Today: Mar 28, 2024
RU / EN
Last update: Mar 1, 2024
The Capabilities of Interference Microscopy in Studying the <i>in vitro</i> State of Erythrocytes Exposed to Low-Intensity Laser Radiation for Stress Correction

The Capabilities of Interference Microscopy in Studying the in vitro State of Erythrocytes Exposed to Low-Intensity Laser Radiation for Stress Correction

Deryugina A.V., Ivashchenko M.N., Ignatiev P.S., Talamanova M.N., Samodelkin A.G.
Key words: laser interference microscopy; in vitro state of erythrocytes; low-intensity laser radiation; stress.
2018, volume 10, issue 4, page 78.

Full text

html pdf
1995
1466

The aim of the investigation was to study the corrective action of low-intensity laser radiation on the in vitro morphofunctional state of stressed erythrocytes using interference microscopy.

Materials and Methods. Blood samples of intact and stressed rats exposed to low-intensity laser radiation (LILR) were studied in experiments in vitro. The wavelength of LILR radiation was 890 nm. Erythrocyte morphology was studied using laser interference microscopy, malondialdehyde and adenosine triphosphate concentrations were assessed spectrophotometrically.

Results. The action of LILR was found to cause no significant changes in the discoid form of erythrocytes and cellular metabolic processes, though it resulted in the appearance of projections on the surface. Exposure to stress promoted a decrease in discocyte count and a significant increase in echinocytes, stomatocytes and degenerative forms of cells with altered microrelief, which was combined with an increase in oxidation processes. The effect of LILR on blood samples of stressed animals led to a decrease in pathological forms of erythrocytes and restoration of cell surface architectonics.

  1. Sudakov K.V. Evolution of the stress concept. Vestnik Rossiyskoy akademii meditsinskikh nauk 2008; 11: 59–66.
  2. Musikhin L.V., Shvetskiy F.M., Khosrovyan A.M., Molotova N.L., Bugrovskaya O.I., Smol’nikov P.V., Shiryaev V.S. Some aspects of the use of low-intensity laser radiation in anesthetic practice. Vestnik intensivnoy terapii 2009; 3: 75–83.
  3. Babaev A.V., Gogolev D.E., Reiner O.V., Korochkin I.M., Fandeev A.V., Pivovarov V.Y., Fedulaev Y.N., Drachan K.M. Effect of intravenous low-intensity laser irradiation of the blood on clinical and laboratory parameters of hepatocellular insufficiency. Bull Exp Biol Med 2012; 153(5): 754–757, https://doi.org/10.1007/s10517-012-1818-1.
  4. Luo G.-Y., Sun L., Liu T.C.-Y. Aquaporin-1-mediated effects of low level He-Ne laser irradiation on human erythrocytes. International Journal of Photoenergy 2012; 2012: 1–5, https://doi.org/10.1155/2012/275209.
  5. Ignat’ev P.S. Lazernaya interferentsionnaya mikroskopiya morfologii i dinamiki biologicheskikh ob»ektov v real’nom vremeni. Avtoref. dis. … kand. fiz.-mat. nauk [Laser interference microscopy of morphology and dynamics of biological objects real-time. PhD Thesis]. Moscow; 2011.
  6. Krylov V.N., Deriugina A.V., Pleskova S.N., Kalinin V.A. Apoptotic nature of erythrocyte hemolysis induced by low doses of ionizing radiation. Biophysics 2015; 60(1): 79–84, https://doi.org/10.1134/s0006350915010170.
  7. Vinogradova I.L., Bagryantseva S.Yu., Derviz G.V. Method of simultaneous determination of 2,3 DPG and ATP in erythrocytes. Laboratornoe delo 1980; 7: 424–426.
  8. Boyarinov G.A., Yakovleva E.I., Zaitsev R.R., Bugrova M.L., Boyarinova L.V., Solov’eva O.D., Deryugina A.V., Shumilova A.V., Filippenko E.S. Pharmacological correction of microcirculation in rats suffering from traumatic brain injury. Cell and Tissue Biology 2017; 11(1): 65–72, https://doi.org/10.1134/s1990519x17010023.
  9. Berestovskaya Y.Y., Gerasimenko L.M., Yusipovich A.I., Maksimov G.V., Rubin A.B., Levin G.G., Shutova V.V. New possibilities of studying microbial objects by laser interference microscopy. Biophysics 2011; 56(6): 1063–1068, https://doi.org/10.1134/s0006350911060224.
  10. Dyachenko A.A., Ryabukho V.P. Measurement of the optical thickness of a layered object from interfernece colors in white-light microscopy. Computer Optics 2017; 41(5): 670–679, https://doi.org/10.18287/2412-6179-2017-41-5-670-679.
  11. Erstenyuk A.M. Ligand forms of hemoglobin in the dynamics of cadmium intoxication. Mikroelementy v meditsine 2012; 13(2): 8−13.
  12. Würthner F., Kaiser T.E., Saha-Möller C.R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Ed Engl 2011; 50(15): 3376–3410, https://doi.org/10.1002/anie.201002307.
  13. Lobanov A.V., Nevrova O.V., Barzilovich P.Yu., Roubtsova N.A., Komissarov G.G. Interaction of metal porphyrins and hydrogen peroxide: coordination, photocatalysis and electron transfer. In: Islamova R.M., Kolesov S.V., Zaikov G.E. (editors). Kinetics, catalysis and 46 mechanism of chemical reactions. From pure to applied science. Vol. 2. Tomorrow and perspectives. New York: Nova Science Publishers; 2012; p. 305–311.
  14. Mironov V.A., Filippov A.V., Shirshikov F.V., Cherepnev G.V., Kalacheva N.V. The effect of binase on the necrosis and apoptosis of macrophages in an oxidative stress model. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki 2012; 154(2): 66–76.
  15. Kontorshchikova K.N., Vedunova M.V., Makarova E.S., Оrlov B.Yu. Influence of doxorubicin, ozone and oxygen on the viability of normal and malignant liver cells in culture. Vestnik fizioterapii i kurortologii 2016; 22(2): 10–11.
  16. Аlyasova А.V., Terentiev I.G., Tsybusov S.N., Vedunova М.V., Мishchenko Т.А., Shakhova K.А., Kontorshchikova K.N. Novel notions of the mechanisms of action of doxorubicin and ozone on malignant hepatic cells. Sovremennye tehnologii v medicine 2017; 9(2): 145, https://doi.org/10.17691/stm2017.9.2.18.
  17. Srubilin D.V., Enikeeva D.A., Isakov I.D. The structural-functional damages of erythrocytes and their correction by low intensive laser radiation in subchronic intoxication with dichlorethane. Vestnik novyh medicinskih tehnologij 2012; 19(4): 105–108.
Deryugina A.V., Ivashchenko M.N., Ignatiev P.S., Talamanova M.N., Samodelkin A.G. The Capabilities of Interference Microscopy in Studying the in vitro State of Erythrocytes Exposed to Low-Intensity Laser Radiation for Stress Correction. Sovremennye tehnologii v medicine 2018; 10(4): 78, https://doi.org/10.17691/stm2018.10.4.09


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg