Skip to main content
Log in

Phagocytosis-Coupled Activation of the Superoxide-Producing Phagocyte Oxidase, a Member of the NADPH Oxidase (Nox) Family

  • Progress in hematology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays a crucial role in host defense by neutrophils and macrophages. When cells ingest invading microbes, this enzyme becomes activated to reduce molecular oxygen to superoxide, a precursor of microbicidal oxidants, in the phagosome. The catalytic core of the oxidase is membrane-bound cytochrome b558, which comprises gp91phox and p22phox. gp91phox belongs to the NADPH oxidase (Nox) family, which contains the entire electron-transporting apparatus from NADPH to molecular oxygen. In resting neutrophils, cytochrome b558 is mainly present in the membrane of the specific granule, an intracellular component, and is targeted to the phagosomal membrane during phagocytosis. Activation of gp91phox involves the integrated function of cytoplasmic proteins such as p47phox, p67phox, p40phox, and the small guanosine triphosphatase Rac; these proteins translocate to the phagosomal membrane to interact with cytochrome b558, leading to superoxide production. Here we describe a current molecular model for phagocytosis-coupled activation of the NADPH oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004;122:277–291.

    Article  CAS  PubMed  Google Scholar 

  2. Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004;76:760–781.

    Article  CAS  PubMed  Google Scholar 

  3. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–686.

    Article  CAS  PubMed  Google Scholar 

  5. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–189.

    Article  CAS  PubMed  Google Scholar 

  6. Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem. 2004;279:51715–51718.

    Article  CAS  PubMed  Google Scholar 

  7. Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A. 2000;97:4654–4659.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Nimmerjahn F, Ravetch JV. Fcγ receptors: old friends and new family members. Immunity. 2006;24:19–28.

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Garcia E, Rosales C. Signal transduction during Fc receptor-mediated phagocytosis. J Leukoc Biol. 2002;72:1092–1108.

    CAS  PubMed  Google Scholar 

  10. Warren LL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect. 2003;5:1299–1306.

    Article  CAS  Google Scholar 

  11. Vieira OV, Botelho RJ, Rameh L, et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001;155:19–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 2005;15:163–171.

    Article  CAS  PubMed  Google Scholar 

  13. Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol. 2004;5:658–666.

    Article  CAS  PubMed  Google Scholar 

  14. Castellano F, Montcourrier P, Guillemot JC, et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr Biol. 1999;9:351–360.

    Article  CAS  PubMed  Google Scholar 

  15. Castellano F, Montcourrier P, Chavrier P. Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci. 2000;113:2955–2961.

    CAS  PubMed  Google Scholar 

  16. Hoppe AD, Swanson JA. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell. 2004;15: 3509–3519.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Brumell JH, Grinstein S. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol. 2003;5:287–297.

    Article  PubMed  CAS  Google Scholar 

  18. Coppolino MG, Dierckman R, Loijens J, et al. Inhibition of phos-phatidy linositol-4-phosphate 5-kinase Ia impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem. 2002;277: 43849–43857.

    Article  PubMed  CAS  Google Scholar 

  19. Ueyama T, Lennartz MR, Noda Y, et al. Superoxide production at phagosomal cup/phagosome through βI protein kinase C during FcγR-mediated phagocytosis in microglia. J Immunol. 2004;173: 4582–4589.

    Article  PubMed  CAS  Google Scholar 

  20. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173–182.

    Article  CAS  PubMed  Google Scholar 

  21. Sumimoto H, Kage Y, Nunoi H, et al. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994;91:5345–5349.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to prolinerich targets. Proc Natl Acad Sci U S A. 1994;91:10650–10654.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ago T, Nunoi H, Ito T, Sumimoto H. Mechanism for phosphorylationinduced activation of the phagocyte NADPH oxidase protein p47phox: triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J Biol Chem. 1999;274:33644–33653.

    Article  CAS  PubMed  Google Scholar 

  24. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113:343–355.

    Article  CAS  PubMed  Google Scholar 

  25. Yuzawa S, Ogura K, Horiuchi M, et al. Solution structure of the tandem SH3 domains of p47phox in an autoinhibited form. J Biol Chem. 2004;279:29752–29760.

    Article  CAS  PubMed  Google Scholar 

  26. Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D. Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol. 2001;8:526–530.

    Article  CAS  PubMed  Google Scholar 

  27. Ago T, Kuribayashi F, Hiroaki H, et al. Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phos-phoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A. 2003;100:4474–4479.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Karathanassis D, Stahelin RV, Bravo J, et al. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002;21:5057–5068.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. El Benna J, Faust LP, Babior BM. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation: phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem. 1994;269:23431–23436.

    Google Scholar 

  30. Nobuhisa I,Takeya R, Ogura K, et al. Activation of the superoxide- producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent α-helix of p22phox. Biochem J. 2006;396:183–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogura K, Nobuhisa I, Yuzawa S, et al. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox- derived proline-rich peptide. J Biol Chem. 2006;281:3660–3668.

    Article  CAS  PubMed  Google Scholar 

  32. Shiose A, Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem. 2000;275:13793–13801.

    Article  CAS  PubMed  Google Scholar 

  33. Kami K, Takeya R, Sumimoto H, Kohda D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J. 2002;21:4268–4276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Massenet C, Chenavas S, Cohen-Addad C, et al. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox: structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem. 2005;280:13752–13761.

    Article  CAS  PubMed  Google Scholar 

  35. Mizuki K, Takeya R, Kuribayashi F, et al. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys. 2005;444:185–194.

    Article  CAS  PubMed  Google Scholar 

  36. Ito T, Matsui Y, Ago T, Ota K, Sumimoto H. Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J. 2001;20:3938–3946.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kuribayashi F, Nunoi H, Wakamatsu K et al. The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J. 2002;21:6312–6320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bravo J, Karathanassis D, Pacold CM, et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol Cell. 2001;8:829–839.

    Article  CAS  PubMed  Google Scholar 

  39. Ueyama T, Eto M, Kami K, et al. Isoform-specific membrane targeting mechanism of Rac during FcγR-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol. 2005;175:2381–2390.

    Article  PubMed  CAS  Google Scholar 

  40. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H. Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem. 1999;274:25051–25060.

    Article  CAS  PubMed  Google Scholar 

  41. Miyano K, Ueno N, Takeya R, Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem. 2006;281:21857–21868.

    Article  CAS  PubMed  Google Scholar 

  42. Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem. 2002;277:18605–18610.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sumimoto.

About this article

Cite this article

Minakami, R., Sumimoto, H. Phagocytosis-Coupled Activation of the Superoxide-Producing Phagocyte Oxidase, a Member of the NADPH Oxidase (Nox) Family. Int J Hematol 84, 193–198 (2006). https://doi.org/10.1532/IJH97.06133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06133

Key words

Navigation