Skip to main content
Log in

The Pharmacokinetics of Antiarrhythmic Agents in Pregnancy and Lactation

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pharmacokinetics of various drugs may be profoundly altered during different stages of pregnancy, parturition, and lactation. Gastrointestinal absorption or bioavailability of drugs may vary due to changes in gastric secretion and motility. Various haemodynamic changes such as an increase in cardiac output, blood volume, and renal plasma flow may affect drug disposition and elimination. The increase in blood volume and total body water which occurs during pregnancy can alter the volume of distribution for various drugs. Although exact quantifications are not easy, these changes in pharmacokinetic parameters should be considered when dosing antiarrhythmic agents in pregnant women.

Plasma protein concentrations and drug binding capacity are altered in the mother and fetus as pregnancy advances. With highly protein bound drugs, these changes may be clinically significant, as the pharmacological efficacy and toxicity are presumed to be related to the concentration of free drug in both the mother and fetus. In some instances, the fetus may be susceptible to greater drug toxicity as free drug concentrations may be underestimated by measurement of total drug concentrations.

Changes in maternal drug metabolism and metabolism by the fetoplacental unit also contribute to alterations in the pharmacokinetics of drugs. As the placenta contains many metabolising enzymes, biotransformation of drugs at this site could potentially convert a drug into an active metabolite, or prevent fetal exposure to a toxic drug.

Placental transfer of drugs, leading to toxicity in the fetus, is a major concern in the pharmacological management of the pregnant patient. The passage of individual drugs will vary depending on their apparent volumes of distribution, degree of protein binding, the rates of metabolic conversion and excretion within the placenta and fetus, the pH difference between the maternal and fetal fluids, and maternal haemodynamic changes. Drug properties such as lipid solubility, protein binding characteristics, and ionisation constant (pKa) also influence the placental passage of drugs. For weakly basic antiarrhythmic agents, the fetal drug concentration may potentially exceed the maternal plasma concentration when the fetal pH is lowered as in the case of fetal acidosis; this is due to ‘ion trapping’. Additionally, higher free drug concentrations of these basic drugs may exist, due to decreased α1acid glycoprotein concentration and binding affinity in the fetus.

Lignocaine(lidocaine) has been shown to enter fetal plasma rapidly with fetal-maternal concentration ratios in the range of 0.52 to 0.66. The metabolites, monoethylglycinexylidide and glycinexylidide have been detected in the maternal plasma within 10 minutes and 40 minutes, respectively, after epidural administration. Fetal-maternal concentration ratios for these metabolites range between 0.55 to 1.0. Alterations in protein binding and pH differences between the mother and fetus may thus be clinically important considerations with lignocaine.

Increased dose requirements and reduced plasma phenytoin (diphenylhydantoin) concentrations have been reported during the administration of phenytoin. Impaired drug absorption has also been reported, although the data are conflicting. Phenytoin appears to readily cross the placenta, with fetal cord concentrations ranging from 65 to 100% of the maternal concentrations. Decreases in the maternal albumin concentration with advancing pregnancy have been correlated with a progressive increase in the phenytoin free fraction. However, both total and free drug concentrations were found to be lower during late pregnancy than in the non-pregnant state. Increases in phenytoin plasma clearance have also been reported.

Quinidine appears to readily cross the placenta with fetal cord-maternal concentration ratios ranging from 0.24 to 1.4. High concentrations of quinidine have also been detected in the amniotic fluid. Procainamide appears to be transferred across the placenta with fetal-maternal concentration ratios reported as high as 1.32. The N-acetyl procainamide metabolite has been detected in the fetal cord with fetal-maternal concentration ratio of 123.

Reports of isolated experiences with disopyramide and mexiletine reveal fetal-maternal concentration ratios of 0.39 and 1.0, respectively. Both digitoxin and digoxin appear to be rapidly transferred into the fetus after maternal administration, with fetal-maternal concentration ratios ranging from 0.38 to 1.0.

Both amiodarone and desethylamiodarone have been detected in fetal cord blood. Fetal-maternal drug concentration ratios for amiodarone range from 0.095 to 0.145, while one neonatal-maternal concentration ratio was 0.26. The fetal-maternal concentration ratios for desethylamiodarone ranged from 0.17 to 0.285. Both amiodarone and desethylamiodarone were detected in the amniotic fluid, and high concentrations of desethylamiodarone were detected in the amniotic fluid, and high concentrations of desethylamiodarone were found in the placental tissue.

Experience with verapamil in pregnancy is quite limited, but the drug appears to cross the placental membrane with fetal-maternal concentration ratios of 0.17 and 0.26 at 49 minutes and 109 minutes, respectively, after a single oral dose.

The β-adrenoceptor blockers reviewed, propranolol, metoprolol, atenolol, and acebutolol all appear to transfer across the placenta, showing fetal-maternal concentration ratios in the range of 0.88 to 1.27. The protein binding of propranolol and alprenolol, but not metoprolol, were reduced during pregnancy. Increased plasma clearance, decreased bioavailability, and an increase in total urinary metabolites are reported with metoprolol during pregnancy.

Protein binding, lipid solubility, and ionisation characteristics of the antiarrhythmic agents similarly influence partitioning of these drugs into breast milk during lactation. The pH difference between the maternal plasma and milk may also allow for accumulation of weakly basic agents into breast milk. Although data are limited, attempts have been made to estimate breast milk-maternal plasma concentration ratios with equations that include these physiochemical properties. However, better clinical data supporting the use of the equations to predict milk-maternal concentration ratios are still needed. Several of the antiarrhythmic agents reviewed show that many of these agents show wide variation in the milk-plasma concentration ratios.

The clinical impact of antiarrhythmic drug partitioning to the fetus and into breast milk remains to be established. More rigorous studies with appropriate body fluid sampling and pharmacokinetic modelling would provide necessary data to help clinicians establish safe and effective antiarrhythmic dosage regimens in the pregnant and lactating patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allonen H, Kanto J, Iisalo E. The foeto-maternal distribution of digoxin in early human pregnancy. Acta Pharmacologica et Toxicologica 39: 477–480, 1976

    Article  PubMed  CAS  Google Scholar 

  • Andersen HJ. Excretion of verapamil in human milk. European Journal of Clinical Pharmacology 25: 279–280, 1983

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Harrison DC, Meffin PJ. Antiarrhythmic drugs: clinical pharmacology and therapeutic uses. Drugs 15: 271–309, 1978

    Article  PubMed  CAS  Google Scholar 

  • Atkinson Jr AJ, Davison R. Diphenylhydantoin as an antiarrhythmic drug. Annual Review of Medicine 25: 99–113, 1974

    Article  PubMed  CAS  Google Scholar 

  • Barnett DB, Hudson SA, McBurney A. Disopyramide and its N-monodesalkyl metabolite in breast milk. British Journal of Clinical Pharmacology 14: 310–312, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bauer JH, Pape B, Zajicek J, Groshong T. Propranolol in human plasma and breast milk. American Journal of Cardiology 43: 860–862, 1979

    Article  PubMed  CAS  Google Scholar 

  • Bergmans MGM, Jonker GJ, Kock HCLV. Fetal supraventricular tachycardia: review of the literature. Obstetrical and Gynecological Survey 40: 61–68, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti G, Dubruc C, Vert P, Boutroy MJ, Morselli PL. Placental transfer and pharmacokinetics of acebutolol in newborn infants. American Society for Clinical Pharmacology and Therapeutics 29: 223–234, 1981

    Google Scholar 

  • Biehl D, Shnider SM, Levinson G, Callender K. Placental transfer of lidocaine: effects of fetal acidosis. Anesthesiology 48: 409–412, 1978

    Article  PubMed  CAS  Google Scholar 

  • Bigger JT, Giardina EGV. Drug interactions in antiarrhythmic therapy. Annals of New York Academy of Sciences 427: 140–162, 1984

    Article  CAS  Google Scholar 

  • Blankenbaker WL, DiFazio CA, Berry Jr FA. Lidocaine and its metabolites in the newborn. Anesthesiology 42: 325–330, 1975

    Article  PubMed  CAS  Google Scholar 

  • Bott-Kanner G, Schweitzer A, Reisner SH, Joel-Cohen SJ, Rosenfeld JB. Propranolol and hydralazine in the management of essential hypertension in pregnancy. British Journal of Obstetrics and Gynaecology 87: 110–114, 1980

    Article  PubMed  CAS  Google Scholar 

  • Branch RA, Shand DG. Propranolol disposition in chronic liver disease: a physiological approach. Clinical Pharmacokinetics 1: 264–279, 1976

    Article  PubMed  CAS  Google Scholar 

  • Briggs GG, Freeman RK, Yaffe SJ. Drugs in pregnancy and lactation — a reference guide to fetal and neonatal risk, 2nd ed., Williams and Wilkins, Baltimore, 1986

    Google Scholar 

  • Brown JE, Shand DG. Therapeutic drug monitoring of antiarrhythmic agents. Clinical Pharmacokinetics 7: 125–148, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brown Jr WU, Bell GC, Alper MH. Acidosis, local anesthetics, and the newborn. Obstetrics and Gynecology 48: 27–30, 1976

    PubMed  Google Scholar 

  • Bullock JL, Harris RE, Young R. Treatment of thyrotoxicosis during pregnancy with propranolol. American Journal of Obstetrics and Gynecology 121: 242–245, 1975

    PubMed  CAS  Google Scholar 

  • Campbell JW. A possible teratogenic effect of propranolol. New England Journal of Medicine 313: 518, 1985

    PubMed  CAS  Google Scholar 

  • Chan V, Tse TF, Wong V. Transfer of digoxin across the placenta and into breast milk. British Journal of Obstetrics and Gynaecology 85: 605–609, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Perucca E, Lee J, Richens A. Serum protein binding and free concentration of phenytoin and phenobarbitone in pregnancy. British Journal of Clinical Pharmacology 13: 547–552, 1982

    PubMed  CAS  Google Scholar 

  • Chesley LC. Renal functional changes in normal pregnancy. In Page (Ed.) Physiology of pregnancy, Vol. 3, pp. 349–363, Paul B. Hoeber, Inc, New York, 1960

    Google Scholar 

  • Committee on drugs. The transfer of drugs and other chemicals into human breast milk. Pediatrics 72: 375–383, 1983

    Google Scholar 

  • Conney AH. Pharmacologic implications of microsomal enzyme induction. Pharmacological Reviews 19: 317–366, 1967

    PubMed  CAS  Google Scholar 

  • Connolly SJ, Kates RE. Clinical pharmacokinetics of N-acetyl-procainamide. Clinical Pharmacokinetics 7: 206–220, 1982

    Article  PubMed  CAS  Google Scholar 

  • Cottrill CM, McAllister Jr RG, Gettes L, Noonan JA. Propranolol therapy during pregnancy, labor, and delivery: evidence for transplacental drug transfer and impaired neonatal drug disposition. Journal of Pediatrics 91: 812–814, 1977

    Article  PubMed  CAS  Google Scholar 

  • Dam M, Christiansen J, Munck O, Mygind KI. Antiepileptic drugs: metabolism in pregnancy. Clinical Pharmacokinetics 4: 53–62, 1979

    Article  PubMed  CAS  Google Scholar 

  • Davidsohn I, Henry JB. Clinical diagnosis by laboratory methods, W.B. Saunders, Philadelphia, 1974

    Google Scholar 

  • Davis M, Simmons CJ, Dordoni B, Maxwell JD. Induction of hepatic enzymes during normal human pregnancy. Journal of Obstetrics and Gynaecology of British Commonwealth 80: 690–694, 1973

    Article  CAS  Google Scholar 

  • Dean M, Stock B, Patterson J, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clinical Pharmacology and Therapeutics 28: 253–261, 1980

    Article  PubMed  CAS  Google Scholar 

  • Devlin RG, Duchin KL, Fleiss PM. Nadolol in human serum and breast milk. British Journal of Clinical Pharmacology 12: 393–396, 1981

    Article  PubMed  CAS  Google Scholar 

  • Diaz R, Madden JD. Long-term use of verapamil for control of persistent supraventricular tachycardia. American Journal of Diseases in Children 139: 443, 1985

    CAS  Google Scholar 

  • Dubois D, Petitcolas J, Temperville B, Klepper A. Beta blocker therapy in 125 cases of hypertension during pregnancy. Clinical and Experimental Hypertension — Hypertension in Pregnancy B2: 41–59, 1983

    Article  Google Scholar 

  • Dumesic DA, Silverman NH, Tobias S, Golbus MS. Transplacental cardioversion of fetal supraventricular tachycardia with procainamide. New England Journal of Medicine 307: 1128–1131, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dunlop W. Serial changes in renal haemodynamics during normal human pregnancy. British Journal of Obstetrics and Gynaecology 88(1): 109, 1981

    Google Scholar 

  • Eadie MJ, Lander CM, Tyrer JH. Plasma drug level monitoring in pregnancy. Clinical Pharmacokinetics 2: 427–436, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ehrnebo M, Agurell S, Jallin B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. European Journal of Clinical Pharmacology 3: 189–193, 1971

    Article  PubMed  CAS  Google Scholar 

  • Eliahou HE, Siverberg DS, Reisin E, Romen I, Mashiach S, et al. Propranolol for the treatment of hypertension in pregnancy. British Journal of Obstetrics and Gynaecology 85: 431–436, 1978

    Article  PubMed  CAS  Google Scholar 

  • Elkayam U, Gileicher N (Eds). Cardiac problems in pregnancy, pp. 153–160, Alan R. Liss, New York, 1982

    Google Scholar 

  • Eriksson M, Catz CS, Yaffe SJ. Drugs and pregnancy. Clinical Obstetrics and Gynecology 16C(1): 199–224, 1973

    Article  Google Scholar 

  • Fidler J, Smith V, DeSwiet M. Excretion of oxprenolol and timolol in breast milk. British Journal of Obstetrics and Gynaecology 90: 961–965, 1983

    Article  PubMed  CAS  Google Scholar 

  • Finley JP, Waxman MB, Wong PY, Lickrish GM. Journal of Pediatrics 94: 339–340, 1979

    PubMed  CAS  Google Scholar 

  • Freed CR, Gal J, Manchester DK. Dosage of phenytoin during pregnancy. Journal of the American Medical Association 253(19): 2833–2834, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gerber N, Lynn R, Bush M, Oates J. Relationship of plasma level of diphenylhydantoin (DPH) to the rate of excretion of urinary HPPH. Clinical Pharmacology and Therapeutics 13: 139, 1972

    Google Scholar 

  • Given BD, Phillippe M, Sanders SP, Dzau V. Procainamide cardioversion of fetal supraventricular tachyarrhythmia. American Journal of Cardiology 53: 1460–1461, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hamar C, Levy G. Serum protein binding of drugs and bilirubin in newborn infants and their mothers. Clinical Pharmacology and Therapeutics 28: 58–63, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hansch C, Leo A. The log P and related parameters database, Technical Database Services, Inc, New York, 1986

    Google Scholar 

  • Heaton FC, Vaughan R. Intrauterine supraventricular tachycardia: cardioversion with maternal digoxin. Obstetrics and Gynecology 60: 749–752, 1982

    PubMed  CAS  Google Scholar 

  • Herd JA, Franklin MJ, Metcalfe J. Circulatory adjustments of pregnancy. Clinical Obstetrics and Gynecology 3: 364–377, 1960

    Article  Google Scholar 

  • Herngren L, Ehrnebo M, Boreus LO. Drug binding to plasma proteins during human pregnancy and in the perinatal period. Developmental Pharmacology and Therapeutics 6: 110–124, 1983

    PubMed  CAS  Google Scholar 

  • Hicks JM, Brett EM. Falsely increased digoxin concentrations in sample from neonates and infants. Therapeutic Drug Monitoring 6: 461–464, 1984

    Article  PubMed  CAS  Google Scholar 

  • Hill LM, Malkasian GD. The use of quinidine sulfate throughout pregnancy. Obstetrics and Gynecology 54: 366–368, 1979

    PubMed  CAS  Google Scholar 

  • Hoffman BF, Rosen MR, Wit AL. Electrophysiology and pharmacology of cardiac arrhythmias. VII. Cardiac effects of quinidine and procainamide. American Heart Journal 90: 117–122, 1975

    Article  PubMed  CAS  Google Scholar 

  • Högstedt S, Lindberd B, Peng DR, Regårdh C-G, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clinical Pharmacology and Therapeutics 37: 688–692, 1985

    Article  PubMed  Google Scholar 

  • Holt DW, Walsh AC, Curry PV, Tynaw M. Paediatric use of mexiletine and disopyramide. British Medical Journal 2: 1476–1477, 1979

    Article  PubMed  CAS  Google Scholar 

  • Houghton GW, Richens A. Inhibition of phenytoin metabolism by sulthiame in epileptic patients. British Journal of Clinical Pharmacology 1: 59–66, 1974

    Article  PubMed  CAS  Google Scholar 

  • Hytten FE. Physiological adjustments in pregnancy. In McDonald (Ed.) Scientific basis of obstetrics and gynaecology, pp. 62–78, Churchill Livingstone, Edinburgh, 1978

    Google Scholar 

  • Hytten FE, Thomson AM. Water and electrolytes in pregnancy. British Medical Bulletin 24: 15–18, 1968

    Google Scholar 

  • Hytten FE, Thomson AM, Taggart N. Total body water in normal pregnancy. Journal of Obstetrics and Gynaecology of British Commonwealth 73: 553–561, 1966

    Article  CAS  Google Scholar 

  • Inoue H, Unno N, Ou M-C, Iwana Y, Sugimoto T. Level of verapamil in human milk. European Journal of Clinical Pharmacology 26: 657–658, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesan V, Krishnaswamy K. Drug binding in the undernourished: a study of the binding of propranolol to α1-acid glycoprotein. European Journal of Clinical Pharmacology 27: 657–659, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jensen OH. Fetal heart rate response to a controlled sound stimulus after propranolol administration to the mother. Acta Obstetrica and Gynecologica Scandinavica 63: 199–202, 1984

    Article  CAS  Google Scholar 

  • Juchau MR, Chao ST, Omiecinski CJ. Drug metabolism by the human fetus. Clinical Pharmacokinetics 5: 320–339, 1980

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Sato T, Suzuki K. The levels of anticonvulsants in breast milk. Correspondence. British Journal of Clinical Pharmacology 7: 624–627, 1979

    Article  PubMed  CAS  Google Scholar 

  • Karlberg B, Lundberg D, Aberg H. Excretion of propranolol in human breast milk. Acta Pharmacologica et Toxicologica 32: 222–224, 1974

    Google Scholar 

  • Kates RE. Calcium antagonists — pharmacokinetic properties. Drugs 25: 113–124, 1983

    Article  PubMed  CAS  Google Scholar 

  • Keefe DLD, Kates RE, Harrison DC. New antiarrhythmic drugs: their place in therapy. Drugs 22: 363–400, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kelliher GJ, Kowey P, Engel T, Wetstein L. Clinical pharmacology of antiarrhythmic agents. Cardiovascular Clinics 16: 287–305, 1985

    PubMed  CAS  Google Scholar 

  • Kim WY, Pomerance JJ, Miller AA. Lidocaine intoxication in a newborn following local anesthesia for episiotomy. Pediatrics 64: 643–645, 1979

    PubMed  CAS  Google Scholar 

  • Klein HO, Lang R, Weiss E, et al. The influence of verapamil on serum digoxin concentration. Circulation 65: 998–1073, 1982

    Article  PubMed  CAS  Google Scholar 

  • Klein V, Repke JT. Supraventricular tachycardia in pregnancy: cardioversion with verapamil. Obstetrics and Gynecology 63 (Suppl. 3): 16S–18S, 1984

    PubMed  CAS  Google Scholar 

  • Koren G, Farine D, Maresky D, Taylor J, Heyes J, et al. Significance of the endogenous digoxin-like substance in infants and mothers. Clinical Pharmacology and Therapeutics 36(6): 759–764, 1984

    Article  PubMed  CAS  Google Scholar 

  • Krauer B, Krauer F, Hytten FE. Drug disposition and pharmacokinetics in the maternal-placental-fetal unit. Pharmacology and Therapeutics 10: 301–328, 1980

    Article  PubMed  CAS  Google Scholar 

  • Krauer B, Krauer F, Hytten F, Lind T (Eds). Drug prescribing in pregnancy, Churchill Livingstone, Edinburgh, 1984

    Google Scholar 

  • Kuhnert BR, Knapp DR, Kuhnert PM, Prochaska AL. Maternal, fetal, and neonatal metabolism of lidocaine. Clinical Pharmacology and Therapeutics 26: 213–220, 1979

    PubMed  CAS  Google Scholar 

  • Kulas J, Lunell N-O, Rosing U, Steen B, Rane A. Atenolol and metoprolol: a comparison of their excretion into human breast milk. Acta Obstetrica et Gynecologica Scandinavica (Suppl.) 118: 65–69, 1984

    Article  CAS  Google Scholar 

  • Lamming GD, Pipkin FB, Symonds EM. Comparison of the alpha and beta blocking drug, labetalol, and methyldopa in the treatment of moderate and severe pregnancy-induced hypertension. Clinical and Experimental Hypertension 2(5): 865–895, 1980

    Article  PubMed  CAS  Google Scholar 

  • Lander CM, Edwards VE, Eadie MJ, Tyrer JH. Plasma anticonvulsant concentrations during pregnancy. Neurology 27: 128–131, 1977

    Article  PubMed  CAS  Google Scholar 

  • Lander CM, Smith MT, Chalk JB, de Wytt C, Symoniw P, et al. Bioavailability and pharmacokinetics of phenytoin during pregnancy. European Journal of Clinical Pharmacology 27: 105–110, 1984

    PubMed  CAS  Google Scholar 

  • Landon MJ, Kirkley M. Metabolism of diphenylhydantoin (phenytoin) during pregnancy. British Journal of Obstetrics and Gynaecology 86: 125–132, 1979

    Article  PubMed  CAS  Google Scholar 

  • Langer A, Hung CT, McA’Nulty JA, Harrigan JT, Washington E. Adrenergic blockade: a new approach to hyperthyroidism in pregnancy. Obstetrics and Gynecology 44: 181–186, 1974

    PubMed  CAS  Google Scholar 

  • Latini R, Tognoni G, Kates RE. Clinical pharmacokinetics of amiodarone. Clinical Pharmacokinetics 9: 136–156, 1984

    Article  PubMed  CAS  Google Scholar 

  • Levitan AA, Manion JC. Propranolol therapy during pregnancy and lactation. Correspondence. American Journal of Cardiology 32: 247, 1973

    PubMed  CAS  Google Scholar 

  • Levy G. Pharmacokinetic approaches to the study of drug interactions. Annals of the New York Academy of Science 281: 24–39, 1976

    Article  CAS  Google Scholar 

  • Levy M, Granit L, Laufer N. Excretion of drugs in human milk. New England Journal of Medicine 279: 789, 1977

    Google Scholar 

  • Liedholm H, Melander A, Bitzen P-O, Helm G, Lonnerholm G, et al. Accumulation of atenolol and metoprolol in human breast milk. European Journal of Clinical Pharmacology 20: 229–231, 1981

    Article  PubMed  CAS  Google Scholar 

  • Lien EJ, Kuwahana J, Koda RT. Diffusion of drugs into prostatic fluid and milk. Drug Intelligence and Clinical Pharmacy 8: 470–475, 1974

    CAS  Google Scholar 

  • Lima JJ, Kuritzky PM, Schentag JJ, Jusko WJ. Fetal uptake and neonatal disposition of procainamide and its acetylated metabolite: a case report. Pediatrics 61: 491–493, 1978

    PubMed  CAS  Google Scholar 

  • Lind T, Hytten FE. Blood glucose following oral loads of glucose maltose and starch during pregnancy. Proceedings of the Nutrition Society 28: 64A, 1969

    PubMed  CAS  Google Scholar 

  • Lindeberg S, Sandström B, Lundborg P, Regårdh C-G. Disposition of the adrenergic blocker metoprolol in the late-pregnant woman, the amniotic fluid, the cord blood, and the neonate. Acta Obstetrica et Gynecologica Scandinavica (Suppl.) 118: 61–64, 1984

    Article  CAS  Google Scholar 

  • Liston WA, Adjepon-Yamoah KK, Scott DB. Foetal and maternal lignocaine levels after paracervical block. British Journal of Anaesthesia 45: 750–754, 1973

    Article  PubMed  CAS  Google Scholar 

  • Little B. Water and electrolyte balance during pregnancy. Anesthesiology 26: 400–408, 1965

    Article  PubMed  CAS  Google Scholar 

  • Loughnan PM. Digoxin excretion human breast milk. Journal of Pediatrics 92: 1019–1020, 1978

    Article  PubMed  CAS  Google Scholar 

  • Lundborg P, Agren G, Ervik M, Lindberg S, Sandstrom B. Disposition of metoprolol in the newborn. British Journal of Clinical Pharmacology 12: 598–600, 1981

    Article  PubMed  CAS  Google Scholar 

  • Luxford AME, Kellaway GSM. Pharmacokinetics of digoxin in pregnancy. European Journal of Clinical Pharmacology 25: 117–121, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mason DT, DeMaria AN, Amsterdam EA, Zelis R, Massumi RA. Antiarrhythmic agents 1: mechanisms of action and clinical pharmacology. Drugs 5: 261–291, 1973

    Article  PubMed  CAS  Google Scholar 

  • McAnulty JH, Metcalfe J, Ueland K. General guidelines in the management of cardiac disease. Clinical Obstetrics and Gynecology 24: 773–788, 1981

    Article  PubMed  CAS  Google Scholar 

  • McKenna WJ, Harris L, Rowland E, Whitelaw A, Storey G, et al. Amiodarone therapy during pregnancy. American Journal of Cardiology 51: 1231–1233, 1983

    Article  PubMed  CAS  Google Scholar 

  • Melander A, Niklasson B, Ingermarsson I, Liedholm H, Schersten B, et al. Transplacental passage of atenolol in man. European Journal of Clinical Pharmacology 14: 93–94, 1978

    Article  PubMed  CAS  Google Scholar 

  • Meskin MS, Lien EJ. QSAR analysis of drug excretion into human breast milk. Journal of Clinical and Hospital Pharmacy 10: 269–278, 1985

    PubMed  CAS  Google Scholar 

  • Metcalfe J, McAnulty JH, Ueland K. Cardiovascular physiology. Clinical Obstetrics and Gynecology 24: 693–710, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mihaly GW, Moore G, Thomas J, Triggs EJ, Thomas D, et al. The pharmacokinetics and metabolism of the anilide local anesthetics in neonates. I. Lignocaine. European Journal of Clinical Pharmacology 13: 143–152, 1978

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Withers R, Bhamra R, Holt DW. Verapamil and breast-feeding. European Journal of Clinical Pharmacology 30: 125–126, 1986

    Article  PubMed  CAS  Google Scholar 

  • Munnel EW, Taylor CH. Liver blood flow in pregnancy — hepatic vein catherterization. Journal of Clinical Investigation 26: 952–956, 1947

    Article  Google Scholar 

  • Murad SHN, Tabsh KMA, Conklin KA, Shilyanski G, Ziadlourad F, et al. Verapamil: placental transfer and effects on maternal and fetal hemodynamics and atrioventricular conduction in the pregnant ewe. Anesthesiology 62: 49–53, 1985

    Article  PubMed  CAS  Google Scholar 

  • Mygind KI, Dam M, Christiansen J. Phenytoin and phenobarbitone plasma clearance during pregnancy. Acta Neurologica Scandinavica (Suppl.) 54: 160–166, 1976

    Article  CAS  Google Scholar 

  • Nau H. Clinical pharmacokinetics in pregnancy and perinatology. Developmental Pharmacology and Therapeutics 8: 149–181, 1985

    PubMed  CAS  Google Scholar 

  • Nimmo WS, Wilson J, Prescott LF. Narcotic analgesics and delayed gastric emptying during labour. Lancet 1: 890–893, 1975

    Article  PubMed  CAS  Google Scholar 

  • O’Hare MF, Kinney CD, Murnaghan GA, McDevitt DG. Pharmacokinetics of propranolol during pregnancy. European Journal of Clinical Pharmacology 27: 583–587, 1984

    Article  PubMed  Google Scholar 

  • O’Hare MF, Murnaghan GA, Russel CJ, Leahey WJ, Varma MPS, et al. Sotalol as a hypotensive agent in pregnancy. British Journal of Obstetrics and Gynaecology 87: 814–820, 1980

    Article  PubMed  Google Scholar 

  • Okada M, Inoue H, Nakamura Y, Kishimoto M. Excretion of diltiazem in human milk. New England Journal of Medicine 312: 992–993, 1985

    Article  PubMed  CAS  Google Scholar 

  • Okita GT, Plotz EJ, Davis ME. Placental transfer of radioactive digitoxin in pregnant women and its fetal distribution. Circulation Research 4: 376–380, 1956

    Article  PubMed  CAS  Google Scholar 

  • Opie LH. Antiarrhythmic agents. Lancet 1(8173): 861–8, 1980

    Article  PubMed  CAS  Google Scholar 

  • Penn IM, Barrett PA, Pannikote V, Barnaby PF, Campbell JB, et al. Amiodarone in pregnancy. American Journal of Cardiology 56: 196–197, 1985

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Crema A. Plasma protein binding of drugs in pregnancy. Clinical Pharmacokinetics 7: 336–352, 1982

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Makki K, Richens A. Is phenytoin metabolism dose dependent by enzyme saturation or by feedback inhibition? Clinical Pharmacology and Therapeutics 24: 46–51, 1978

    PubMed  CAS  Google Scholar 

  • Perucca E, Ruprah M, Richens A. Altered drug binding to serum proteins in pregnant women: therapeutic relevance. Journal of the Royal Society of Medicine 74: 422–426, 1981

    PubMed  CAS  Google Scholar 

  • Petrie RH, Paul WL, Miller FC, Arce JJ, Paul RH, et al. Placental transfer of lidocaine following paracervical block. American Journal of Obstetrics and Gynecology 120: 791–801, 1974

    PubMed  CAS  Google Scholar 

  • Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clinical Pharmacokinetics 5: 246–262, 1980

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borga O. Plasma protein binding of basic drugs. Clinical Pharmacology and Therapeutics 22: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology 26: 393–399, 1965

    Article  PubMed  CAS  Google Scholar 

  • Pitcher D, Leather HM, Storey GCA, Holt DW. Amiodarone in pregnancy. Lancet 1: 597–598, 1983

    Article  PubMed  CAS  Google Scholar 

  • Pittard III WB, Glazier H. Procainamide excretion in human milk. Journal of Pediatrics 102(4): 631–633, 1983

    Article  PubMed  Google Scholar 

  • Ramsay RE, Strauss RG, Wilder BJ, Willmore LJ. Status epilepticus in pregnancy: effect of phenytoin malabsorption on seizure control. Neurology 28: 85–89, 1978

    Article  PubMed  CAS  Google Scholar 

  • Rane A, Garle M, Borga O, Sjoqvist F. Plasma disappearance of transplacentally transferred diphenylhydantoin in the newborn studied by mass fragmentography. Clinical Pharmacology and Therapeutics 15: 39–45, 1974

    PubMed  CAS  Google Scholar 

  • Rane A, Hoppel C, Hojer B. Kinetics of placentally transferred phenytoin and its p-hydroxylated metabolites in newborn infants. British Journal of Clinical Pharmacology 8: 465–468, 1979

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen F. Excretion of drugs by milk. In Brodie & Gillette (Eds) Concepts in biochemical pharmacology, handbook of experimental pharmacology, Part I, pp. 390–402, Springer, Berlin, 1971

    Chapter  Google Scholar 

  • Rebound P, Groulade J, Groslambert P, Colombo M. The influence of normal pregnancy and the postpartum state on plasma proteins and lipids. American Journal of Obstetrics and Gynecology 86: 820–828, 1963

    Google Scholar 

  • Regårdh CG. Pharmacokinetic aspects of some β-adrenoreceptor blocking drugs. Acta Medica Scandinavica (Suppl. 665): 49–60, 1982

    Google Scholar 

  • Regårdh C-G, Johnsson G. Clinical pharmacokinetics of metoprolol. Clinical Pharmacokinetics 5: 557–569, 1980

    Article  PubMed  Google Scholar 

  • Reynolds F, Taylor G. Maternal and neonatal blood concentrations of bupivacaine. Anaesthesia 25: 14–23, 1970

    Article  PubMed  CAS  Google Scholar 

  • Richens A. Clinical pharmacokinetics of phenytoin. Clinical Pharmacokinetics 4: 153–169, 1979

    Article  PubMed  CAS  Google Scholar 

  • Robson DJ, Jeeva Raj MV, Storey GCA, Holt DW. Use of amiodarone during pregnancy. Postgraduate Medical Journal 61: 75–77, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rogers MC, Willerson JT, Goldblatt A, Smith TW. Serum digoxin concentrations in the human fetus, neonate and infant. New England Journal of Medicine 287: 1010–1013, 1972

    Article  PubMed  CAS  Google Scholar 

  • Rotmensch HH, Elkayam U, Frishman W. Antiarrhythmic drug therapy during pregnancy. Annals of Internal Medicine 98: 487–497, 1983

    PubMed  CAS  Google Scholar 

  • Rotmensch HH, Graf E, Ayzenberg O, Amir C, Laniado S. Self-poisoning with digitalis glycosides: successful treatment of three cases. Israel Journal of Medical Sciences 13: 1109–1113, 1977

    PubMed  CAS  Google Scholar 

  • Routledge PA, Shand DG. Clinical pharmacokinetics of propranolol. Clinical Pharmacokirtetics 4: 73–90, 1979

    Article  CAS  Google Scholar 

  • Saarikoski S. Placental transfer and fetal uptake of 3H-digoxin in humans. British Journal of Obstetrics and Gynaecology 83: 879–884, 1976

    Article  PubMed  CAS  Google Scholar 

  • Sabom MB, Curry Jr RC, Wise DE. Propranolol therapy during pregnancy in a patient with idiopathic hypertrophic subaortic stenosis: is it safe? Southern Medical Journal 71: 328–329, 1978

    Article  PubMed  CAS  Google Scholar 

  • Sandström B. Adrenergic beta-receptor blockers in hypertension of pregnancy. Clinical and Experimental Hypertension B1: 127–141, 1982

    Google Scholar 

  • Sandström B. Antihypertensive treatment with the adrenergic beta-receptor blocker metoprolol during pregnancy. Gynecologic and Obstetric Investigation 9: 195–204, 1978

    Article  Google Scholar 

  • Sandström B, Regårdh C-G. Metoprolol excretion into breast milk. British Journal of Clinical Pharmacology 9: 518–519, 1980

    Article  PubMed  Google Scholar 

  • Scanlon JW, Brown JRWU, Weiss JB, Alper ME. Neurobehavioral responses of newborn infants after maternal epidural anesthesia. Anesthesiology 40: 121–128, 1974

    Article  PubMed  CAS  Google Scholar 

  • Shapiro S, Hartz SC, Siskind V, Mitchell AA, Slone D, et al. Anti-convulsants and parental epilepsy in the development of birth defects. Lancet 1: 272–275, 1976

    Article  PubMed  CAS  Google Scholar 

  • Shaxted EJ, Milton PJ. Disopyramide in pregnancy: a case report. Current Medical Research and Opinion 6: 70–72, 1979

    Article  PubMed  CAS  Google Scholar 

  • Sherman JL, Locke RV. Transplacental neonatal digitalis intoxication. American Journal of Cardiology 6: 834–837, 1960

    Article  Google Scholar 

  • Sherwin AL, Loynd JS, Bock GW, Sokolowski CD. Effects of age, sex, obesity, and pregnancy on plasma diphenylhydantoin levels. Epilepsia 15: 507–521, 1974

    Article  PubMed  CAS  Google Scholar 

  • Shnider SM, Way EL. Plasma levels of lidocaine (xylocaine) in mother and newborn following obstetrical conduction anesthesia: clinical applications. Anesthesiology 29: 951–958, 1968

    Article  PubMed  CAS  Google Scholar 

  • Shnider SM, Way EL. The kinetics of transfer of lidocaine (xylocaine) across the human placenta. Anesthesiology 29: 944–950, 1968

    PubMed  CAS  Google Scholar 

  • Singh BN, Ellrodt G, Peter CT. Verapamil: a review of its pharmacological properties and therapeutic use. Drugs 15: 169–197, 1978

    Article  PubMed  Google Scholar 

  • Singh BN, Jewitt DE. β-Adrenergic receptor blocking drugs in cardiac arrhythmias. Drugs 7: 426–461, 1974

    Article  PubMed  CAS  Google Scholar 

  • Sloman JG, Hunt D, Vohra J. Oral disopyramide in the management of cardiac arrhythmias. Medical Journal of Australia 1: 176–179, 1977

    Google Scholar 

  • Smith MT, Livingstone I, Hooper WD, Eadie MJ, Triggs EJ. Propranolol, propranolol glucuronide, and naphthoxylactic acid in breast milk and plasma. Therapeutic Drug Monitoring 5: 87–93, 1983

    Article  PubMed  CAS  Google Scholar 

  • Song CS, Merkatz FR, Rifkind AB, Gillette PN, Kappas A. The influence of pregnancy and oral contraceptive steroids on the concentration of plasma proteins. American Journal of Obstetrics and Gynecology 108: 227–231, 1970

    PubMed  CAS  Google Scholar 

  • Spinnato JA, Shaver DC, Flinn GS, Sibai BM, Watson DL, et al. Fetal supraventricular tachycardia: in utero therapy with digoxin and quinidine. Obstetrics and Gynecology 64: 730–735, 1984

    PubMed  CAS  Google Scholar 

  • Stock B, Dean M, Levy G. Serum protein binding of drugs during and after pregnancy in rats. Journal of Pharmacology and Experimental Therapeutics 212: 264–212, 1980

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Ramanathan KB. Medical intelligence current concepts: management of medical problems in pregnancy — severe cardiac disease. New England Journal of Medicine 313: 304–310, 1985

    Article  PubMed  CAS  Google Scholar 

  • Sung RF, Elser B, McAllister Jr RG. Intravenous verapamil for termination of reentrant supraventricular tachycardias: intracardiac studies correlated with plasma verapamil concentrations. Annals of Internal Medicine 93: 682–689, 1980

    PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Baxter JG, Lalka D. Free drug monitoring in clinical practice: rationale and current status. Clinical Pharmacokinetics 11: 450–469, 1986

    Article  PubMed  CAS  Google Scholar 

  • Tamari I, Eldar M, Rabinowitz B, Neufeld HN, Israel T. Medical treatment of cardiovascular disorders during pregnancy. American Heart Journal 104: 1357–1363, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tcherdakoff PH, Colliard M, Berrard E, Kreft C, Dupay A, et al. Propranolol in hypertension during pregnancy. British Medical Journal 2: 670, 1978

    Article  PubMed  CAS  Google Scholar 

  • Teuscher A, Bossi E, Imhof P, Erb E, Stocker FP, et al. Effect of propranolol on fetal tachycardia in diabetic pregnancy. American Journal of Cardiology 42: 304–307, 1978

    Article  PubMed  CAS  Google Scholar 

  • Timmis AD, Jackson G, Holt DW. Mexiletine for control of ventricular dysrhythmias in pregnancy. Lancet 2: 647–648, 1980

    Article  PubMed  CAS  Google Scholar 

  • Tucker GT, Boyes RN, Bridenbaugh PO, Moore DC. Binding of anilide-type local anesthetics in human plasma. II. Implications in vivo, with special reference to transplacental distribution. Anesthesiology 33: 304–314, 1970

    Article  PubMed  CAS  Google Scholar 

  • Turner GM, Oakley CM, Dixon HG. Management of pregnancy complicated by hypertrophic obstructive cardiomyopathy. British Medical Journal 4: 281–284, 1968

    Article  PubMed  CAS  Google Scholar 

  • Ueland K, McAnulty J, Ueland FR, Metcalfe J. Special considerations in the use of cardiovascular drugs. Clinical Obstetrics and Gynecology 24: 809–819, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wandell M, Wilcox-Thole WL. Protein binding and free drug concentrations. In Mungall (Ed.) Applied clinical pharmacokinetics, pp. 17–48, Raven Press, New York, 1983

    Google Scholar 

  • Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18(4): 377–390, 1975

    PubMed  CAS  Google Scholar 

  • Welch RM, Findlay JWA. Excretion of drugs in human breast milk. Drug Metabolism Reviews 12: 261–277, 1981

    Article  PubMed  CAS  Google Scholar 

  • White WB. Management of hypertension during lactation. Hypertension 6: 297–300, 1984

    Article  PubMed  CAS  Google Scholar 

  • White WB, Andreoli JW, Wong SH, Cohn RD. Atenolol in human plasma and breast milk. Obstetrics and Gynecology (Suppl.) 63: 42S–44S, 1984

    CAS  Google Scholar 

  • Wilkinson GR, Shand DG. A physiologic approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18: 377–390, 1975

    PubMed  CAS  Google Scholar 

  • Wilson JT, Brown RD, Cherek DR, Dailey JW, Human B, et al. Drug excretion in human breast milk: principles, pharmacokinetics, and projected consequences. Clinical Pharmacokinetics 5: 1–66, 1980

    Article  PubMed  CAS  Google Scholar 

  • Winkle RA, Glantz SA, Harrison DC. Pharmacologic therapy of ventricular arrhythmias. American Journal of Cardiology 36: 629–647, 1975

    Article  PubMed  CAS  Google Scholar 

  • Wit AL, Rosen MR, Hoffman BF. Electrophysiology and pharmacology of cardiac arrhythmias. VIII. Cardiac effects of diphenylhydantoin. American Heart Journal 90: 397–404, 1975

    Article  PubMed  CAS  Google Scholar 

  • Wladimiroff JW, Stewart PA. Fetal therapy: treatment of fetal cardiac arrhythmias. British Journal of Hospital Medicine 34: 134–140, 1985

    PubMed  CAS  Google Scholar 

  • Wolff F, Breuker KH, Schlensker KH, Bolte A. Prenatal diagnosis and therapy of fetal heart rate anomalies: with a contribution on the placental transfer of verapamil. Journal of Perinatal Medicine 8: 203–208, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wood M, Wood AJJ. Changes in plasma drug binding and α1 acid glycoprotein in mother and newborn infant. Clinical Pharmacology and Therapeutics 29: 522–526, 1981

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Sugiyama Y, Sawada Y, Iga T, Hanano M, et al. Effect of late pregnancy on salicylate, diazepam, warfarin, and propranolol binding: use of fluorescent probes. Clinical Pharmacology and Therapeutics 36: 201–208, 1984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitani, G.M., Steinberg, I., Lien, E.J. et al. The Pharmacokinetics of Antiarrhythmic Agents in Pregnancy and Lactation. Clin-Pharmacokinet 12, 253–291 (1987). https://doi.org/10.2165/00003088-198712040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198712040-00002

Keywords

Navigation