Skip to main content
Log in

Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow

小鼠脾脏、腹腔和骨髓源性巨噬细胞特征比较

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Macrophages have a diverse set of functions based upon their activation states. The activation states, including resting (M0) and polarizing (M1 and M2) states, of macrophages derived from the mouse bone marrow, spleen, and peritoneal cavity (BMs, SPMs, and PCMs, respectively) were compared. We evaluated the macrophage yield per mouse and compared the surface markers major histocompatibility complex (MHC) II and CD86 by flow cytometry. The relative mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, mannose receptor (MR), and Ym1 in the M0, M1, and M2 states were also compared using real-time polymerase chain reaction (PCR) analysis. Bone marrow yielded the most macrophages with the best homogeneity, but they were polarized toward the M2 phenotype. All three types of macrophages had the capacity to polarize into the M1 and M2 states, but SPMs had a stronger capacity to polarize into M1. The three types of macrophages showed no differences in their capacity to polarize into the M2 state. Therefore, the three types of macrophages have distinct characteristics regardless of their resting or polarizing states. Although bone marrow can get large amounts of homogeneous macrophages, the macrophages cannot replace tissue-derived macrophages.

中文概要

目的

对比分析脾脏、腹腔和骨髓源性巨噬细胞(SPMs、PCMs 和BMs)在安静及极化状态下的差异。

创新点

首次对比分析脾脏、腹腔和骨髓源性巨噬细胞在安静(M0)及极化状态(M1 和M2)下的特征。

方法

通过小鼠脾脏研磨及单细胞贴壁获得脾源性巨噬细胞;腹腔灌洗及细胞贴壁获得腹腔源性巨噬细胞;骨髓贴壁细胞在巨噬细胞集落刺激因子体外刺激下培养7 天获得骨髓源性巨噬细胞。三种细胞即为M0 型巨噬细胞,M0 在干扰素及脂多糖刺激下获得M1 型巨噬细胞,M0 在白介素4(IL-4)刺激下获得M2 型巨噬细胞。通过流式细胞仪分析三种类型巨噬细胞在三种状态下的II 类主要组织相容性复合体(MHC II)和CD86 表达差异。通过实时荧光定量聚合酶链式反应(qPCR)检测肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)、甘露糖受体(MR)和类几丁质酶3 样分子(Ym1)的表达变化。

结论

骨髓贴壁细胞培养能获得最大量的同源巨噬细胞(图1 和2),但表型偏向于M2 型巨噬细胞(图3 和4)。三种巨噬细胞均能极化为M1 和M2 型巨噬细胞(图5),其中SPMs 具有更强的M1 型极化能力,而M2 型极化能力之间未见明显差异(图6)。综上所述,三种细胞无论在安静及极化状态下均具有不同的特征,骨髓可以获得大量同源性巨噬细胞,但性质不同于组织源性的脾脏和腹腔巨噬细胞。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alagesan, S., Griffin, M.D., 2014. Alternatively activated macrophages as therapeutic agents for kidney disease: in vivo stability is a key factor. Kidney Int., 85(4): 730–733. http://dx.doi.org/10.1038/ki.2013.405

    Article  CAS  PubMed  Google Scholar 

  • Biswas, S.K., Mantovani, A., 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 11(10):889–896. http://dx.doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  • Cao, H., Wolff, R.G., Meltzer, M.S., et al., 1989. Differential regulation of class II MHC determinants on macrophages by IFN-γ and IL-4. J. Immunol., 143(11):3524–3531.

    CAS  PubMed  Google Scholar 

  • Cao, Q., Wang, Y., Zheng, D., et al., 2014. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int., 85(4):794–806. http://dx.doi.org/10.1038/ki.2013.341

    Article  CAS  PubMed  Google Scholar 

  • Chung, S., Ranjan, R., Lee, Y.G., et al., 2015. Distinct role of foxo1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. J. Leukoc. Biol., 97(2):327–339. http://dx.doi.org/10.1189/jlb.3A0514-251R

    Article  PubMed  Google Scholar 

  • Das, A., Sinha, M., Datta, S., et al., 2015. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol., 185(10):2596–2606. http://dx.doi.org/10.1016/j.ajpath.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, L.C., Taylor, P.R., 2015. Tissue-resident macrophages: then and now. Immunology, 144(4):541–548. http://dx.doi.org/10.1111/imm.12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield, J.S., 2010. Macrophages and immunologic inflammation of the kidney. Semin. Nephrol., 30(3):234–254. http://dx.doi.org/10.1016/j.semnephrol.2010.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Y.H., Mao, H., 2012. Expression and preliminary functional analysis of Siglec-F on mouse macrophages. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(5): 386–394. http://dx.doi.org/10.1631/jzus.B1100218

    Article  CAS  Google Scholar 

  • Gerrard, T.L., Dyer, D.R., Mostowski, H.S., 1990. IL-4 and granulocyte-macrophage colony-stimulating factor selectively increase HLA-DR and HLA-DP antigens but not HLA-DQ antigens on human monocytes. J. Immunol., 144(12):4670–4674.

    CAS  PubMed  Google Scholar 

  • Gordon, S., Taylor, P.R., 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 5(12):953–964. http://dx.doi.org/10.1038/nri1733

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S., Martinez, F.O., 2010. Alternative activation of macrophages: mechanism and functions. Immunity, 32(5): 593–604. http://dx.doi.org/10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S., Pluddemann, A., Martinez Estrada, F., 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev., 262(1):36–55. http://dx.doi.org/10.1111/imr.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover, D.L., Nacy, C.A., 1984. Macrophage activation to kill leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J. Immunol., 132(3):1487–1493.

    CAS  PubMed  Google Scholar 

  • Jiang, X., 2015. Macrophage-produced IL-10 limits the chemotherapy efficacy in breast cancer. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):44–45. http://dx.doi.org/10.1631/jzus.B1400352

    Article  Google Scholar 

  • Komohara, Y., Jinushi, M., Takeya, M., 2014. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci., 105(1):1–8. http://dx.doi.org/10.1111/cas.12314

    Article  CAS  PubMed  Google Scholar 

  • Lameijer, M.A., Tang, J., Nahrendorf, M., et al., 2013. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev. Mol. Diagn., 13(6):567–580. http://dx.doi.org/10.1586/14737159.2013.819216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavin, Y., Mortha, A., Rahman, A., et al., 2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol., 15(12):731–744. http://dx.doi.org/10.1038/nri3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, T., Natoli, G., 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol., 11(11):750–761. http://dx.doi.org/10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Huen, S., Nishio, H., et al., 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol., 22(2):317–326. http://dx.doi.org/10.1681/ASN.2009060615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Cao, Q., Zheng, D., et al., 2013. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int., 84(4):745–755. http://dx.doi.org/10.1038/ki.2013.135

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., Sica, A., Sozzani, S., et al., 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 25(12):677–686. http://dx.doi.org/10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  • Parsa, R., Andresen, P., Gillett, A., et al., 2012. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in nod mice. Diabetes, 61(11):2881–2892. http://dx.doi.org/10.2337/db11-1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raes, G., de Baetselier, P., Noel, W., et al., 2002. Differential expression of FIZZ1 and YM1 in alternatively versus classically activated macrophages. J. Leukoc. Biol., 71(4): 597–602.

    CAS  PubMed  Google Scholar 

  • Ray, A., Dittel, B.N., 2010. Isolation of mouse peritoneal cavity cells. J. Vis. Exp., 35:e1488.

    Google Scholar 

  • Sica, A., Erreni, M., Allavena, P., et al., 2015. Macrophage polarization in pathology. Cell Mol. Life Sci., 72(21): 4111–4126. http://dx.doi.org/10.1007/s00018-015-1995-y

    Article  CAS  PubMed  Google Scholar 

  • Thornley, T.B., Fang, Z., Balasubramanian, S., et al., 2014. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J. Clin. Invest., 124(8):3443–3454. http://dx.doi.org/10.1172/JCI73527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weischenfeldt, J., Porse, B., 2008. Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc., 2008:5080.

    Google Scholar 

  • Wilson, H.M., Walbaum, D., Rees, A.J., 2004. Macrophages and the kidney. Curr. Opin. Nephrol. Hypertens., 13(3): 285–290. http://dx.doi.org/10.1097/00041552-200405000-00004

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Goncalves, R., Mosser, D.M., 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol., 14:11. http://dx.doi.org/10.1002/0471142735.im1401s83

    Google Scholar 

Download references

Acknowledgements

We thank Ms. Xiao-li HE and Mr. Qi GUO (Department of Kidney Transplantation, Hospital of Nephropathy, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China) for their excellent laboratory management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-guang Ding.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 81270829, 81102247, and 81670681)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yl., Tian, Px., Han, F. et al. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. J. Zhejiang Univ. Sci. B 18, 1055–1063 (2017). https://doi.org/10.1631/jzus.B1700003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700003

Keywords

CLC number

关键词

Navigation