Skip to main content
Log in

Oral Naftidrofuryl

A Review of its Pharmacology and Therapeutic Use in the Management of Peripheral Occlusive Arterial Disease

  • Drug Evaluation
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Synopsis

Naftidrofuryl has been used for the treatment of intermittent claudication, a symptom of mild to moderate peripheral occlusive arterial disease (POAD), for at least 2 decades. As a serotonin 5-HT2 receptor antagonist, naftidrofuryl has vasoactive properties in addition to its favourable effects on oxidative metabolism, peripheral transcutaneous oxygen pressure and the rheological properties of platelets and erythrocytes. The drug may also reduce hypercholesterolaemia-induced intimai proliferation.

Clinical trials which conform best with European guidelines have shown that 3 and 6 months’ oral therapy with naftidrofuryl 600 or 633 mg/day (in 3 or 2 divided doses) increased pain-free walking distance to a greater extent than placebo administration in patients with POAD. Surgical revascularisation was required less often during 6 months of therapy with naftidrofuryl than in placebo recipients, confirming the superiority of naftidrofuryl treatment compared with placebo.

Available data provide some evidence of efficacy of the drug in the treatment of ischaemic rest pain and vascular ulceration. However, further trials are required before the usefulness of oral naftidrofuryl in severe POAD can be fully established.

When given orally, naftidrofuryl is well tolerated. Mild gastrointestinal effects are the most common adverse events, requiring withdrawal of therapy in approximately 1.2% of patients compared with 0.95% of placebo-treated patients.

In summary, oral naftidrofuryl improves the symptoms of intermittent claudication in patients with POAD with minimal risk of adverse effects. Therefore, in patients with Fontaine’ s classification stage II POAD for whom lifestyle modifications and management of concomitant disease have provided insufficient benefit, naftidrofuryl is potentially useful.

Pharmacodynamic Properties

The pathophysiological processes underlying the development of peripheral occlusive arterial disease (POAD) are complex and multifactorial. However, serotonin (5-hydroxytryptamine; 5-HT) appears to play a major role in vasoconstriction and platelet aggregation, 2 important components of the cascade of events leading to atherosclerosis. Therefore, the antagonistic effect of naftidrofuryl at the 5-HT2 receptors on vascular smooth muscle cells and platelets provides the likely mechanism of its action.

Naftidrofuryl is a vasoactive agent which inhibits serotonin-induced contractions in vessels from humans and various animal species. Naftidrofuryl also increases the efficiency of aerobic metabolism in oxygen-depleted tissues, as evidenced by drug-induced reductions in lactate: pyruvate ratios in healthy volunteers during exercise. The most important marker of the favourable effect of naftidrofuryl on oxidative metabolism is peripheral transcutaneous oxygen pressure. It appears that naftidrofuryl selectively improves the transcutaneous oxygen pressure in areas of ischaemia, including areas of ulceration, regardless of whether the drug has any effect on arterial blood flow.

Naftidrofuryl has favourable rheological effects. It inhibits serotonin-induced, but not spontaneous or epinephrine (adrenaline)-induced, aggregation of platelets in vitro and ex vivo. Naftidrofuryl reduces aggregability of erythrocytes and their rigidity was reduced by administration of a single oral 600mg dose. Finally, naftidrofuryl has been shown to have antiatherosclerotic effects in rats and hamsters.

Pharmacokinetic Properties

Mean maximal plasma concentrations (Cmax) after oral administration of 100mg of the drug are approximately 200 μg/L in healthy volunteers. Naftidrofuryl appears to be distributed to and stored in fatty tissue.

Naftidrofuryl is metabolised primarily by plasma pseudo-cholinesterases to 3 major metabolites. No evidence to date suggests that there is saturation of metabolism. The plasma elimination half-life of naftidrofuryl is approximately 1.2 to 2 hours, necessitating 3 times daily administration of the drug. Formulation of the drug in a hydrocolloidal matrix may provide an opportunity to reduce the frequency of administration to twice daily.

In elderly patients, following intravenous therapy, the Cmax of naftidrofuryl is higher and the plasma elimination half-life longer (2.33 vs 0.81 hours) than in healthy volunteers. Therefore, dosage reduction may be required in the elderly.

Therapeutic Efficacy

Rigorous recommendations for the assessment of pharmacological intervention in POAD have been developed because of the unpredictable course of the disease and the beneficial effects of nondrug therapy such as physical exercise. Ideally, placebo-controlled, double-blind, parallel-group studies should be undertaken, patients should have stable disease before randomisation and a standardised method of assessing pain-free walking distance should be used.

Only the efficacy of orally administered naftidrofuryl is discussed in this review because of the recent withdrawal of the intravenous formulation. The results of 4 studies which fulfilled most of the above criteria demonstrated that oral administration of naftidrofuryl 600 or 633 mg/day in 2 or 3 divided doses increased pain-free walking distance in patients with intermittent claudication to a greater extent than placebo after 3 and 6 months. Maximal walking distance after treatment with naftidrofuryl was also significantly increased compared with that observed in placebo recipients after 6, but not 3, months. In one of the 6-month studies conforming to trial guidelines, naftidrofuryl treatment reduced the number of surgical revascularisation procedures required compared with placebo (12 vs 30%). Crossover studies have confirmed that naftidrofuryl improves maximal walking distance compared with placebo. Double-blind, placebo-controlled, parallel-group trials which lacked a run-in phase (and therefore did not ensure patients had stable disease) demonstrated that naftidrofuryl 400 or 600 mg/day was effective for improving walking time in patients aged >60 years.

In a meta-analysis of the 4 trials mentioned earlier, treatment type (i.e. naftidrofuryl vs placebo) was the most discriminatory factor for improvement in walking distance (improvement of 95.6 vs 41.2m), with severity of disease (reflected in initial walking distance) the next most important factor (those patients who could walk further at baseline improved more during the trial than others). Results of studies in patients with more severe POAD have been less convincing.

For the treatment of ischaemic rest pain, naftidrofuryl (200mg twice daily by intravenous infusion followed by 200mg 3 times daily orally) has produced equivocal results. However, oral naftidrofuryl 600 mg/day does improve healing of vascular ulcers after 2 or 3 months compared with placebo (improvement of 56 vs 41% after 2 months in 1 study). Further suitably designed trials are required before the place of oral naftidrofuryl in these conditions can be clarified.

Tolerability

After oral administration of naftidrofuryl, the most common adverse events are gastrointestinal (e.g. epigastric pain, nausea, indigestion and digestive difficulties). However, these adverse events seldom result in drug withdrawal. For example, in a meta-analysis of placebo-controlled studies, 1.2% of patients receiving oral naftidrofuryl 600 mg/day compared with 0.95% of controls withdrew from therapy as a result of gastrointestinal effects.

Other adverse events which occur less commonly after oral administration of the drug include cutaneous effects (e.g. flushing), acute hepatic necrosis and oesophageal ulceration. Deliberate or accidental overdose with oral or intravenous naftidrofuryl can cause severe cardiovascular disorders.

As a result of severe cardiac and neurological toxicity following intravenous bolus administration of naftidrofuryl, the parenteral formulations of the drug were withdrawn from the European market in 1995.

Dosage and Administration

For the treatment of patients with mild to moderate POAD, it is recommended that naftidrofuryl is given orally in a dosage of 300 to 600 mg/day in 3 divided doses, swallowed whole. Because the metabolism of naftidrofuryl may be reduced in the elderly, the dosage may need to be decreased in these patients. It is no longer recommended that the drug be given intravenously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silva JL. Estudio multicentrico con naftidrofuril 200 mg en la arteriopatia de los miembros inferiores (AMI). Resultados en 160 pacientes [in Spanish]. Invest Med Int 1989 May; 16: 48–54

    Google Scholar 

  2. de-Caestecker JS, Heading RC. Naftidrofuryl-induced acute hepatic necrosis. Postgrad Med J 1986 Apr; 62: 309–10

    PubMed  CAS  Google Scholar 

  3. Hebuterne X, Laugery A, Chichmanian RM, et al. Acute cytolytic hepatitis probably caused by naftidrofuryl (letter) [in French]. Gastroenterol Clin Biol 1990; 14: 514–5

    PubMed  CAS  Google Scholar 

  4. Michiels C, Arnould T, Janssens D, et al. Effects of naftidrofuryl on hypoxia-induced activation and mortality of human endothelial cells. J Pharmacol Exp Ther 1993 Nov; 267: 904–11

    PubMed  CAS  Google Scholar 

  5. Kirsten R, Erdeg B, Moxter D, et al. Platelet aggregation after naftidrofuryl application in vitro and ex vivo. Int J Clin Pharmacol Ther 1995 Feb; 33: 81–4

    PubMed  CAS  Google Scholar 

  6. Lagrue G, Questrel R. Indirect evaluation of blood oxymetry by digitized conjunctival capillarography: effects of naftidrofuryl. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S67–71

    PubMed  Google Scholar 

  7. Hollenberg N. Serotonin, atherosclerosis, and collateral vessel spasm. Am J Hypertens 1988; 1: 312S–6S

    PubMed  CAS  Google Scholar 

  8. Hollenberg NK. Serotonin and vascular responses. Ann Rev Pharmacol Toxicol 1988; 28: 41–59

    CAS  Google Scholar 

  9. Oudart N. Naftidrofuryl inhibits contractions to serotonin in intact and de-endothelialized cerebral arteries in vitro. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S45–8

    PubMed  CAS  Google Scholar 

  10. Drouet L, Bal Dit Sollier C, Ruton S, et al. Role of serotonin in arteriolar thrombosis and secondary vasospasm. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S49–53

    PubMed  CAS  Google Scholar 

  11. Maloteaux JM, Haiech J, De Campeneere D, et al. Biochemical and physiological evidences for antiserotonergic properties of naftidrofuryl. Arzneimittel Forschung 1986 Aug; 36: 1194–8

    PubMed  CAS  Google Scholar 

  12. Nabeshima T, Hiramatsu M, Niwa K, et al. Effect of naftidrofuryl oxalate on 5-HT2 receptors in mouse brain: evaluation based on quantitative autoradiography and head-twitch response. Eur J Pharmacol 1992 Nov 17; 223: 109–15

    PubMed  CAS  Google Scholar 

  13. Krupinski K, Bielawiec M, Szpak A, et al. Some haemorheological factors and transcutaneous PO2 in patients with a peripheral arterial occlusive disease after treatment with naftidrofuryl. Mater Med Pol 1994 Jan–Mar; 26: 17–20

    PubMed  CAS  Google Scholar 

  14. Shaw SW, Johnson RH. The effect of naftidrofuryl on the metabolic response to exercise in man. Acta Neurol Scand 1975 Sep; 52: 231–7

    PubMed  CAS  Google Scholar 

  15. Rudofsky G. Effect of naftidrofuryl on the ischemia model in healthy probands [in German]. Vasa 1988; 17: 199–207

    PubMed  CAS  Google Scholar 

  16. Pointel JP, Thomas C, Mosnier M, et al. tcpo2, arterial blood flow and lactate/pyruvate modifications induced by a single dose of naftidrofuryl IV during stage III lower-limb arteriopathies. Angiology 1986 Sep; 37: 647–53

    PubMed  CAS  Google Scholar 

  17. Pastoris O, Dossena M, Gorini A, et al. Adaptation of skeletal muscle energy metabolism to repeated hypoxic-normoxic exposures and drug treatment. Arch Int Pharmacodyn Ther 1985 Mar; 274: 145–58

    PubMed  CAS  Google Scholar 

  18. Meynaud A, Grand M, Fontaine L. Effect of naftidrofuryl upon energy metabolism of the brain. Arzneimittel Forschung 1973 Oct; 23: 1431–6

    PubMed  CAS  Google Scholar 

  19. Meynaud A, Grand M, Belleville M, et al. Effect of naftidrofuryl on cerebral energy metabolism in mice. 2nd part [in French]. Therapie 1975 Sep–Oct; 30: 777–88

    PubMed  CAS  Google Scholar 

  20. Louis JC. Effect of naftidrofuryl on metabolism and survival of cultured neurons. Neurochem Res 1989 Dec; 14: 1195–201

    PubMed  CAS  Google Scholar 

  21. Toussaint O, Houbion A, Remacle J. Effects of modulations of the energetic metabolism on the mortality of cultured cells. Biochim Biophys Acta 1994 Jul 29; 1186: 209–20

    PubMed  CAS  Google Scholar 

  22. Ranft J, Heidrich H, Lammersen T. Effect of naftidrofuryl on transcutaneous partial oxygen pressure (tcP02) and capillaroscopy parameters in patients with obliterative arterial disease, Fontaine’s stages II-IV [in French]. J Mal Vasc 1987; 12: 78–81

    PubMed  CAS  Google Scholar 

  23. Mustapha NM, Jain SK, Dudley P, et al. The effect of oxygen inhalation and intravenous naftidrofuryl on the transcutaneous partial oxygen pressure in ischaemic lower limbs. Prosthet Orthotlnt 1984 Dec; 8: 135–8

    CAS  Google Scholar 

  24. Taggart I, Wishart GC, Cuschieri RJ, et al. Effect of intravenous naftidrofuryl on transcutaneous oxygen pressure in severe peripheral vascular disease. Angiology 1989 Oct; 40: 895–8

    PubMed  CAS  Google Scholar 

  25. Kalis B. Assessment by the measurement of transcutaneous PO2 of the treatment of venous ulcers using naftidrofuryl [in French]. J Mal Vasc 1984; 9: 133–6

    PubMed  CAS  Google Scholar 

  26. Verheggen R, Schrör K. Effect of naftidrofuryl on platelet-induced vasospasm in vitro. Role of antiserotonergic actions. Arzneimittel Forschung 1993 Mar; 43: 330–4

    PubMed  CAS  Google Scholar 

  27. Bodin P, Travo P. Effects of naftidrofuryl on the contraction and proliferation of cultured myocytes evoked by serotonin. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S25–8

    PubMed  CAS  Google Scholar 

  28. Hollenberg NK, Nie Q. The effect of naftidrofuryl, a 5-HT2 antagonist, on collateral vascular responses to serotonin and to platelet activation. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: 36–9

    Google Scholar 

  29. Thorin E, Capdeville C, Trockle G, et al. Chronic treatment with naftidrofuryl attenuates the development of vascular hypersensitivity to serotonin in the spontaneously hypertensive rat. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S54–7

    PubMed  CAS  Google Scholar 

  30. Vashisht R, Sian M, Sharp EJ, et al. Serotonin-induced contractility in human saphenous vein is inhibited by naftidrofuryl. Br J Surg 1992 Nov; 79: 1154–6

    PubMed  CAS  Google Scholar 

  31. Moore N, Leclerc JL, Saligaut C, et al. Compared vasodilator activity of dihydroergotoxine, nicergoline, papaverine, naftidrofuryl and buflomedil on the dog femoral artery [in French]. J Pharmacol 1982 Jul–Sep; 13: 423–30

    PubMed  CAS  Google Scholar 

  32. Luong TN, Depin JC. Comparative study of femoral vasodilator effects of naftidrofuryl and nicergoline on dog (author’s transi) [in French]. J Pharmacol 1981 Jul–Sep; 12: 263–75

    PubMed  CAS  Google Scholar 

  33. Jung F, Wolf S, Kiesewetter H. Vascular effects of naftidrofuryl in a randomized placebo-controlled double-blind study. Arzneimittel Forschung 1989 Oct; 39: 1277–80

    PubMed  CAS  Google Scholar 

  34. Kiesewetter H, Jung F. Effects of naftidrofuryl on macro-microcirculation, tissue oxygen supply and flow properties of blood [in German]. Vasa Suppl 1990; 30: 79–83

    PubMed  CAS  Google Scholar 

  35. Herrmann KS, Kreuzer H. Effect of serotonergic antagonism on local responses to an acute and selective endothelial trauma in vivo. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S40–4

    PubMed  CAS  Google Scholar 

  36. Barradas MA, Stansby G, Hamilton G. Effect of naftidrofuryl and aspirin on platelet aggregation in peripheral vascular disease. In Vivo 1993 Nov–Dec; 7: 543–8

    PubMed  CAS  Google Scholar 

  37. Alanen A, Kallio T, Lehto I, et al. The effect of naftidrofuryl on red blood cell aggregation detected in vitro with ultrasound. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S33–5

    PubMed  CAS  Google Scholar 

  38. Jung F, Kiesewetter H, Mrowietz C, et al. Hemorrheological, micro- and macrocirculatory effects of naftidrofuryl in an acute study: a randomized, placebo-controlled, double-blind individual comparison. Int J Clin Pharmacol Ther Toxicol 1987 Sep; 25: 507–14

    PubMed  CAS  Google Scholar 

  39. Weichert W, Breddin HK. Effect of naftidrofuryl and dipyridamole on laser-induced thrombosis in rat mesenteric vessels. Vasa 1987; 16: 377–80

    PubMed  CAS  Google Scholar 

  40. Plotkine M, Massad L, Allix M, et al. A new arterial thrombosis model to study antithrombotic agents: efficacy of naftidrofuryl. Clin Hemorheol 1989; 9: 339–49

    Google Scholar 

  41. Kienbaum P, Braun M, Hohlfeld T, et al. Antiatherosclerotic effects of oral naftidrofuryl in cholesterol-fed rabbits involve inhibition of neutrophil function. J Cardiovasc Pharmacol 1995 May; 25: 774–81

    PubMed  CAS  Google Scholar 

  42. Lee S-L, Fanburg BL. Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia/anoxia. Circ Res 1987 May; 60(5): 653–8

    PubMed  CAS  Google Scholar 

  43. Dagani F, Marzatico F, Curti D, et al. Effect of prolonged and intermittent hypoxia on some cerebral enzymatic activities related to energy transduction. Cerebral Blood Flow and Metabolism 1984; 4: 615–24

    CAS  Google Scholar 

  44. Koch LG, Alsip NL, Feige BD, et al. In vivo effect of naftidrofuryl on 5-hydroxytryptamine-mediated constriction in rat peripheral microcirculation. Eur J Pharmacol 1994 Mar 21; 254: 249–55

    PubMed  CAS  Google Scholar 

  45. Gaylarde PM, Tan OT, Sarkany I. Blood flow changes with naftidrofuryl in systemic sclerosis and Raynaud’s phenomenon. Br J Dermatol 1980 Jan; 102: 7–10

    PubMed  CAS  Google Scholar 

  46. Heidrich H, Barckow D, Grand M, et al. Clinical studies and animal experiments on the mode of hemodynamic action of naftidrofuryl [in German]. Arzneimittel Forschung 1972 Jun; 22: 1001–4

    PubMed  CAS  Google Scholar 

  47. Holmsen H. Platelet activation and serotonin. In: Vanhoutte PM, editor. Serotonin and the cardiovascular system. New York: Raven Press, 1985: 75–86

    Google Scholar 

  48. Barradas MA, Gill DS, Fonseca VA, et al. Intraplatelet serotonin in patients with diabetes mellitus and peripheral vascular disease. Eur J Clin Invest 1988; 18: 399–404

    PubMed  CAS  Google Scholar 

  49. Coumar A, Gill JK, Barradas MA, et al. The effect of treatment with simvastatin on platelet function indices in hypercholesterolaemia. J Drug Dev 1991; 4(2): 79–86

    Google Scholar 

  50. Barradas MA, Jagroop IA, Mikhailidis DP. Naftidrofuryl inhibits the release of 5-hydroxytryptamine and platelet-derived growth factor from human platelets. Clin Chim Acta 1994 Oct 31; 230: 157–67

    PubMed  CAS  Google Scholar 

  51. Weber A-A, Hohlfeld T, Strobach H, et al. Oral naftidrofuryl prevents platelet hyperreactivity ex vivo and inhibits functional desensitization to prostacyclin in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 1993 Feb; 21: 332–8

    PubMed  CAS  Google Scholar 

  52. Nordt FJ, Jack W, Coull BM. Influence of naftidrofuryl, a serotonergic antagonist, on erythrocyte aggregation. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: 29–32

    Google Scholar 

  53. Kallio T, Alanen A, Kormano M. The in vitro echogenicity of flowing blood in patients with vascular disease and the effect of naftidrofuryl. Ultrasound Med Biol 1989; 15(6): 555–60

    PubMed  CAS  Google Scholar 

  54. Leonardo G, Arpaia MR, Del-Guercio R. Evaluation of the effects of vasoactive drugs on cutaneous microcirculation by laser Doppler velocimetry. Angiology 1986 Jan; 37: 12–20

    PubMed  CAS  Google Scholar 

  55. Barker JH, Menger MD, Sack FU, et al. Nutritive skin circulation in partial ischemia: effect of various vasoactive substances [in German]. Vasa 1988; 17: 37–41

    PubMed  CAS  Google Scholar 

  56. Herrmann KS, Grosse-Heitmeyer A, Kreuzer H. Antithrombotic efficacy and its time course after application of naftidrofuryl in vivo. Arch Int Pharmacodyn Ther 1986 Nov; 284: 145–54

    PubMed  CAS  Google Scholar 

  57. Sanchez J, Sarue AM, Brunet A, et al. Enzymatic adaptations to treadmill training under the influence of naftidrofuryl acid in diaphragm and limb muscles of old rats. Arch Int Physiol Biochim Biophys 1991 Feb; 99: 129–34

    PubMed  CAS  Google Scholar 

  58. Zhang BL, Liu KL, Sacquet J, et al. Effects of naftidrofuryl on isolated perfused kidneys of spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1993 Oct; 20: 655–61

    PubMed  CAS  Google Scholar 

  59. Nishigaki R, Umemura K, Okui K, et al. The pharmacokinetical analysis of the fate of naphtidrofuryl oxalate (LS121) in human subjects. II. Estimation of the first-pass effect after oral administration [in Japanese]. Yakugaku Zasshi 1986 Oct; 106: 916–23

    PubMed  CAS  Google Scholar 

  60. Platt D, Mühlberg W, Rieck W, et al. Pharmacokinetics of naftidrofuryl in multimorbidity in geriatric patients [in German]. Z Gerontol 1984 Sep–Oct; 17: 246–50

    PubMed  CAS  Google Scholar 

  61. Lartigue-Mattei C, D’Athis P, Lhoste F, et al. Pharmacokinetics and bioavailability of naftidrofuryl capsules in man [in French]. Int J Clin Pharmacol Biopharm 1978 Nov; 16: 536–9

    PubMed  CAS  Google Scholar 

  62. Nishigaki R, Umemura K, Okui K, et al. The pharmacokinetical analysis of the fate of naphtidrofuryl oxalate (LS121) in human subjects. I. Single intravenous infusion and multiple intravenous infusion [in Japanese]. Yakugaku Zasshi 1986 Oct; 106: 906–15

    PubMed  CAS  Google Scholar 

  63. Lipha Santé Division Oberval. Naftidrofuryl prescribing information. Paris, France, 1995.

  64. Roth K, Hildebrand M, Beyer KH. Metabolism of nafronyl in man. Eur J Drug Metab Pharmacokinet 1989; 14(2): 133–8

    PubMed  CAS  Google Scholar 

  65. Brodie RR, Chasseaud LF, Taylor T, et al. Determination of naftidrofuryl in the plasma of humans by high-performance liquid chromatography. J Chromatogr 1979 Dec 1; 164: 534–40

    PubMed  CAS  Google Scholar 

  66. Walmsley LM, Wilkinson PA, Brodie RR, et al. Determination of naftidrofuryl in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 1985 Mar 22; 338: 433–7

    PubMed  CAS  Google Scholar 

  67. Walmsley LM, Taylor T, Wilkinson PA, et al. Plasma concentrations and relative bioavailability of naftidrofuryl from different salt forms. Biopharm Drug Dispos 1986 Jul–Aug; 7: 327–34

    PubMed  CAS  Google Scholar 

  68. Waaler PJ, Graffner C, Müller BW. Biopharmaceutical studies of naftidrofuryl in hydrocolloid matrix tablets. Int J Pharm 1992 Nov 10; 87: 229–37

    CAS  Google Scholar 

  69. Chalon S, Priollet P. Drug therapy of intermittent claudication: a critical analysis of therapeutic trials versus placebo [in French]. Sang Thromb Vaiss 1993 Nov; 5: 633–40

    Google Scholar 

  70. Noppeney T, Kasprzak P, Raithel D, et al. Naftidrofuryl in patients with prosthetic femoral-popliteal bypass [in German]. Vasa Suppl. 1988; 24: 60–6

    PubMed  CAS  Google Scholar 

  71. Léger JM, Gabarre J, Émile J, et al. Naftidrofuryl for the prevention of peripheral neuropathy induced by vincristine: a randomized placebo-controlled study in twenty-nine patients [in French]. Sem Hop 1994 Apr 21–28; 70: 467–71

    Google Scholar 

  72. Young JB, Connolly MJ. Naftidrofuryl treatment for rest cramp. Postgrad Med J 1993 Aug; 69: 624–6

    PubMed  CAS  Google Scholar 

  73. Davinroy M, Mosnier M. Double-blind clinical evaluation of naftidrofuryl in Raynaud’s phenomenon [in French]. Sem Hop 1993 Nov 25; 69: 1322–6

    Google Scholar 

  74. Blain III A, Coller FA, Carver GB. Raynaud’s disease: a study of criteria for prognosis. Surgery 1951; 29: 387–97

    PubMed  Google Scholar 

  75. Heidrich H, Allenberg J, Cachovan M, et al. Guidelines for therapeutic studies on peripheral arterial occlusive disease in Fontaine stages II-IV. Vasa 1992; 21(4): 339–43

    Google Scholar 

  76. Kriessmann A, Neiss A. Clinical effectiveness of naftidrofuryl in intermittent claudication [in German]. Vasa Suppl 1988; 24: 27–32

    PubMed  CAS  Google Scholar 

  77. Blair SN, Gibbons LW, Painter P, et al., editors. Guidelines for exercise testing and prescription. 3rd ed. Philadelphia: Lea and Febiger, 1986

    Google Scholar 

  78. Kiesewetter H, Jung F, Blume J, et al. Conservative drug therapy and walking exercise in stage IIb peripheral arterial occlusion disease. Klin Wochenschr 1986 Oct 15; 64: 1061–9

    PubMed  CAS  Google Scholar 

  79. Adhoute G, Andreassian B, Boccalon H, et al. Treatment of stage II chronic arterial disease of the lower limbs with the serotonergic antagonist naftidrofuryl: results after 6 months of a controlled, multicenter study. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S75–80

    PubMed  Google Scholar 

  80. Adhoute G, Bacourt F, Barral M, et al. Naftidrofuryl in chronic arterial disease. Results of a six month controlled multicenter study using Naftidrofuryl tablets 200 mg. Angiology 1986 Mar; 37(3 Pt 1): 160–7

    PubMed  CAS  Google Scholar 

  81. Trübestein G, Böhme H, Heidrich H, et al. Naftidrofuryl in chronic arterial disease. Results of a controlled multicenter study. Angiology 1984 Nov; 35: 701–8

    PubMed  Google Scholar 

  82. Lehert P, Riphagen FE, Gamand S. The effect of naftidrofuryl on intermittent claudication: a meta-analysis. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: 81–6

    Google Scholar 

  83. Moody AP, Al-khaffaf HS, Lehert P, et al. An evaluation of patients with severe intermittent claudication and the effect of treatment with naftidrofuryl. J Cardiovasc Pharmacol 1994; 23 Suppl. 3: S44–7

    PubMed  Google Scholar 

  84. Grossmann W, Standl A, May U, et al. Naftidrofuryl in patients with multi-infarct dementia and Alzheimer’s disease [in German]. Vasa Suppl 1988; 24: 48–55

    PubMed  CAS  Google Scholar 

  85. Lehert P, Comte S, Gamand S, et al. Naftidrofuryl in intermittent claudication: a retrospective analysis. J Cardiovasc Pharmacol 1994; 23 Suppl. 3: 48–52

    Google Scholar 

  86. Ruckley CV, Callam MJ, Ferrington CM, et al. Naftidrofuryl for intermittent claudication: a double-blind controlled trial. BMJ 1978 Mar 11; 1: 622

    PubMed  CAS  Google Scholar 

  87. Waters KJ, Craxford AD, Chamberlain J. The effect of naftidrofuryl (Praxilene) on intermittent claudication. Br J Surg 1980 May; 67: 349–51

    PubMed  CAS  Google Scholar 

  88. Clyne CAC, Galland RB, Fox MJ, et al. A controlled trial of naftidrofuryl (Praxilene) in the treatment of intermittent claudication. Br J Surg 1980 May; 67: 347–8

    PubMed  CAS  Google Scholar 

  89. Karnik R, Valentin A, Stöllberger C, et al. Effects of naftidrofuryl in patients with intermittent claudication. Angiology 1988 Mar; 39(3 Pt 1): 234–40

    PubMed  CAS  Google Scholar 

  90. Pohle W, Hirche H, Barmeyer J, et al. Double-blind study of naftidrofuryl-hydrogen oxalate in patients with peripheral arterial occlusive disease [in German]. Med Welt 1979 Feb 16; 30: 269–72

    PubMed  CAS  Google Scholar 

  91. Rosas G, Cerdeyra C, Lucas MA, et al. Comparison of safety and efficacy of buflomedil and naftidrofuryl in the treatment of intermittent claudication. Angiology 1981 May; 32: 291–7

    PubMed  CAS  Google Scholar 

  92. Berizzi F, InsaIaco P. Efficacia e tollerabilità del naftidrofurile nel trattamento di arteriopatie periferiche. Schweiz Rundsch Med Prax 1991; 12(1): 27–34

    Google Scholar 

  93. Wallenstein SL, Hendrich G, Kaiko R, et al. Clinical evaluation of mild analgesics: the measurement of clinical pain. J Clin Pharmacol 1980; 10: 319–37

    Google Scholar 

  94. European Working Group on Critical Leg Ischemia. Second European Consensus Document on Chronic Critical Leg Ischemia. Circulation 1991 Nov; 84(4) Suppl.: IV–1–26

    Google Scholar 

  95. Testart J, Guidicelli H, Glanddier G, et al. Evaluation of the analgesic effect of naftidrofuryl in permanent ischaemia. Double-blind placebo controlled [in French]. Ann Cardiol Angeiol 1994 Nov; 43: 542–7

    CAS  Google Scholar 

  96. Wong AL, McBain GC. The importance of personality measurement in the assessment of response to treatment for ischaemic rest pain. Br J Surg 1980 Jul; 67: 509–13

    PubMed  CAS  Google Scholar 

  97. Greenhalgh RM. Naftidrofuryl for ischaemic rest pain: a controlled trial. Br J Surg 1981 Apr; 68: 265–6

    PubMed  CAS  Google Scholar 

  98. Meehan SE, Preece PE, Walker WF. The usefulness of naftidrofuryl in severe peripheral ischaemia — a symptomatic assessment using linear analogue scales. Angiology 1982 Oct; 33: 625–34

    PubMed  CAS  Google Scholar 

  99. Zuccarelli F, Marzin L, Landron F. Evaluation of naftidrofuryl for the treatment of vascular leg ulcers. A controlled trial [in French]. Sem Hop 1992 Sep 24; 68: 860–3

    Google Scholar 

  100. Anon. Withdrawal of naftidrofuryl infusion (Praxilene Forte). Curr Probl Pharmacovig 1995 Jul; 21: 7

    Google Scholar 

  101. Adverse reactions with naftidrofuryl (Praxilene). Curr Probl Pharmacovig 1995 Feb; 21: 2

    Google Scholar 

  102. Charlesworth D. Intravenous naftidrofuryl [letter]. BMJ 1977 Jun 11; 1: 1537

    PubMed  CAS  Google Scholar 

  103. Morris-Jones W. Severe thrombophlebitis with Praxilene [letter]. BMJ 1977 Jul 9; 2: 122

    Google Scholar 

  104. Chamberlain J. Severe thrombophlebitis with Praxilene [letter]. BMJ 1977 Jul 9; 2: 121–2

    Google Scholar 

  105. Gann M. Severe thrombophlebitis with naftidrofuryl oxalate [letter]. BM J 1977 Jun 18; 1: 1598

    CAS  Google Scholar 

  106. Heidrich H. Incidence of thrombophlebitis with naftidrofuryl. BMJ 1978 Mar 11; 1: 618–9

    PubMed  CAS  Google Scholar 

  107. Diehm C, Kühn A, Strauss R, et al. Effects of regular physical training in a supervised class and additional intravenous prostaglandin-E1 and naftidrofuryl infusion therapy in patients with intermittent claudication — a controlled study [in German]. In: Vasa J Vasc Dis 1989: 26–30

    Google Scholar 

  108. McCloy EC, Kane S. Drug-induced oesophageal ulceration [letter]. Br Med J Clin Res Ed 1981 May 23; 282: 1703

    PubMed  CAS  Google Scholar 

  109. McLean D. Drug-induced oesophageal ulceration [letter]. Br Med J Clin Res Ed 1981 Jun 13; 282: 1975–6

    PubMed  CAS  Google Scholar 

  110. Moesch C, Rince M, Daudon M. Renal intratubular crystallisation of calcium oxalate and naftidrofuryl oxalate. Lancet 1991 Nov 9; 338: 1219–20

    PubMed  CAS  Google Scholar 

  111. Moesch C, Charmes J-P, Bouthier F, et al. Calcium oxalate crystalluria in elderly patients and treatment with naftidrofuryl oxalate [letter]. Age Ageing 1995; 24 (Nov.): 464–7

    PubMed  CAS  Google Scholar 

  112. Le Meur Y, Moesch C, Rincé M, et al. Potential nephrotoxicity of intravenous infusions of naftidrofuryl oxalate. Nephrol Dial Transplant 1995; 10: 1751–5

    PubMed  Google Scholar 

  113. Rey JL, Quiret JC, Gamain J, et al. Status epilepticus and transient disorders of heart conduction induced by too fast intravenous infusion of naftidrofuryl (letter) [in French]. Nouv Presse Med 1978 May 27; 7: 1864

    PubMed  CAS  Google Scholar 

  114. Pechadre JC, Barrionuevo G, Gautron M. Letter: Epileptic seizures after naftidrofuryl injection [in French]. Nouv Presse Med 1976 Feb 21; 5: 513–4

    PubMed  CAS  Google Scholar 

  115. Rey JL, Marek A, Tribouilloy C, et al. Massive naftidrofuryl poisoning with severe disorders of cardiac rhythm and conduction [in French]. Arch Mal Coeur Vaiss 1989 Jul–Aug; 82: 1467–71

    PubMed  CAS  Google Scholar 

  116. Malaterre HR, Ferracci A, Ebagosti A, et al. Slow ventricular tachycardia due to naftidrofuryl overdose [in French]. Ann Cardiol Angeiol 1992 Sep; 41: 379–81

    CAS  Google Scholar 

  117. Ducloux G, Marchand X, Laurent JM, et al. Cardiovascular complications due to naftidrofuryl [in French]. Ann Cardiol Angeiol Paris 1985 Mar; 34: 167–9

    PubMed  CAS  Google Scholar 

  118. Davis KM, Greenall MJ. Naftidrofuryl [letter]. Pharm J 1991 Jun 1; 246: 666

    Google Scholar 

  119. Khan SA, Pace JE, Cox ML. Respiratory distress secondary to naftidrofuryl. BMJ 1990 Nov 24; 301: 1219

    PubMed  CAS  Google Scholar 

  120. Kriessmann A. Peripheral arterial occlusive disease: conservative treatment of intermittent claudication. J Cardiovasc Pharmacol 1990; 16 Suppl. 3: S72–4

    PubMed  Google Scholar 

  121. Waller D, Chant A. Intermittent claudication. Prescr J 1995; 35(2): 64–70

    Google Scholar 

  122. Shields DA, Scurr JH. Treatment of the critically ischaemic lower limb. Postgrad Med J 1994 Jan; 70: 5–9

    PubMed  CAS  Google Scholar 

  123. Boobis LH, Bell PR. Can drugs help patients with lower limb ischaemia? Br J Surg 1982 Jun; 69 Suppl: S17–23

    Google Scholar 

  124. Bevan EG, Waller PC, Ramsay LE. Pharmacological approaches to the treatment of intermittent claudication. Drugs Aging 1992 Mar–Apr; 2: 125–36

    PubMed  CAS  Google Scholar 

  125. Clifford PC, Davies PW, Hayne JA, et al. Intermittent claudication: is a supervised exercise class worth while? BMJ 1980: 1503–5

  126. Jonason T, Jonzon B, Ringqvist I, et al. Effect of physical training on different categories of patients with intermittent claudication. Acta Med Scand 1979; 206: 253–8

    PubMed  CAS  Google Scholar 

  127. Spitzer S, Bach R, Schieffer H. Walk training and drug treatment in patients with peripheral arterial occlusive disease stage-II — a review. Int Angiol 1992 Jul–Sep; 11: 204–10

    PubMed  CAS  Google Scholar 

  128. De Felice M, Gallo P, Masotti G. Current therapy of peripheral obstructive arterial disease. The non-surgical approach. Angiology 1990 Jan; 41: 1–11

    PubMed  Google Scholar 

  129. Ernst E, Fialka V. A review of the clinical effectiveness of exercise therapy for intermittent claudication. Arch Intern Med 1993 Oct 25; 153: 2357–60

    PubMed  CAS  Google Scholar 

  130. Ruckley VC. Claudication [editorial]. Br Med J Clin Res Ed 1986 Apr 12; 292: 970–1

    PubMed  CAS  Google Scholar 

  131. Olin JW. Lower-extremity arterial disease: tips on diagnosis and therapy. Cleve Clin J Med 1993 Jan–Feb; 60(1): 14–5

    PubMed  CAS  Google Scholar 

  132. Housley E. Treating claudication in five words. BMJ 1988; 296(6635): 1483–4

    PubMed  CAS  Google Scholar 

  133. De Clerck F, David JL, Janssen PAJ. Serotonergic amplification mechanisms in blood platelets. In: De Clerck F, Vanhoutte PM, editors. 5-Hydroxytryptamine in peripheral reactions. New York: Raven Press, 1982: 83–94

    Google Scholar 

  134. Coffman JD. Intermittent claudication — be conservative. N Engl J Med 1991; 325(8): 577–8

    PubMed  CAS  Google Scholar 

  135. Tunis SR, Bass EB, Steinberg EP. The use of angioplasty, bypass surgery, and amputation in the management of peripheral vascular disease. N Engl J Med 1991; 325(8): 556–62

    PubMed  CAS  Google Scholar 

  136. Frampton JE, Brogden RN. Pentoxifylline (oxpentifylline): a review of its therapeutic efficacy in the management of peripheral vascular and cerebrovascular disorders. Drugs Aging 1995 Dec; 7(6): 480–503

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: M.A. Barradas, Department of Chemical Pathology and Human Metabolism, Royal Free Hospital School of Medicine, London, England; M-P. Colgan, Department of Vascular Disease, St. James’ Hospital, Dublin, Ireland; E. Housley, Clinic for Peripheral Vascular Diseases, Royal Infirmary of Edinburgh, Edinburgh, Scotland; R. Karnik, K A Rudolfstiftung, Juchgassegasse, Wein, Austria; F. Kuzuya, Nagoya University, Nakatsugawa Municipal Hospital, Komanba, Nakatsugawa-shi, Gifu, Japan; D.P. Mikhailidis, Department of Chemical Pathology and Human Metabolism, Royal Free Hospital School of Medicine, London, England; R. Nishigaki, School of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, Japan; O. Pastoris, Universita Di Pavia, Istituto Di Farmacologia, Pavia, Italy; L. Walmsley, Department of Pharmacokinetics, Huntingdon Life Sciences Ltd., Huntingdon, England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barradell, L.B., Brogden, R.N. Oral Naftidrofuryl. Drugs & Aging 8, 299–322 (1996). https://doi.org/10.2165/00002512-199608040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199608040-00005

Keywords

Navigation