jbc.271.4.2271Search in Google Scholar PubMed

Ebsen, H., Lettau, M., Kabelitz, D., and Janssen, O. (2015). Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol. Immunol. 65, 416–428.10.1016/j.molimm.2015.02.008Search in Google Scholar PubMed

Greco, C., Bralet, M.P., Ailane, N., Dubart-Kupperschmitt, A., Rubinstein, E., Le Naour, F., and Boucheix, C. (2010). E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res. 70, 7674–7683.10.1158/0008-5472.CAN-09-4482Search in Google Scholar PubMed

Gutierrez-Lopez, M.D., Gilsanz, A., Yanez-Mo, M., Ovalle, S., Lafuente, E.M., Dominguez, C., Monk, P.N., Gonzalez-Alvaro, I., Sanchez-Madrid, F., and Cabanas, C. (2011). The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol. Life Sci. 68, 3275–3292.10.1007/s00018-011-0639-0Search in Google Scholar PubMed

Hahn, D., Pischitzis, A., Roesmann, S., Hansen, M.K., Leuenberger, B., Luginbuehl, U., and Sterchi, E.E. (2003). Phorbol 12-myristate 13-acetate-induced ectodomain shedding and phosphorylation of the human meprinbeta metalloprotease. J. Biol. Chem. 278, 42829–42839.10.1074/jbc.M211169200Search in Google Scholar PubMed

Haining, E.J., Yang, J., Bailey, R.L., Khan, K., Collier, R., Tsai, S., Watson, S.P., Frampton, J., Garcia, P., and Tomlinson, M.G. (2012). The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 287, 39753–39765.10.1074/jbc.M112.416503Search in Google Scholar PubMed PubMed Central

Hemler, M.E. (2003). Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19, 397–422.10.1146/annurev.cellbio.19.111301.153609Search in Google Scholar PubMed

Hemler, M.E. (2005). Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811.10.1038/nrm1736Search in Google Scholar

Jäckle, F., Schmidt, F., Wichert, R., Arnold, P., Prox, J., Mangold, M., Ohler, A., Pietrzik, C.U., Koudelka, T., Tholey, A., et al. (2015). Metalloprotease meprin β is activated by transmembrane serine protease matriptase-2 at the cell surface thereby enhancing APP shedding. Biochem. J. 470, 91–103.10.1042/BJ20141417Search in Google Scholar

Jefferson, T., Auf dem Keller, U., Bellac, C., Metz, V.V., Broder, C., Hedrich, J., Ohler, A., Maier, W., Magdolen, V., Sterchi, E., et al. (2013). The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin beta and ADAM10. Cell Mol. Life Sci. 70, 309–333.10.1007/s00018-012-1106-2Search in Google Scholar

Jouannet, S., Saint-Pol, J., Fernandez, L., Nguyen, V., Charrin, S., Boucheix, C., Brou, C., Milhiet, P.E., and Rubinstein, E. (2015). TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol. Life Sci.10.1007/s00018-015-2111-zSearch in Google Scholar

Kovalenko, O.V., Yang, X., Kolesnikova, T.V., and Hemler, M.E. (2004). Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J. 377, 407–417.10.1042/bj20031037Search in Google Scholar

Kronenberg, D., Bruns, B.C., Moali, C., Vadon-Le Goff, S., Sterchi, E.E., Traupe, H., Bohm, M., Hulmes, D.J., Stocker, W., and Becker-Pauly, C. (2010). Processing of procollagen III by meprins: new players in extracellular matrix assembly? J. Invest. Dermatol. 130, 2727–2735.10.1038/jid.2010.202Search in Google Scholar

Matters, G.L. and Bond, J. S. (1999). Expression and regulation of the meprin β gene in human cancer cells. Mol. Carcinog. 25, 169–178.10.1002/(SICI)1098-2744(199907)25:3<169::AID-MC3>3.0.CO;2-YSearch in Google Scholar

Meerbrey, K.L., Hu, G., Kessler, J.D., Roarty, K., Li, M.Z., Fang, J.E., Herschkowitz, J.I., Burrows, A.E., Ciccia, A., Sun, T., et al. (2011). The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 108, 3665–3670.10.1073/pnas.1019736108Search in Google Scholar

Ohler, A., Debela, M., Wagner, S., Magdolen, V., and Becker-Pauly, C. (2010). Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol. Chem. 391, 455–460.10.1515/bc.2010.023Search in Google Scholar

Perneczky, R., Alexopoulos, P., and Kurz, A. (2014). Soluble amyloid precursor proteins and secretases as Alzheimer’s disease biomarkers. Trends Mol. Med. 20, 8–15.10.1016/j.molmed.2013.10.001Search in Google Scholar

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.10.1002/jcc.20084Search in Google Scholar PubMed

Prox, J., Willenbrock, M., Weber, S., Lehmann, T., Schmidt-Arras, D., Schwanbeck, R., Saftig, P., and Schwake, M. (2012). Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol. Life Sci. 69, 2919–2932.10.1007/s00018-012-0960-2Search in Google Scholar PubMed

Richardson, M.M., Jennings, L.K., and Zhang, X.A. (2011). Tetraspanins and tumor progression. Clin. Exp. Metastasis. 28, 261–270.10.1007/s10585-010-9365-5Search in Google Scholar PubMed

Schütte, A., Ermund, A., Becker-Pauly, C., Johansson, M.E., Rodriguez-Pineiro, A.M., Backhed, F., Muller, S., Lottaz, D., Bond, J.S., and Hansson, G.C. (2014). Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc. Natl. Acad. Sci. USA. 111, 12396–12401.10.1073/pnas.1407597111Search in Google Scholar PubMed PubMed Central

Sterchi, E.E., Stocker, W., and Bond, J.S. (2008). Meprins, membrane-bound and secreted astacin metalloproteinases. Mol. Aspects Med. 29, 309–328.10.1016/j.mam.2008.08.002Search in Google Scholar PubMed PubMed Central

Xu, D., Sharma, C., and Hemler, M.E. (2009). Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J. 23, 3674–3681.10.1096/fj.09-133462Search in Google Scholar PubMed PubMed Central

Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M., and Sanchez-Madrid, F. (2009). Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446.10.1016/j.tcb.2009.06.004Search in Google Scholar PubMed

Yanez-Mo, M., Gutierrez-Lopez, M.D., and Cabanas, C. (2011). Functional interplay between tetraspanins and proteases. Cell Mol. Life Sci. 68, 3323–3335.10.1007/s00018-011-0746-ySearch in Google Scholar PubMed

Yue, S., Mu, W., and Zoller, M. (2013). Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur. J. Cancer. 49, 2934–2948.10.1016/j.ejca.2013.03.032Search in Google Scholar PubMed

Zhou, Z., Ran, Y.L., Hu, H., Pan, J., Li, Z.F., Chen, L.Z., Sun, L.C., Peng, L., Zhao, X.L., Yu, L., et al. (2008). TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin. Exp. Metastasis. 25, 537–548.10.1007/s10585-008-9168-0Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2016-0126) offers supplementary material, available to authorized users.


Received: 2016-1-29
Accepted: 2016-5-4
Published Online: 2016-5-13
Published in Print: 2016-9-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0126/html
Scroll to top button