Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 1, 2017

Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2–FAM72-|

  • Nguyen Thi Thanh Ho , Arne Kutzner and Klaus Heese ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Due to an aging society with an increased dementia-induced threat to higher cognitive functions, it has become imperative to understand the molecular and cellular events controlling the memory and learning processes in the brain. Here, we suggest that the novel master gene pair |-SRGAP2–FAM72-| (SLIT-ROBO Rho GTPase activating the protein 2, family with sequence similarity to 72) reveals a new dogma for the regulation of neural stem cell (NSC) gene expression and is a distinctive player in the control of human brain plasticity. Insight into the specific regulation of the brain-specific neural master gene |-SRGAP2–FAM72-| may essentially contribute to novel therapeutic approaches to restore or improve higher cognitive functions.

Acknowledgments

This study was supported by Hanyang University, which provided a scholarship to Ms. Nguyen Thi Thanh Ho, and by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which was funded by the Ministry of Education (2015R1D1A1A01057243).

  1. Conflict of interest statement: The authors declare that they have no conflicts of interest.

References

Anand, S.K. and Mondal, A.C. (2017). Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev. Neurobiol. 77, 1188–1205.10.1002/dneu.22508Search in Google Scholar PubMed

Batista, P.J. and Chang, H.Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307.10.1016/j.cell.2013.02.012Search in Google Scholar PubMed PubMed Central

Beckervordersandforth, R., Zhang, C.L., and Lie, D.C. (2015). Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb. Perspect. Biol. 7, a018879.10.1101/cshperspect.a018879Search in Google Scholar PubMed PubMed Central

Benayoun, B.A., Pollina, E.A., Ucar, D., Mahmoudi, S., Karra, K., Wong, E.D., Devarajan, K., Daugherty, A.C., Kundaje, A.B., Mancini, E., et al. (2014). H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688.10.1016/j.cell.2014.06.027Search in Google Scholar PubMed PubMed Central

Bergmann, O., Spalding, K.L., and Frisen, J. (2015). Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 7, a018994.10.1101/cshperspect.a018994Search in Google Scholar PubMed PubMed Central

Bottai, D., Fiocco, R., Gelain, F., Defilippis, L., Galli, R., Gritti, A., and Vescovi, L.A. (2003). Neural stem cells in the adult nervous system. J. Hematother. Stem Cell Res. 12, 655–670.10.1089/15258160360732687Search in Google Scholar PubMed

Boulanger, J.J. and Messier, C. (2014). From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269, 343–366.10.1016/j.neuroscience.2014.03.063Search in Google Scholar PubMed

Brann, J.H. and Firestein, S.J. (2014). A lifetime of neurogenesis in the olfactory system. Front. Neurosci. 8, 182.10.3389/fnins.2014.00182Search in Google Scholar PubMed PubMed Central

Braun, S.M. and Jessberger, S. (2014a). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol. Appl. Neurobiol. 40, 3–12.10.1111/nan.12107Search in Google Scholar PubMed

Braun, S.M. and Jessberger, S. (2014b). Adult neurogenesis: mechanisms and functional significance. Development 141, 1983–1986.10.1242/dev.104596Search in Google Scholar PubMed

Bruel-Jungerman, E., Davis, S., and Laroche, S. (2007a). Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13, 492–505.10.1177/1073858407302725Search in Google Scholar PubMed

Bruel-Jungerman, E., Rampon, C., and Laroche, S. (2007b). Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci. 18, 93–114.10.1515/REVNEURO.2007.18.2.93Search in Google Scholar

Campos, L.S. (2004). Neurospheres: insights into neural stem cell biology. J. Neurosci. Res. 78, 761–769.10.1002/jnr.20333Search in Google Scholar PubMed

Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.E., Lambert, N., de Marchena, J., Jin, W.L., Vanderhaeghen, P., Ghosh, A., Sassa, T., et al. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149, 923–935.10.1016/j.cell.2012.03.034Search in Google Scholar PubMed PubMed Central

Cheetham, C.E., Park, U., and Belluscio, L. (2016). Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat. Commun. 7, 10729.10.1038/ncomms10729Search in Google Scholar PubMed PubMed Central

Colbran, R.J. (2015). Thematic minireview series: molecular mechanisms of synaptic plasticity. J. Biol. Chem. 290, 28594–28595.10.1074/jbc.R115.696468Search in Google Scholar PubMed PubMed Central

Conover, J.C. and Todd, K.L. (2017). Development and aging of a brain neural stem cell niche. Exp. Gerontol. 94, 9–13.10.1016/j.exger.2016.11.007Search in Google Scholar PubMed PubMed Central

Conti, L., Pollard, S.M., Gorba, T., Reitano, E., Toselli, M., Biella, G., Sun, Y., Sanzone, S., Ying, Q.L., Cattaneo, E., et al. (2005). Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283.10.1371/journal.pbio.0030283Search in Google Scholar PubMed PubMed Central

Costa, V., Lugert, S., and Jagasia, R. (2015). Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb. Exp. Pharmacol. 228, 99–155.10.1007/978-3-319-16522-6_4Search in Google Scholar PubMed

Delcuve, G.P., Rastegar, M., and Davie, J.R. (2009). Epigenetic control. J. Cell. Physiol. 219, 243–250.10.1002/jcp.21678Search in Google Scholar PubMed

Delgado-Morales, R., Agis-Balboa, R.C., Esteller, M., and Berdasco, M. (2017). Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin. Epigenet. 9, 67.10.1186/s13148-017-0365-zSearch in Google Scholar PubMed PubMed Central

Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al. (2012). Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922.10.1016/j.cell.2012.03.033Search in Google Scholar PubMed PubMed Central

Dery, N., Goldstein, A., and Becker, S. (2015). A role for adult hippocampal neurogenesis at multiple time scales: a study of recent and remote memory in humans. Behav. Neurosci. 129, 435–449.10.1037/bne0000073Search in Google Scholar PubMed

Dorszewska, J. (2013). Cell biology of normal brain aging: synaptic plasticity-cell death. Aging Clin. Exp. Res. 25, 25–34.10.1007/s40520-013-0004-2Search in Google Scholar PubMed

Ernst, A. and Frisen, J. (2015). Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 13, e1002045.10.1371/journal.pbio.1002045Search in Google Scholar PubMed PubMed Central

Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., and Frisen, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083.10.1016/j.cell.2014.01.044Search in Google Scholar PubMed

Faigle, R. and Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta 1830, 2435–2448.10.1016/j.bbagen.2012.09.002Search in Google Scholar PubMed PubMed Central

Filippenkov, I.B., Kalinichenko, E.O., Limborska, S.A., and Dergunova, L.V. (2017). Circular RNAs-one of the enigmas of the brain. Neurogenetics 18, 1–6.10.1007/s10048-016-0490-4Search in Google Scholar PubMed

Fossati, M., Pizzarelli, R., Schmidt, E.R., Kupferman, J.V., Stroebel, D., Polleux, F., and Charrier, C. (2016). SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356–369.10.1016/j.neuron.2016.06.013Search in Google Scholar PubMed PubMed Central

Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.10.1126/science.287.5457.1433Search in Google Scholar PubMed

Geschwind, D.H. and Konopka, G. (2012). Neuroscience: genes and human brain evolution. Nature 486, 481–482.10.1038/nature11380Search in Google Scholar

Geschwind, D.H. and Rakic, P. (2013). Cortical evolution: judge the brain by its cover. Neuron 80, 633–647.10.1016/j.neuron.2013.10.045Search in Google Scholar

Ghirardi, M., Montarolo, P.G., and Kandel, E.R. (1995). A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of aplysia. Neuron 14, 413–420.10.1016/0896-6273(95)90297-XSearch in Google Scholar

Grimes, M.T., Harley, C.W., Darby-King, A., and McLean, J.H. (2012). PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories. Learn. Mem. 19, 107–115.10.1101/lm.024489.111Search in Google Scholar PubMed

Guo, C., Zhang, X., Fink, S.P., Platzer, P., Wilson, K., Willson, J.K., Wang, Z., and Markowitz, S.D. (2008). Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 68, 6118–6126.10.1158/0008-5472.CAN-08-1259Search in Google Scholar PubMed PubMed Central

Hayashi, Y., Okamoto, K., Bosch, M., and Futai, K. (2012). Roles of neuronal activity-induced gene products in Hebbian and homeostatic synaptic plasticity, tagging, and capture. Adv. Exp. Med. Biol. 970, 335–354.10.1007/978-3-7091-0932-8_15Search in Google Scholar PubMed

Heese, K. (2013). The protein p17 signaling pathways in cancer. Tumour Biol. 34, 4081–4087.10.1007/s13277-013-0999-1Search in Google Scholar PubMed

Heese, K. (2015). Ageing, dementia and society – an epistemological perspective. Springerplus 4, 135.10.1186/s40064-015-0910-1Search in Google Scholar PubMed PubMed Central

Heese, K., Low, J.W., and Inoue, N. (2006). Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15, 1–12.10.1159/000094383Search in Google Scholar PubMed

Ho, V.M., Lee, J.A., and Martin, K.C. (2011). The cell biology of synaptic plasticity. Science 334, 623–628.10.1126/science.1209236Search in Google Scholar PubMed PubMed Central

Ho, T.T., Kim, P.S., Kutzner, A., and Heese, K. (2017). Cognitive functions: human vs. animal – 4:1 advantage |-FAM72–SRGAP2-|. J. Mol. Neurosci. 61, 603–606.10.1007/s12031-017-0901-5Search in Google Scholar PubMed

Horgusluoglu, E., Nudelman, K., Nho, K., and Saykin, A.J. (2017). Adult neurogenesis and neurodegenerative diseases: a systems biology perspective. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174, 93–112.10.1002/ajmg.b.32429Search in Google Scholar PubMed PubMed Central

Inta, D., Lang, U.E., Borgwardt, S., Meyer-Lindenberg, A., and Gass, P. (2016). Adult neurogenesis in the human striatum: possible implications for psychiatric disorders. Mol. Psychiatry 21, 446–447.10.1038/mp.2016.8Search in Google Scholar PubMed

Islam, M.M. and Zhang, C.L. (2015). TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210–216.10.1016/j.bbagrm.2014.06.001Search in Google Scholar PubMed PubMed Central

Jagasia, R., Song, H., Gage, F.H., and Lie, D.C. (2006). New regulators in adult neurogenesis and their potential role for repair. Trends Mol. Med. 12, 400–405.10.1016/j.molmed.2006.07.006Search in Google Scholar PubMed

Jessberger, S. and Gage, F.H. (2014). Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 24, 558–563.10.1016/j.tcb.2014.07.003Search in Google Scholar PubMed

Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.10.1126/science.1067020Search in Google Scholar PubMed

Kandel, E.R., Schwartz, J.H., Jessel, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2012). Learning and Memory: Principles of Neural Science (New York, NY: McGraw-Hill Education).Search in Google Scholar

Kang, J.M., Yeon, B.K., Cho, S.J., and Suh, Y.H. (2016). Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials. J. Alzheimers Dis. 54, 879–889.10.3233/JAD-160406Search in Google Scholar PubMed

Kelsch, W., Sim, S., and Lois, C. (2010). Watching synaptogenesis in the adult brain. Annu. Rev. Neurosci. 33, 131–149.10.1146/annurev-neuro-060909-153252Search in Google Scholar PubMed

Kempermann, G. (2014). Off the beaten track: new neurons in the adult human striatum. Cell 156, 870–871.10.1016/j.cell.2014.02.027Search in Google Scholar PubMed

Kim, S., Kim, M.K., Oh, D., Lee, S.H., and Kim, B. (2016). Induced pluripotent stem cells as a novel tool in psychiatric research. Psychiatry Investig. 13, 8–17.10.4306/pi.2016.13.1.8Search in Google Scholar PubMed PubMed Central

Klein, C. and Fishell, G. (2004). Neural stem cells: progenitors or panacea? Dev. Neurosci. 26, 82–92.10.1159/000082129Search in Google Scholar PubMed

Kumari, U. and Heese, K. (2010). Cardiovascular dementia – a different perspective. Open Biochem. J. 4, 29–52.10.2174/1874091X01004010029Search in Google Scholar PubMed PubMed Central

Kutzner, A., Pramanik, S., Kim, P.S., and Heese, K. (2015). All-or-(N)One – an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci. Genomics 106, 278–285.10.1016/j.ygeno.2015.07.003Search in Google Scholar PubMed

Lennington, J.B., Yang, Z., and Conover, J.C. (2003). Neural stem cells and the regulation of adult neurogenesis. Reprod. Biol. Endocrinol. 1, 99.10.1186/1477-7827-1-99Search in Google Scholar PubMed PubMed Central

Lieberwirth, C., Pan, Y., Liu, Y., Zhang, Z., and Wang, Z. (2016). Hippocampal adult neurogenesis: its regulation and potential role in spatial learning and memory. Brain Res. 1644, 127–140.10.1016/j.brainres.2016.05.015Search in Google Scholar PubMed PubMed Central

Llorens-Bobadilla, E. and Martin-Villalba, A. (2016). Adult NSC diversity and plasticity: the role of the niche. Curr. Opin. Neurobiol. 42, 68–74.10.1016/j.conb.2016.11.008Search in Google Scholar PubMed

Mattick, J.S. (2009). Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann. N.Y. Acad. Sci. 1178, 29–46.10.1111/j.1749-6632.2009.04991.xSearch in Google Scholar PubMed

Miller, C.A. and Sweatt, J.D. (2007). Covalent modification of DNA regulates memory formation. Neuron 53, 857–869.10.1016/j.neuron.2007.02.022Search in Google Scholar PubMed

Ming, G.L. and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250.10.1146/annurev.neuro.28.051804.101459Search in Google Scholar PubMed

Mongiat, L.A. and Schinder, A.F. (2011). Adult neurogenesis and the plasticity of the dentate gyrus network. Eur. J. Neurosci. 33, 1055–1061.10.1111/j.1460-9568.2011.07603.xSearch in Google Scholar

Muller, D. and Nikonenko, I. (2003). Dynamic presynaptic varicosities: a role in activity-dependent synaptogenesis. Trends Neurosci. 26, 573–575.10.1016/j.tins.2003.08.010Search in Google Scholar

Nagata, K., Yamazaki, T., Takano, D., Maeda, T., Fujimaki, Y., Nakase, T., and Sato, Y. (2016). Cerebral circulation in aging. Ageing Res. Rev. 30, 49–60.10.1016/j.arr.2016.06.001Search in Google Scholar

Nehar, S., Mishra, M., and Heese, K. (2009). Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett. 583, 3247–3253.10.1016/j.febslet.2009.09.018Search in Google Scholar

Neves, G., Cooke, S.F., and Bliss, T.V. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.10.1038/nrn2303Search in Google Scholar

Oomen, C.A., Bekinschtein, P., Kent, B.A., Saksida, L.M., and Bussey, T.J. (2014). Adult hippocampal neurogenesis and its role in cognition. Wiley Interdiscip. Rev. Cogn. Sci. 5, 573–587.10.1002/wcs.1304Search in Google Scholar

Pallas, S.L. (2001). Intrinsic and extrinsic factors that shape neocortical specification. Trends Neurosci. 24, 417–423.10.1016/S0166-2236(00)01853-1Search in Google Scholar

Papassotiropoulos, A., Wollmer, M.A., Aguzzi, A., Hock, C., Nitsch, R.M., and de Quervain, D.J. (2005). The prion gene is associated with human long-term memory. Hum. Mol. Genet. 14, 2241–2246.10.1093/hmg/ddi228Search in Google Scholar PubMed

Pardal, R. and Lopez Barneo, J. (2016). Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells. Dev. Growth Differ. 58, 456–462.10.1111/dgd.12283Search in Google Scholar PubMed

Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., and Frisoni, G.B. (2016). Brain atrophy in Alzheimer’s disease and aging. Ageing Res. Rev. 30, 25–48.10.1016/j.arr.2016.01.002Search in Google Scholar PubMed

Pramanik, S., Kutzner, A., and Heese, K. (2015). Lead discovery and in silico 3D structure modeling of tumorigenic FAM72A (p17). Tumour Biol. 36, 239–249.10.1007/s13277-014-2620-7Search in Google Scholar

Pramanik, S., Sulistio, Y.A., and Heese, K. (2017). Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy. Mol. Neurobiol. 44, 7401–7459.10.1007/s12035-016-0214-7Search in Google Scholar

Preza, E., Hardy, J., Warner, T., and Wray, S. (2016). Review: induced pluripotent stem cell models of frontotemporal dementia. Neuropathol. Appl. Neurobiol. 42, 497–520.10.1111/nan.12334Search in Google Scholar

Rayman, J.B. and Kandel, E.R. (2017). Functional prions in the brain. Cold Spring Harb. Perspect. Biol. 9. Article number: a023671. doi:10.1101/cshperspect.a023671.10.1101/cshperspect.a023671Search in Google Scholar

Rincic, M., Rados, M., Krsnik, Z., Gotovac, K., Borovecki, F., Liehr, T., and Brecevic, L. (2016). Complex intrachromosomal rearrangement in 1q leading to 1q32.2 microdeletion: a potential role of SRGAP2 in the gyrification of cerebral cortex. Mol. Cytogenet. 9, 19.10.1186/s13039-016-0221-4Search in Google Scholar

Rinn, J.L. and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166.10.1146/annurev-biochem-051410-092902Search in Google Scholar

Sabin, L.R., Delas, M.J., and Hannon, G.J. (2013). Dogma derailed: the many influences of RNA on the genome. Mol. Cell 49, 783–794.10.1016/j.molcel.2013.02.010Search in Google Scholar

Sailor, K.A., Schinder, A.F., and Lledo, P.M. (2016). Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr. Opin. Neurobiol. 42, 111–117.10.1016/j.conb.2016.12.001Search in Google Scholar

Saitoh, Y. and Inokuchi, K. (2000). A triphasic curve characterizes the retention of lever-pressing behavior rewarded by lateral hypothalamic stimulation during the immediate-post-trial period in rats: implications for a transient-intermediate stage between short- and long-term memory. Neurosci. Res. 37, 211–219.10.1016/S0168-0102(00)00119-XSearch in Google Scholar

Seri, B. and Alvarez-Buylla, A. (2002). Neural stem cells and the regulation of neurogenesis in the adult hippocampus. Clin. Neurosci. Res. 2, 11–16.10.1016/S1566-2772(02)00004-XSearch in Google Scholar

Shah, H., Albanese, E., Duggan, C., Rudan, I., Langa, K.M., Carrillo, M.C., Chan, K.Y., Joanette, Y., Prince, M., Rossor, M., et al. (2016). Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 15, 1285–1294.10.1016/S1474-4422(16)30235-6Search in Google Scholar

Shapiro, J.A. (2009). Revisiting the central dogma in the 21st century. Ann. N. Y. Acad. Sci. 1178, 6–28.10.1111/j.1749-6632.2009.04990.xSearch in Google Scholar PubMed

Sobhan, P.K. and Funa, K. (2017). TLX – its emerging role for neurogenesis in health and disease. Mol. Neurobiol. 54, 272–280.10.1007/s12035-015-9608-1Search in Google Scholar PubMed PubMed Central

Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227.10.1016/j.cell.2013.05.002Search in Google Scholar PubMed PubMed Central

Squire, L.R. (2009). Memory and brain systems: 1969–2009. J. Neurosci. 29, 12711–12716.10.1523/JNEUROSCI.3575-09.2009Search in Google Scholar PubMed PubMed Central

Squire, L.R., Knowlton, B., and Musen, G. (1993). The structure and organization of memory. Annu. Rev. Psychol. 44, 453–495.10.1146/annurev.ps.44.020193.002321Search in Google Scholar PubMed

Squire, L.R., Berg, D., Bloom, F.E., du Lac, S., Ghosh, A., and Spitzer, N. (2012). Learning and Memory: Fundamental Neuroscience (Cambridge, MA: Elsevier Academic Press).Search in Google Scholar

Subramanian, J. and Nedivi, E. (2016). Filling the (SR)GAP in excitatory/inhibitory balance. Neuron 91, 205–207.10.1016/j.neuron.2016.07.008Search in Google Scholar PubMed

Tarantini, S., Tran, C.H., Gordon, G.R., Ungvari, Z., and Csiszar, A. (2017). Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94, 52–58.10.1016/j.exger.2016.11.004Search in Google Scholar PubMed PubMed Central

Taupin, P. (2006). Neurogenesis in the adult central nervous system. C. R. Biol. 329, 465–475.10.1016/j.crvi.2006.04.001Search in Google Scholar PubMed

Tong, L.M., Fong, H., and Huang, Y. (2015). Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Exp. Mol. Med. 47, e151.10.1038/emm.2014.124Search in Google Scholar PubMed PubMed Central

Vijayan, M. and Reddy, P.H. (2016). Stroke, vascular dementia, and Alzheimer’s disease: molecular links. J. Alzheimers Dis. 54, 427–443.10.3233/JAD-160527Search in Google Scholar

Vitureira, N. and Goda, Y. (2013). Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. J. Cell Biol. 203, 175–186.10.1083/jcb.201306030Search in Google Scholar

Wolfe, K. (2000). Robustness — it’s not where you think it is. Nat. Genet. 25, 3–4.10.1038/75560Search in Google Scholar

Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186.10.1038/nature20411Search in Google Scholar

Yamaguchi, M., Seki, T., Imayoshi, I., Tamamaki, N., Hayashi, Y., Tatebayashi, Y., and Hitoshi, S. (2016). Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J. Physiol. Sci. 66, 197–206.10.1007/s12576-015-0421-4Search in Google Scholar

Yang, T., Sun, Y., Lu, Z., Leak, R.K., and Zhang, F. (2017). The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res. Rev. 34, 15–29.10.1016/j.arr.2016.09.007Search in Google Scholar

Yu, D.X., Marchetto, M.C., and Gage, F.H. (2014). How to make a hippocampal dentate gyrus granule neuron. Development 141, 2366–2375.10.1242/dev.096776Search in Google Scholar

Zito, K. and Svoboda, K. (2002). Activity-dependent synaptogenesis in the adult mammalian cortex. Neuron 35, 1015–1017.10.1016/S0896-6273(02)00903-0Search in Google Scholar

Received: 2017-7-7
Accepted: 2017-8-11
Published Online: 2017-12-1
Published in Print: 2017-12-20

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0190/html
Scroll to top button