Skip to main content
Log in

Detection of Paracetamol in Water and Urea in Artificial Urine with Gold Nanoparticle@AI Foil Cost-efficient SERS Substrate

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We demonstrated that a cost-efficient, easy to prepare, hybrid SERS substrate-gold nanoparticles (AuNPs) on untreated Al foil (AlF) can effectively detect pharmaceuticals, such as paracetamol and clinical biomarkers, like urea in artificial urine. The limit of detection (LOD) for paracetamol on AuNPs on AlF is superior (0.1 vs. 1 mM ) to the LOD reported for SERS detection of paracetamol in the literature. For SERS detection of urea in urine, AuNPs on both Al foil and Au film performed much better than AuNPs on glass, in terms of the concentration range, linearity and LOD. However, assay on AuNPs on AlF showed a better semi-logarithmic trendline with R2 = 0.98 than an assay on AuNPs on Au film with R2 = 0.94. They have comparable sensitivity with LOD 0.024 and 0.017 M, respectively. The limit of quantification (LOQ) of the former is 0.026 M, which makes it sufficient for the quantification of urea in urine at both normal and pathophysiological (0.03–0.15 M) concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett., 1974, 26, 163.

    Article  CAS  Google Scholar 

  2. K. Kim and K. S. Shin, Anal. Sci., 2011, 27, 775.

    Article  CAS  PubMed  Google Scholar 

  3. H. Nakao, Anal. Sci., 2014, 30, 151.

    Article  CAS  PubMed  Google Scholar 

  4. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh, and C. L. Haynes, Phys. Chem. Chem. Phys., 2011, 13, 11551.

    Article  PubMed  PubMed Central  Google Scholar 

  5. M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang, and R. Narayanan, Chem. Soc. Rev., 2008, 37, 1001.

    Article  CAS  PubMed  Google Scholar 

  6. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc., 2005, 127, 4484.

    Article  CAS  PubMed  Google Scholar 

  7. D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell, and M. D. Porter, Anal. Chem., 2003, 75, 5936.

    Article  CAS  PubMed  Google Scholar 

  8. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 2005, 105, 1103.

    Article  CAS  PubMed  Google Scholar 

  9. R. Bukasov, T. A. Ali, P. Nordlander, and J. S. Shumaker- Parry, ACS Nano, 2010, 4, 6639.

    Article  CAS  PubMed  Google Scholar 

  10. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc., 2001, 123, 1471.

    Article  CAS  Google Scholar 

  11. W. W. Yu and I. M. White, Analyst, 2012, 137, 1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M.-L. Zhang, X. Fan, H.-W. Zhou, M.-W. Shao, J. A. Zapien, N.-B. Wong, and S.-T. Lee, J. Phys. Chem. C, 2010, 114, 1969.

    Article  CAS  Google Scholar 

  13. S. Mabbott, A. Eckmann, C. Casiraghi, and R. Goodacre, Analyst, 2013, 138, 118.

    Article  CAS  PubMed  Google Scholar 

  14. M. M. Martinez-Garcia, P. E. Cardoso-Avila, and J. L. Pichardo-Molina, Colloids Surf., 2016, 493, 66.

    Article  CAS  Google Scholar 

  15. K. Gudun, Z. Elemessova, L. Khamkhash, E. Ralchenko, and R. Bukasov, J. Nanomater., 2017, Article ID 9182025.

    Google Scholar 

  16. A. Radomska, R. Koncki, K. Pyrzynska, and S. Glab, Anal. Chim. Acta, 2004, 523, 193.

    Article  CAS  Google Scholar 

  17. N. R. Hill, S. T. Fatoba, J. L. Oke, J. A. Hirst, C. A. O’Callaghan, D. S. Lasserson, and F. D. R. Hobbs, Plos One, 2016, 11, e0158765.

    Article  PubMed  PubMed Central  Google Scholar 

  18. T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, Opt. Quantum Electron., 2005, 37, 1415.

    Article  CAS  Google Scholar 

  19. C. J. Choi, H.-Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, Lab Chip, 2012, 12, 574.

    Article  CAS  PubMed  Google Scholar 

  20. L. Liu, H. Mo, S. Wei, and D. Raftery, Analyst, 2012, 137, 595.

    Article  CAS  PubMed  Google Scholar 

  21. K. Klimova and J. Leitner, Thermochim. Acta, 2012, 550, 59.

    Article  CAS  Google Scholar 

  22. E. D. Santos, E. C. N. L. Lima, C. S. de Oliveira, F. A. Sigoli, and I. O. Mazali, Anal. Methods, 2014, 6, 3564.

    Article  CAS  Google Scholar 

  23. S. Sergiienko, K. Moor, K. Gudun, Z. Yelemessova, and R. Bukasov, Phys. Chem. Chem. Phys., 2017, 19, 4478.

    Article  CAS  PubMed  Google Scholar 

  24. F. Gao, J. Lei, and H. Ju, Anal. Chem., 2013, 85, 11788.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostislav Bukasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukanova, Z., Gudun, K., Elemessova, Z. et al. Detection of Paracetamol in Water and Urea in Artificial Urine with Gold Nanoparticle@AI Foil Cost-efficient SERS Substrate. ANAL. SCI. 34, 183–187 (2018). https://doi.org/10.2116/analsci.34.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.183

Keywords

Navigation