Skip to main content
Log in

DNA methylation in the tumor microenvironment

肿瘤微环境中的甲基化调节机制

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumorassociated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.

摘 要

肿瘤微环境主要由肿瘤细胞、肿瘤相关间质细胞 及细胞外基质组成。肿瘤细胞通过多种方式调控 肿瘤微环境中的间质细胞, 诱导间质细胞分化并 发挥促肿瘤的作用, 从而为肿瘤的生长及转移创 造一个适宜的环境。DNA 甲基化异常是肿瘤的特 点。目前关于肿瘤的甲基化调控机制已有大量报 道, 对于肿瘤细胞与微环境中间质细胞的相互作 用机制也有了一些报道。然而, 关于肿瘤细胞对 微环境间质细胞的甲基化调控机制以及这种调 控对肿瘤发生发展的影响并没有系统的论述。本 综述总结了肿瘤细胞对微环境中间质细胞甲基 化调控机制的最新研究进展, 以及间质细胞发生 的一些促肿瘤改变, 从而全面阐释了肿瘤细胞和 间质细胞间的相互作用, 同时总结了肿瘤细胞对 肿瘤微环境的表观遗传学调控, 尤其是甲基化调 控在肿瘤进展中发挥了重要的作用。干预肿瘤细 胞对微环境中间质细胞的甲基化调节过程, 可以 发挥抗肿瘤的作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S.F., Farquharson, C., 2010. The effect of GHand IGF1 on linear growth and skeletal development and their modulation by SOCS proteins. J. Endocrinol., 206(3): 249–259. http://dx.doi.org/10.1677/JOE-10-0045

    Article  CAS  PubMed  Google Scholar 

  • Albrengues, J., Bertero, T., Grasset, E., et al., 2015. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 6:10204. http://dx.doi.org/10.1038/ncomms10204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amodio, N., Bellizzi, D., Leotta, M., et al., 2013. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 12(23):3650–3662. http://dx.doi.org/10.4161/cc.26585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batarseh, K.I., 2013. Antineoplastic activities, apoptotic mechanism of action and structural properties of a novel silver(I) chelate. Curr. Med. Chem., 20(18):2363–2373. http://dx.doi.org/10.2174/0929867311320180007

    Article  CAS  PubMed  Google Scholar 

  • Berraondo, P., Minute, L., Ajona, D., et al., 2016. Innate immune mediators in cancer: between defense and resistance. Immunol. Rev., 274(1):290–306. http://dx.doi.org/10.1111/imr.12464

    Article  CAS  PubMed  Google Scholar 

  • Bian, E.B., Huang, C., Ma, T.T., et al., 2012. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol. Appl. Pharmacol., 264(1):13–22. http://dx.doi.org/10.1016/j.taap.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  • Bird, A., 2007. Perceptions of epigenetics. Nature, 447(7143): 396–398. http://dx.doi.org/10.1038/nature05913

    Article  CAS  PubMed  Google Scholar 

  • Bock, C., Beerman, I., Lien, W.H., et al., 2012. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol. Cell, 47(4):633–647. http://dx.doi.org/10.1016/j.molcel.2012.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broske, A.M., Vockentanz, L., Kharazi, S., et al., 2009. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet., 41(11): 1207–1215. http://dx.doi.org/10.1038/ng.463

    Article  PubMed  Google Scholar 

  • Cheung, P., Allis, C.D., Sassone-Corsi, P., 2000. Signaling to chromatin through histone modifications. Cell, 103(2): 263–271. http://dx.doi.org/10.1016/S0092-8674(00)00118-5

    Article  CAS  PubMed  Google Scholar 

  • Chiappinelli, K.B., Zahnow, C.A., Ahuja, N., et al., 2016. Combining epigenetic and immunotherapy to combat cancer. Cancer Res., 76(7):1683–1689. http://dx.doi.org/10.1158/0008-5472.CAN-15-2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Onyango, P., Brandenburg, S., et al., 2002. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res., 62(22):6442–6446.

    CAS  PubMed  Google Scholar 

  • Dedeurwaerder, S., Desmedt, C., Calonne, E., et al., 2011. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol. Med., 3(12):726–741. http://dx.doi.org/10.1002/emmm.201100801 de

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wever, O., Demetter, P., Mareel, M., et al., 2008. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer, 123(10):2229–2238. http://dx.doi.org/10.1002/ijc.23925

    Article  PubMed  Google Scholar 

  • Easwaran, H., Tsai, H.C., Baylin, S.B., 2014. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell, 54(5):716–727. http://dx.doi.org/10.1016/j.molcel.2014.05.015 El

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghdouini, A., Sorensen, A.L., Reiner, A.H., et al., 2015. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 6(29):26729–26745. http://dx.doi.org/10.18632/oncotarget.4925

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteller, M., 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 8(4): 286–298. http://dx.doi.org/10.1038/nrg2005

    Article  CAS  PubMed  Google Scholar 

  • Feig, C., Gopinathan, A., Neesse, A., et al., 2012. The pancreas cancer microenvironment. Clin. Cancer Res., 18(16): 4266–4276. http://dx.doi.org/10.1158/1078-0432.CCR-11-3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon, R., Calin, G.A., Croce, C.M., 2009. MicroRNAs in Cancer. Annu. Rev. Med., 60(1):167–179. http://dx.doi.org/10.1146/annurev.med.59.053006.104707

    Article  CAS  PubMed  Google Scholar 

  • Gascard, P., Tlsty, T.D., 2016. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev., 30(9):1002–1019. http://dx.doi.org/10.1101/gad.279737.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibb, E.A., Brown, C.J., Lam, W.L., 2011. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 10(1):38. http://dx.doi.org/10.1186/1476-4598-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotze, S., Schumacher, E.C., Kordes, C., et al., 2015. Epigenetic changes during hepatic stellate cell activation. PLoS ONE, 10(6):e0128745. http://dx.doi.org/10.1371/journal.pone.0128745

    Article  PubMed  PubMed Central  Google Scholar 

  • Gronbaek, K., Hother, C., Jones, P.A., 2007. Epigenetic changes in cancer. APMIS, 115(10):1039–1059. http://dx.doi.org/10.1111/j.1600-0463.2007.apm_636.xml.x

    Article  PubMed  Google Scholar 

  • Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell, 144(5):646–674. http://dx.doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Hinz, B., Phan, S.H., Thannickal, V.J., et al., 2007. The myofibroblast: one function, multiple origins. Am. J. Pathol., 170(6):1807–1816. http://dx.doi.org/10.2353/ajpath.2007.070112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iba, K., Albrechtsen, R., Gilpin, B.J., et al., 1999. Cysteinerich domain of human ADAM 12 (meltrin a) supports tumor cell adhesion. Am. J. Pathol., 154(5):1489–1501. http://dx.doi.org/10.1016/S0002-9440(10)65403-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorio, M.V., Piovan, C., Croce, C.M., 2010. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta, 1799(10–12):694–701. http://dx.doi.org/10.1016/j.bbagrm.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  • Ishii, G., Ochiai, A., Neri, S., 2016. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev., 99(Pt B): 186–196. http://dx.doi.org/10.1016/j.addr.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Janson, P.C., Marits, P., Thorn, M., et al., 2008. CpG methylation of the IFNG gene as a mechanism to induce immunosuppression in tumor-infiltrating lymphocytes. J. Immunol., 181(4):2878–2886. http://dx.doi.org/10.4049/jimmunol.181.4.2878

    Article  CAS  PubMed  Google Scholar 

  • Jiang, L., Gonda, T.A., Gamble, M.V., et al., 2008. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res., 68(23):9900–9908. http://dx.doi.org/10.1158/0008-5472.CAN-08-1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannis, G.S., Poutahidis, T., Erdman, S.E., et al., 2012. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 10(11):1403–1418. http://dx.doi.org/10.1158/1541-7786.MCR-12-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, X., Zhang, S., Xu, J., et al., 2016. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol. Immunother., 65(5):587–599. http://dx.doi.org/10.1007/s00262-016-1825-6

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides, T., 2007. Chromatin modifications and their function. Cell, 128(4):693–705. http://dx.doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  • Ling, H., Spizzo, R., Atlasi, Y., et al., 2013. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res., 23(9):1446–1461. http://dx.doi.org/10.1101/gr.152942.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H.X., Li, X.L., Dong, C.F., 2015. Epigenetic and metabolic regulation of breast cancer stem cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):10–17. http://dx.doi.org/10.1631/jzus.B1400172

    Article  CAS  Google Scholar 

  • Luperchio, T.R., Wong, X., Reddy, K.L., 2014. Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev., 25: 50–61. http://dx.doi.org/10.1016/j.gde.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  • Mann, J., Chu, D.C., Maxwell, A., et al., 2010. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology, 138(2): 705–714. http://dx.doi.org/10.1053/j.gastro.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  • Mueller, M.M., Fusenig, N.E., 2004. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer, 4(11):839–849. http://dx.doi.org/10.1038/nrc1477

    Article  CAS  PubMed  Google Scholar 

  • Neesse, A., Algul, H., Tuveson, D.A., et al., 2015. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut, 64(9):1476–1484. http://dx.doi.org/10.1136/gutjnl-2015-309304

    Article  CAS  PubMed  Google Scholar 

  • Page, A., Paoli, P., Moran, S.E., et al., 2016. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J. Hepatol., 64(3): 661–673. http://dx.doi.org/10.1016/j.jhep.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  • Peric-Hupkes, D., Meuleman, W., Pagie, L., et al., 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell, 38(4):603–613. http://dx.doi.org/10.1016/j.molcel.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  • Pinzani, M., Rombouts, K., Colagrande, S., 2005. Fibrosis in chronic liver diseases: diagnosis and management. J. Hepatol., 42(Suppl. 1):S22–S36. http://dx.doi.org/10.1016/j.jhep.2004.12.008

    Article  PubMed  Google Scholar 

  • Pleyer, L., Greil, R., 2015. Digging deep into “dirty” drugs— modulation of the methylation machinery. Drug Metab. Rev., 47(2):252–279. http://dx.doi.org/10.3109/03602532.2014.995379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich, E.I., Kapetanaki, M.G., Steinfeld, I., et al., 2012. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS ONE, 7(4):e33770. http://dx.doi.org/10.1371/journal.pone.0033770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucki, A.A., Zheng, L., 2014. Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies. World J. Gastroenterol., 20(9):2237–2246. http://dx.doi.org/10.3748/wjg.v20.i9.2237

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuyler, R.P., Merkel, A., Raineri, E., et al., 2016. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep., 17(8):2101–2111. http://dx.doi.org/10.1016/j.celrep.2016.10.054

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Kelly, T.K., Jones, P.A., 2010. Epigenetics in cancer. Carcinogenesis, 31(1):27–36. http://dx.doi.org/10.1093/carcin/bgp220

    Article  CAS  PubMed  Google Scholar 

  • Sido, J.M., Yang, X., Nagarkatti, P.S., et al., 2015. ?9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J. Leukoc. Biol., 97(4):677–688. http://dx.doi.org/10.1189/jlb.1A1014-479R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, Z.D., Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet., 14:204–220. http://dx.doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, A.L., Timoskainen, S., West, F.D., et al., 2010. Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells Dev., 19(8):1257–1266. http://dx.doi.org/10.1089/scd.2009.0309

    Article  PubMed  Google Scholar 

  • Sukari, A., Nagasaka, M., Al-Hadidi, A., et al., 2016. Cancer immunology and immunotherapy. Anticancer Res., 36(11): 5593–5606. http://dx.doi.org/10.21873/anticanres.11144

    Article  PubMed  Google Scholar 

  • Tampe, B., Tampe, D., Muller, C.A., et al., 2014. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol., 25(5): 905–912. http://dx.doi.org/10.1681/ASN.2013070723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trikha, P., Carson, W.R., 2014. Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta, 1846(1): 55–65. http://dx.doi.org/10.1016/j.bbcan.2014.04.003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trimboli, A.J., Cantemir-Stone, C.Z., Li, F., et al., 2009. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267):1084–1091. http://dx.doi.org/10.1038/nature08486 van

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampen, J.G.M., Marijnissen-van Zanten, M.A.J., Simmer, F., et al., 2014. Epigenetic targeting in pancreatic cancer. Cancer Treat. Rev., 40(5):656–664. http://dx.doi.org/10.1016/j.ctrv.2013.12.002

    Article  PubMed  Google Scholar 

  • Vincent, A., Omura, N., Hong, S.M., et al., 2011. Genomewide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin. Cancer Res., 17(13):4341–4354. http://dx.doi.org/10.1158/1078-0432.CCR-10-3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizoso, M., Puig, M., Carmona, F.J., et al., 2015. Aberrant DNA methylation in non-small cell lung cancerassociated fibroblasts. Carcinogenesis, 36(12):1453–1463. http://dx.doi.org/10.1093/carcin/bgv146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Gao, Z., Shi, Y., et al., 2007. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J. Plast. Reconstr. Aesthet. Surg., 60(11): 1193–1199. http://dx.doi.org/10.1016/j.bjps.2006.05.007

    Article  PubMed  Google Scholar 

  • Wieczorek, G., Asemissen, A., Model, F., et al., 2009. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res., 69(2):599–608. http://dx.doi.org/10.1158/0008-5472.CAN-08-2361

    Article  CAS  PubMed  Google Scholar 

  • Xiang, J.F., Yin, Q.F., Chen, T., et al., 2014. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res., 24(5): 513–531. http://dx.doi.org/10.1038/cr.2014.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Q., Zhou, D., Rucki, A.A., et al., 2016. Cancerassociated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res., 76(18):5395–5404. http://dx.doi.org/10.1158/0008-5472.CAN-15-3264

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y., Zhao, S., Zhou, B.P., et al., 2015. Metabolic reprogramming of the tumour microenvironment. Febs. J., 282(20):3892–3898. http://dx.doi.org/10.1111/febs.13402

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Walter, K., Omura, N., et al., 2012. Unlike pancreatic cancer cells pancreatic cancer associated fibroblasts display minimal gene induction after 5-Aza-2'-deoxycytidine. PLoS ONE, 7(9):e43456. http://dx.doi.org/10.1371/journal.pone.0043456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi, K., Shen, X., Zhang, H., et al., 2010. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J. Exp. Clin. Cancer Res., 29(1):66. http://dx.doi.org/10.1186/1756-9966-29-66

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zheng or Lei Zheng.

Additional information

Project supported by the National Cancer Institute (Nos. R01CA169702, P50CA062924, and R01CA197296), the United States

ORCID: Meng-wen ZHANG, http://orcid.org/0000-0003-1589-9314

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Mw., Fujiwara, K., Che, X. et al. DNA methylation in the tumor microenvironment. J. Zhejiang Univ. Sci. B 18, 365–372 (2017). https://doi.org/10.1631/jzus.B1600579

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600579

Key words

关键词

CLC number

Navigation