Skip to main content
Log in

Clinical Pharmacokinetics of Dapsone

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Dapsone (DDS) has for about 4 decades been the most important antileprosy drug. Concentrations of dapsone and its monoacetyl metabolite, MADDS, can be determined in biological media by high-performance liquid chromatography. After oral administration, the drug is slowly absorbed, the maximum concentration in plasma being reached at about 4 hours, with an absorption half-life of about 1.1 hours. However, the extent of absorption has not been adequately determined. The elimination half-life of dapsone is about 30 hours. The drug shows linear pharmacokinetics within the therapeutic range and the time-course after oral administration fits a 2-compartment model.

The concentration-time profile of dapsone after parenteral administration is reviewed. Of clinical importance is the development of a new long acting injection, which permits monthly supervised administration as recommended by the World Health Organization. Following dapsone injection in gluteal subcutaneous adipose tissue, a sufficiently sustained absorption for this purpose has been reported.

Dapsone is about 70 to 90% protein bound and its monoacetylated metabolite (MADDS) is almost completely protein bound. The volume of distribution of dapsone is estimated to be 1.5 L/kg. It is distributed in most tissues, but M. leprae living in the Schwann cells of the nerves might be unaffected. Dapsone crosses the placenta and is excreted in breast milk and saliva.

Dapsone is extensively metabolised. Dapsone, some MADDS and their hydroxylated metabolites are found in urine, partly conjugated as N-glucuronides and N-sulphates. The acetylation ratio (MADDS: dapsone) shows a genetically determined bimodal distribution and allows the definition of ‘slow’ and ‘rapid’ acetylators. As enterohepatic circulation occurs, the elimination half-life of dapsone is markedly decreased after oral administration of activated charcoal. This permits successful treatment in cases of intoxication.

The daily dose of dapsone in leprosy is 50 to 100mg, but varies from 50 to 400mg in the treatment of other dermatological disorders. In malaria prophylaxis, a weekly dose of 100mg is used in combination with pyrimethamine. Side effects are mostly not serious below a daily dose of 100mg and are mainly haematological effects. The dapsone therapeutic serum concentration range can be defined as 0.5 to 5 mg/L.

Alcoholic liver disease decreases the protein binding of dapsone; coeliac disease and dermatitis herpetiformis may delay its oral absorption and severe leprosy has been reported to affect the extent of absorption.

Rifampicin increases the rate of elimination of dapsone; pyrimethamine increases the volume of distribution and probenecid decreases the renal clearance of dapsone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affrime M, Reidenberg MM. The protein binding of some drugs in plasma from patients with alcoholic liver disease. European Journal of Clinical Pharmacology 8: 267–269, 1975

    Article  PubMed  CAS  Google Scholar 

  • Ahmad RA, Rogers HJ. Plasma and salivary pharmacokinetics of dapsone estimated by a thin layer Chromatographic method. European Journal of Clinical Pharmacology 17: 129–133, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Ahmad RA, Rogers HJ. Pharmacokinetics and protein binding of dapsone and pyrimethamine. British Journal of Clinical Pharmacology 10: 519–524, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Ahmad RA, Rogers HJ, Vandenburg M, Wright P. Effects of concurrent administration of other substrates of N-acetyltransferase on dapsone acetylation. British Journal of Clinical Pharmacology 12: 83–86, 1981

    Article  PubMed  CAS  Google Scholar 

  • Alexander JO’D, Young E, McFadyen T, Fraser NG, Duguid WP, et al. Absorption and excretion of 35S dapsone in dermatitis herpetiformis. British Journal of Dermatology 83: 620–631, 1970

    Article  PubMed  CAS  Google Scholar 

  • Allen BW, Ellard GA, Gammon PT, King RC, Rees RJW, et al. The penetration of dapsone, rifampicin, isoniazid and pyrazinamide into peripheral nerves. British Journal of Pharmacology 55: 151–155, 1975

    Article  PubMed  CAS  Google Scholar 

  • Bajaj AK, Gupta SC, Sinha SN, Govil DC, Gaur UC, et al. Renal functional status in lepromatous leprosy. International Journal of Leprosy 49: 37–41, 1981

    CAS  Google Scholar 

  • Balakrishnan S, Ramu G. Blood DDS levels and acetylation rates of sulfadimidine in leprosy patients. Leprosy in India 49: 59–64, 1977

    PubMed  CAS  Google Scholar 

  • Bawden D, Tute MS. Structure-activity relationships of antimycobacterial sulfones: a study using physicochemical constants. European Journal of Medicinal Chemistry 16: 299–300, 1981

    CAS  Google Scholar 

  • Beckett AH, Navas GE, Hutt AJ, Farag M. Disappearing N-hydroxy compounds. Journal of Pharmacy and Pharmacology 31: 476–477, 1979

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JE, Lorincz AL. Sulfonamides and sulfones in dermatologic therapy. International Journal of Dermatology 20: 81–88, 1981

    Article  PubMed  CAS  Google Scholar 

  • Biggs JT, Gordon GR, Peters JH. Disappearance rates and plasma protein binding of dapsone (DDS) and monoacetyldapsone (MADDS) in animals and man. Federation Proceedings 30: 629, 1971

    Google Scholar 

  • Boddingius J, Stolz E. Do anti-leprosy drugs reach Mycobacterium leprae in peripheral nerves? Lancet 1: 774–775, 1981

    Article  PubMed  CAS  Google Scholar 

  • Bratton AC, Marshall EK. A new coupling component for sulfonamide determination. Journal of Biological Chemistry 128: 537–550, 1939

    CAS  Google Scholar 

  • Bushby SRM, Woiwod AJ. The identification of the major diazotable metabolite of 4 4′-diaminodiphenyl sulphone in rabbit urine. Biochemical Journal 63: 406–408, 1956

    PubMed  CAS  Google Scholar 

  • Carr K, Oates JA, Nies AS, Woosley RL. Simultaneous analysis of dapsone and monoacetyldapsone employing high performance liquid chromatography: a rapid method for determination of acetylator phenotype. British Journal of Clinical Pharmacology 6: 421–427, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Chang SF, Baukema J, Savory A, Dill WA, et al. Metabolic disposition of dapsone (4,4′-diaminodiphenylsulfone: DDS). Federation Proceedings 28: 289, 1969

    Google Scholar 

  • Chatterjee KR, Poddar RK. Radioactive tracer studies on uptake of DDS by leprosy-patients. Proceedings of the Society for Experimental Biological Medicine 94: 122–125, 1957

    CAS  Google Scholar 

  • Cockshott WP, Thompson GT, Howlett LJ, Seeley ET. Intramuscular or intralipomatous injections? New England Journal of Medicine 307: 356–358, 1982

    Article  PubMed  CAS  Google Scholar 

  • Cohen RJ, Sachs JR, Wicker DJ, Conrad MF. Methemoglobinaemia provoked by malarial chemoprophylaxis in Vietnam. New England Journal of Medicine 279: 1127–1131, 1968

    Article  PubMed  CAS  Google Scholar 

  • Cucinell SA, Israeli ZH, Dayton PG. Microsomal N-oxidation of dapsone as a cause of methemoglobin formation in human red cells. American Journal of Tropical Medicine and Hygiene 21: 322–331, 1972

    PubMed  CAS  Google Scholar 

  • DeGowin RL. A review of therapeutic and hemolytic effects of dapsone. Archives of Internal Medicine 120: 242–248, 1967

    Article  PubMed  CAS  Google Scholar 

  • Drayer DE, Reidenberg MM. Clinical consequences of polymorphic acetylation of basic drugs. Clinical Pharmacology and Therapeutics 22: 251–258, 1977

    PubMed  CAS  Google Scholar 

  • Du Souich P, Lambert C. What is the clinical meaning of the acetylator phenotype? Trends in Pharmacological Sciences 2: 189–191, 1981

    Article  Google Scholar 

  • Ellard GA. Absorption, metabolism and excretion of di (p-aminophenyl) sulphone (dapsone) and di (p-aminophenyl) sulphoxide in man. British Journal of Pharmacology 26: 212–217, 1966

    CAS  Google Scholar 

  • Endre ZH, Charlesworth JA, MacDonald GJ, Woodbridge L. Successful treatment of acute dapsone intoxication using charcoal hemoperfusion. Australian and New Zealand Journal of Medicine 13: 509–512, 1983

    Article  PubMed  CAS  Google Scholar 

  • Elslager EF, Phillips AA, Worth DF. Repository drugs V. 4′4‴-[p-phenylenebis (methylidyneimino-p-phenylenesulfonyl)] bisacetanilide (PSBA) and related 4′4‴-[bis(imino-p-phenylenesulphonyl)]bisanilides, a novel class of long-acting antimalarial and antileprotic agents. Journal of Medical Chemistry 12: 363–367, 1969

    Article  CAS  Google Scholar 

  • Floch H, Lecuiller A, Destombes P. Sur l’emploi de la diaminodiphenylsulfone en suspension dans divers véhicules pour le traitement de la lèpre. Bulletin du Societé Pathalogie Exotique 44: 522–526, 1951

    CAS  Google Scholar 

  • French TM. An injection solution of dapsone. Leprosy Review 39: 171, 1968

    PubMed  CAS  Google Scholar 

  • Ganer A, Knobel B, Fryd CH, Rachmilewitz EA. Dapsone induced methemoglobinemia and hemolysis in the presence of familial hemoglobinoapathy hasharon and familial methemoglobinreductase deficiency. Israel Journal of Medical Science 17: 703–704, 1981

    CAS  Google Scholar 

  • Gelber R, Peters JH, Gordon RG, Glazko AJ, Levy L. The polymorphic acetylation of dapsone in man. Clinical Pharmacology and Therapeutics 12: 225–238, 1971

    PubMed  CAS  Google Scholar 

  • Gelber RH, Gooi HC, Waters MFR, Rees RJW. The pharmacology of sulphetrone and its implications in sulphone resistance. Leprosy Review 45: 308–312, 1974

    PubMed  CAS  Google Scholar 

  • Gelber RH, Gooi HC, Rees RJW. The effect of rifampicin on dapsone metabolism. Proceedings of the Western Pharmacological Society 18: 330–334, 1975

    CAS  Google Scholar 

  • Gelber RH, Rees RJW. Dapsone metabolism in patients with dapsone-resistant leprosy. American Journal of Tropical Medicine and Hygiene 24: 963–967, 1975

    PubMed  CAS  Google Scholar 

  • Glader BE, Conrad ME. Hemolysis by diphenylsulfones: comparative effects of DDS and hydroxylamine-DDS. Journal of Laboratory and Clinical Medicine 80: 267–272, 1973

    Google Scholar 

  • Glazko AJ, Dill WA, Montalbo RG, Holmes EL. A new analytical procedure for dapsone. Application to blood-level and urinaryexcretion studies in normal men. American Journal of Tropical Medicine and Hygiene 17: 465–473, 1968a

    PubMed  CAS  Google Scholar 

  • Glazko AJ, Dill WA, Baukema J, Thompson PE. Metabolic disposition of repository sulfone drugs. International Journal of Leprosy 36: 511–512, 1968b

    Google Scholar 

  • Glazko AJ, Chang T, Baukema J, Chang SF, Savory A, Dill WA. Central role of MADDS in the metabolism of DDS. International Journal of Leprosy 37: 462–463, 1969

    Google Scholar 

  • Goodwin CS, Sparell G. Inhibition of dapsone excretion by probenecid. Lancet 2: 884–885, 1969

    Article  PubMed  CAS  Google Scholar 

  • Gordon GR, Murray JF, Peters JH, Gelber RH, Jacobson RR. Studies on the urinary metabolites of dapsone in man. International Journal of Leprosy 47: 681–682, 1979

    Google Scholar 

  • Graham Jr WR. Adverse effects of dapsone. International Journal of Dermatology 14: 494–500, 1975

    Article  PubMed  CAS  Google Scholar 

  • Grindulis KA, McConkey B. Rheumatoid arthritis: the effects of treatment with dapsone on hemoglobin. Journal of Rheumatology 11: 776–778, 1984

    PubMed  CAS  Google Scholar 

  • Halmekoski J, Matilla MJ, Mustakallio KK. Metabolism and haemolytic effect of dapsone and its metabolites in man. Medical Biology 56: 216–221, 1978

    PubMed  CAS  Google Scholar 

  • Hanson A, Melander A, Wahlin-Boll E. Acetylator phenotyping: A comparison of the isoniazid and dapsone tests. European Journal of Clinical Pharmacology 20: 233–234, 1981

    Article  PubMed  CAS  Google Scholar 

  • Hjelm M, de Verdier CH. Biochemical effects of aromatic amines. I. Methaemoglobinaemia, haemolysis and Heinz-body formation induced by 4,4′-diaminodiphenyl-sulphone. Biochemical Pharmacology 14: 1119–1128, 1965

    Article  PubMed  CAS  Google Scholar 

  • Hocking DR. Neonatal haemolytic disease due to dapsone. Medical Journal of Australia 1: 1130–1131, 1968

    PubMed  CAS  Google Scholar 

  • Huikeshoven H. Patient compliance with dapsone administration in leprosy. Analytical and pharmaceutical aspects. Thesis, University of Amsterdam, 1980

    Google Scholar 

  • Huikeshoven H. Patient compliance with dapsone administration in leprosy. International Journal of Leprosy 49: 228–258, 1981

    CAS  Google Scholar 

  • Hutchings A, Monie RD, Spragg B, Routledge PA. Acetylator phenotyping: the effect of ethanol on the dapsone test. British Journal of Clinical Pharmacology 18: 98–100, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hruza GJ, Friedman-Kien AE, Laubenstein LJ, Wernz JC, Lifshitz MS, et al. Dapsone for AIDS-associated Kaposi’s sarcoma. Lancet 1: 642, 1985

    Article  PubMed  CAS  Google Scholar 

  • Israeli ZH, Cucinell SA, Vaught J, Davis E, Lesser JM, et al. Studies of the metabolism of dapsone in man and experimental animals: formation of N-hydroxy metabolites. Journal of Pharmacology and Experimental Therapeutics 187: 138–151, 1973

    Google Scholar 

  • Jones CR, Ovenell SM. Determination of plasma concentrations of dapsone, monoacetyldapsone and pyrimethamine in human subjects dosed with Maloprim. Journal of Chromatography 163: 179–185, 1979

    Article  PubMed  CAS  Google Scholar 

  • Jopling WH. Handbook of leprosy, 2nd ed., William Heinemann Medical Books, London, 1978

    Google Scholar 

  • Karim AKMB, Elfellah MS, Evans DAP. Human acetylator polymorphism: estimate of allele frequency in Libya and details of global distribution. Journal of Medical Genetics 18: 325–330, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kramer PA, Glader BE, Li TK. Mechanism of methemoglobin formation by diphenylsulfones. Biochemical Pharmacology 21: 1265–1274, 1972

    Article  PubMed  CAS  Google Scholar 

  • Kubo E, Fukunishi Y, Matsumoto T, et al. Plasma levels of DDS in leprosy patients admitted in the National Sanatorium Oshima Seisho-en. Japanese Journal of Leprosy 52: 29–34, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kumano K, Tani M, Murata Y. Dapsone in the treatment of miliary lupus of the face. British Journal of Dermatology 109: 57–62, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lambert M, Sonnet J, Mahieu P, Hassoun A. Delayed sulfhemoglobinemia after acute dapsone intoxication. Journal of Toxicology and Clinical Toxicology 19: 45–50, 1982

    Article  CAS  Google Scholar 

  • Lammintausta K, Kangas L, Lammintausta R. The pharmacokinetics of dapsone and acetylated dapsone in serum and saliva. International Journal of Clinical Pharmacology and Biopharmacy 17: 159–163, 1979

    PubMed  CAS  Google Scholar 

  • Lang PG. Sulfones and sulfonamides in dermatology today. Journal of the American Academy of Dermatology 1: 479–492, 1979

    Article  PubMed  Google Scholar 

  • Levy L, Higgins LJ. Dapsone assay based on Shiff base formation. International Journal of Leprosy 34: 411–414, 1966

    CAS  Google Scholar 

  • Mandell GL, Sande MA. Antimicrobial agents: drugs used in the chemotherapy of tuberculosis and leprosy. In Goodman & Gilman (Eds) The pharmacological basis of therapeutics, 6th ed., pp. 1200–1221, McMillan, New York 1980

    Google Scholar 

  • Manfredi G, de Panfilis G, Zampetti M, Allegra F. Studies on dapsone induced haemolytic anaemia. British Journal of Dermatology 100: 427–432, 1979

    Article  PubMed  CAS  Google Scholar 

  • Modderman ESM. Intramuscular administration of dapsone in the treatment of leprosy: a new approach. Thesis, University of Amsterdam, 1983

  • Modderman ESM, Hilbers HW, Zuidema J, Merkus FWHM. Injections into fat instead of muscle. New England Journal of Medicine 307: 1581, 1982

    Google Scholar 

  • Modderman ESM, Merkus FWHM, Zuidema J, Hilbers HW, Warndorff T. Dapsone levels after oral therapy and weekly oily injections in Ethiopian leprosy patients. International Journal of Leprosy 51: 191–196, 1983a

    CAS  Google Scholar 

  • Modderman ESM, Merkus FWHM, Zuidema J, Hilbers HW, Warndorff T. Sex differences in the absorption of dapsone after intramuscular injection. International Journal of Leprosy 51: 359–365, 1983b

    CAS  Google Scholar 

  • Modderman ESM, Merkus FWHM, Zuidema J, Huikeshoven H, Leiker DL. Controlled release of dapsone by intramuscular injection. In Roseman & Mansdorf (Eds) Controlled release delivery systems, Marcel Dekker, New York, 1983c

    Google Scholar 

  • Murray Jr JF, Gordon GR, Peters JH. A chromatographic-fluorometric procedure for the determination of nanogram quantities of antileprotic sulfones. Journal of Laboratory and Clinical Medicine 78: 464–471, 1971

    PubMed  CAS  Google Scholar 

  • Murray Jr JF, Gordon GR, Peters JH. Tissue levels of dapsone and monoacetyldapsone in Lewis rats receiving dietary dapsone. Proceedings of the Western Pharmacological Society 17: 150–154, 1974

    CAS  Google Scholar 

  • Neuvonen PJ, Elonen E, Mattila MJ. Oral activated charcoal and dapsone elimination. Clinical Pharmacology and Therapeutics 27: 823–827, 1980

    Article  PubMed  CAS  Google Scholar 

  • Neuvonen PJ, Elonen E, Haapanen EJ. Acute dapsone intoxication: clinical findings and effect of oral charcoal and haemodialysis on dapsone elimination. Acta Medica Scandinavica 214: 215–220, 1983

    Article  PubMed  CAS  Google Scholar 

  • Orzech CE, Nash NG, Dalay RD. Dapsone. In Florey (Ed.) Analytical profiles of drug substances, Vol. 5, pp. 88–114, Academic Press, New York, 1976

    Google Scholar 

  • Ozawa T, Shepard CC, Karat ABA. Application of spectrophotofluorometric procedures to some problems in Mycobacterium leprae infections in mice and man treated with dapsone (DDS), diacetyl-DDS (DADDS) and diformyl-DDS (DFD). American Journal of Tropical Medicine and Hygiene 20: 274–281, 1971

    PubMed  CAS  Google Scholar 

  • Paxton JW. Pharmacogenetic polymorphism of drug metabolism. New Zealand Medical Journal 97: 567–569, 1984

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Colwell WT. The fluorometric measurement of 4,4′-diaminodiphenyl sulfone and its acetylated derivatives in plasma and urine. Journal of Laboratory and Clinical Medicine 76: 338–348, 1970

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Ghoul DC, Tolentino JG, Walsh GP, et al. The disposition of the antileprotic drug dapsone (DDS) in Philippine subjects. American Journal of Tropical Medicine and Hygiene 21: 450–457, 1972

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Karat ABA. Polymorphic acetylation of the antibacterials, sulfamethazine and dapsone, in South Indian subjects. American Journal of Tropical Medicine and Hygiene 24: 641–648, 1975a

    PubMed  CAS  Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Jacobson RR. The disposition of sulfoxone and solasulfone in leprosy patients. Leprosy Review 46: 171–179, 1975b

    PubMed  CAS  Google Scholar 

  • Peters JH, Shepard CC, Gordon GR, Rojas AV, Elizondo DS. The incidence of DDS resistance in lepromatous patients in Costa Rica: their metabolic disposition of DDS. International Journal of Leprosy 44: 143–151, 1976

    CAS  Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Gelber RH, Laing ABG, et al. Effect of rifampin on the disposition of dapsone in Malaysian leprosy patients. Federation proceedings 36: 996, 1977

    Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Jacobson RR. Metabolicbacteriologic relationship in the chemotherapy of lepromatous patients with dapsone or dapsone-rifampin. International Journal of Leprosy 46: 115–116, 1978

    Google Scholar 

  • Peters JH, Gordon GR, Murray Jr JF, Meyers WH. Metabolic disposition of dapsone in African leprosy patients. Leprosy Review 50: 7–19, 1979

    Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Gelber RH. Dapsone in saliva and plasma of man. Pharmacology 22: 162–171, 1981

    Article  PubMed  CAS  Google Scholar 

  • Pieters FAJM, Zuidema J, Merkus FWHM. Sustained release properties of an intra-adiposely administered dapsone depot injection. International Journal of Leprosy, in press, 1986

    Google Scholar 

  • Philip PA, Roberts MS, Rogers HJ. A rapid method for determination of acetylation phenotype using dapsone. British Journal of Clinical Pharmacology 17: 465–469, 1984

    Article  PubMed  CAS  Google Scholar 

  • Poulsen A, Hultberg B, Thomen K, Lang Wantzin G. Regression of Kaposi’s sarcoma in AIDS after treatment with dapsone. Lancet 1: 560, 1984

    Article  PubMed  CAS  Google Scholar 

  • Powell RD, DeGowin RL, Bennet Eppes R, McNamara JV, Carson PE. The antimalarial and hemolytic properties of 4,4′-diaminodiphenylsulfone (DDS). International Journal of Leprosy 35: 590–594, 1967

    CAS  Google Scholar 

  • Rasbridge MR, Scott GL. The haemolytic action of dapsone: the effect on red cell glycolysis. British Journal of Haematology 24: 169–181, 1973

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg MM, Affrime M. Influence of disease on binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–125, 1973

    Article  PubMed  CAS  Google Scholar 

  • Sanders SW, Zone JJ, Foltz RL, Tolman KG, Rollins DE. Hemolytic anemia induced by dapsone transmitted through breast milk. Annals of Internal Medicine 96: 465–466, 1982

    PubMed  CAS  Google Scholar 

  • Sanders SW, Zone JJ. Dapsone (DDS) in dermatitis herpetiformis. Drug Intelligence and Clinical Pharmacy 17: 434–435, 1983

    Google Scholar 

  • Scott GL, Rasbridge MR. The in vitro action of dapsone and its derivatives on normal and G6PD-deficient red cells. British Journal of Haematology 24: 307–317, 1973

    Article  PubMed  CAS  Google Scholar 

  • Shepard CC. Leprosy today. New England Journal of Medicine 307: 1640–1641, 1982

    Article  PubMed  CAS  Google Scholar 

  • Swain AF, Ahmad RA, Rogers HJ, Leonard JN, Fry L. Pharmacokinetic observations on dapsone in dermatitis herpetiformis. British Journal of Dermatology 108: 91–98, 1983

    Article  PubMed  CAS  Google Scholar 

  • Timbrell JA, Harland SJ, Facchini V. Effect of dose on acetylator phenotype distribution of hydralazine. Clinical Pharmacology and Therapeutics 29: 337–343, 1981

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi S. Analytical studies on antileprous drugs. IV. On the metabolic substances of human and rabbit urine after administration of 4,4′-diaminodiphenyl sulfone and 4,4′-diaminodiphenyl sulfoxide, with special reference to labile N-conjugates. Chemical and Pharmaceutical Bulletin 9: 432–436, 1961

    Article  CAS  Google Scholar 

  • Uehleke H. N-Hydroxylation. Xenobiotica 1: 327–338, 1971

    Article  PubMed  CAS  Google Scholar 

  • Uehleke H, Tabarelli S. N-hydroxylation of 4,4′-diaminodiphenylsulphone (dapsone) by liver microsomes, and in dogs and humans. Naunyn-Schmiedeberg’s Archiv für Pharmakologie 278: 55–68, 1973

    Article  CAS  Google Scholar 

  • Venkatesan K, Bharadwaj VP, Ramu G, Desikan KV. Study on drug interactions. Leprosy in India 52: 229–236, 1980

    PubMed  CAS  Google Scholar 

  • Vree TB, Hekster YA, Oosterbaan MJM, Termond EFS. Some pitfalls in selecting descriptive pharmacokinetic models. Drug Intelligence and Clinical Pharmacy 18: 708–713, 1984

    PubMed  CAS  Google Scholar 

  • Waller E, Goehrs H. Dapsone-induced hemolytic anemia in a patient with relapsing polychondritis. Drug Intelligence and Clinical Pharmacy 14: 412–414, 1980

    Google Scholar 

  • Waters MFR. New approaches to chemotherapy for leprosy. Drugs 26: 465–467, 1983

    Article  PubMed  CAS  Google Scholar 

  • Weetman RM, Brown MP, Boxer LA, Baehner RL. Oxidant mechanism for sulfone induced agranulocytosis. Pediatric Research 12(II): 674, 1978

    Google Scholar 

  • WHO Chemotherapy of Leprosy for Control Programs. Report of a WHO study group. Technical Report Series 675, 1982

  • Wright JT, Das AK. The absorption of dapsone by patients with dermatitis herpetiformis and coeliac disease. Clinical and Experimental Dermatology 5: 27–30, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wright JT, Goodman RP, Bethel AMM, Lambert CM. Cimetidine and dapsone acetylation. Drug Metabolism and Disposition 12: 782–783, 1984

    PubMed  CAS  Google Scholar 

  • Zuidema J, Modderman ESM, Hilbers HW, Merkus FWHM, Huikeshoven H. Rapid high-performance liquid Chromatographic method for the determination of dapsone and monoacetyldapsone in biological fluids. Journal of Chromatography 182: 130–135, 1980

    Article  PubMed  CAS  Google Scholar 

  • Zuidema J, van Ginneken CAM. Clearance concept in salivary drug excretion. Part I: Theory. Pharmaceutica Acta Helvetiae 58: 88–93, 1983a

    PubMed  CAS  Google Scholar 

  • Zuidema J, van Ginneken CAM. Clearance concept in salivary drug excretion. Part II: Experiments. Pharmaceutica Acta Helvetiae 58: 136–143, 1983b

    PubMed  CAS  Google Scholar 

  • Zuidema J, Modderman ESM, Merkus FWHM, Hilbers HW. The intramuscular injection of monoacetyldapsone. Proceedings of the Second International Congress on Biopharmaceutics and Pharmacokinetics: biopharmaceutics, pp. 240–249, 1984

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuidema, J., Hilbers-Modderman, E.S.M. & Merkus, F.W.H.M. Clinical Pharmacokinetics of Dapsone. Clin-Pharmacokinet 11, 299–315 (1986). https://doi.org/10.2165/00003088-198611040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198611040-00003

Keywords

Navigation