Skip to main content
Log in

Clinical Pharmacokinetics of Metformin

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The biguanide metformin (dimethylbiguanide) is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus (NIDDM). Considerable renewal of interest in this drug has been observed in recent years.

Metformin can be determined in biological fluids by various methods, mainly using high performance liquid chromatography, which allows pharmacokinetic studies in healthy volunteers and diabetic patients. Metformin disposition is apparently unaffected by the presence of diabetes and only slightly affected by the use of different oral formulations.

Metformin has an absolute oral bioavailability of 40 to 60%, and gastrointestinal absorption is apparently complete within 6 hours of ingestion. An inverse relationship was observed between the dose ingested and the relative absorption with therapeutic doses ranging from 0.5 to 1.5g, suggesting the involvement of an active, saturable absorption process. Metformin is rapidly distributed following absorption and does not bind to plasma proteins. No metabolites or conjugates of metformin have been identified. The absence of liver metabolism clearly differentiates the pharmacokinetics of metformin from that of other biguanides, such as phenformin.

Metformin undergoes renal excretion and has a mean plasma elimination half-life after oral administration of between 4.0 and 8.7 hours. This elimination is prolonged in patients with renal impairment and correlates with creatinine clearance.

There are only scarce data on the relationship between plasma metformin concentrations and metabolic effects. Therapeutic levels may be 0.5 to 1.0 mg/L in the fasting state and 1 to 2 mg/L after a meal, but monitoring has little clinical value except when lactic acidosis is suspected or present. Indeed, when lactic acidosis occurs in metformin-treated patients, early determination of the metformin plasma concentration appears to be the best criterion for assessing the involvement of the drug in this acute condition. After confirmation of the diagnosis, treatment should rapidly involve forced diuresis or haemodialysis, both of which favour rapid elimination of the drug. Although serious, lactic acidosis due to metformin is rare and may be minimised by strict adherence to prescribing guidelines and contraindications, particularly the presence of renal failure.

Finally, only very few drug interactions have been described with metformin in healthy volunteers. Plasma levels may be reduced by guar gum and α-glucosidase inhibitors and increased by cimetidine, but no data are yet available in the diabetic population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey CJ. Biguanides and NIDDM. Diabetes Care 1992; 15: 755–72

    Article  PubMed  CAS  Google Scholar 

  2. Hermann LS, Melander A. Biguanides: basic aspects and clinical uses. In: Alberti KGMM, DeFronzo RA, Keen H, et al., editors. International textbook of diabetes mellitus. Chichester: Wiley, 1992: 773–95

    Google Scholar 

  3. Lefèbvre PJ, Scheen AJ. Management of non-insulin-dependent diabetes mellitus. Drugs 1992; 44 Suppl. 3: 29–38

    Article  PubMed  Google Scholar 

  4. Dunn CJ, Peters DH. Metformin: a review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 1995; 49: 721–49

    Article  PubMed  CAS  Google Scholar 

  5. Scheen AJ, Lefèbvre PJ. Pathophysiology of type 2 diabetes. In: Kuhlmann J, Puls W, editors. Handbook of experimental pharmacology, oral antidiabetics. Berlin: Springer Verlag, 1996: 7–42

    Google Scholar 

  6. Cohen RD, Woods HF. Lactic acidosis revisited. Diabetes 1983; 32: 181–91

    PubMed  CAS  Google Scholar 

  7. Schäfer G. Biguanides: a review of history, pharmacodynamics and therapy. Diabete Metab 1983; 9: 148–63

    PubMed  Google Scholar 

  8. Sirtori CR, Pasik C. Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res 1994; 30: 187–228

    Article  PubMed  CAS  Google Scholar 

  9. Andreani D, Lefèbvre P, editors. Metformin: mechanisms of action and clinical use. Diabetes Metab Rev 1995; 11 Suppl. 1: S1–S108

    Article  Google Scholar 

  10. DeFronzo RA, Goodman AN, Multicenter Metformin Study Group. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333: 541–9

    Article  PubMed  CAS  Google Scholar 

  11. Pignard P. Dosage spectrophotométrique du N-N-diméthyl biguanide dans le sang et l’urine. Ann Biol Clin 1962; 20: 325–33

    CAS  Google Scholar 

  12. Garrett ER, Tsau J, Hinderling PH. Application of ion-pair methods to drug extraction from biological fluids: II. Quantitative determination of biguanides in biological fluids and comparison of protein binding estimates. J Pharm Sci 1972; 61: 1411–8

    Article  PubMed  CAS  Google Scholar 

  13. Sirtori CR, Franceschini G, Galli-Kienle M, et al. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 1978; 24: 683–93

    PubMed  CAS  Google Scholar 

  14. Lennard MS, Casey C, Tucker GT, et al. Determination of metformin in biological samples. Br J Clin Pharmacol 1978; 6: 183–5

    Article  PubMed  CAS  Google Scholar 

  15. Brohon J, Noel M. Determination of metformin in plasma at therapeutic levels by gas-liquid chromatography using nitrogen detector. J Chromatogr 1978; 146: 148–51

    Article  PubMed  CAS  Google Scholar 

  16. Charles BG, Jacobsen NW, Ravenscroft PJ. Rapid liquid-chromatographic determination of metformin in plasma and urine. Clin Chem 1981; 27: 434–6

    PubMed  CAS  Google Scholar 

  17. Benzi L, Marchetti P, Cecchetti P, et al. Determination of metformin and phenformin in human plasma and urine by reverse-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl 1986; 375: 184–9

    Article  CAS  Google Scholar 

  18. Lacroix C, Danger P, Wojciechowski F. Microdosage de la metformine plasmatique et intra-érythrocytaire par Chromatographie en phase liquide. Ann Biol Clin 1991; 49: 98–101

    CAS  Google Scholar 

  19. Huupponen R, Ojala Karlsson P, Rouru J, et al. Determination of metformin in plasma by high-performance liquid chromatography. J Chromatogr Biomed Appl 1992; 583: 270–3

    Article  CAS  Google Scholar 

  20. Ohta M, Iwasaki M, Kai M, et al. Determination of a biguanide, metformin, by high-performance liquid chromatography with precolumn fluorescence derivatization. Anal Sci 1993; 9: 217–20

    Article  CAS  Google Scholar 

  21. Rizk MS, Abdel Fattah HM, Issa YM, et al. A new metformin selective plastic membrane electrode based on metformin tetraphenylborate. Anal Lett 1993; 26: 415–28

    Article  CAS  Google Scholar 

  22. Caille G, Lacasse Y, Raymond M, et al. Bioavailability of metformin in tablet form using a new high pressure liquid chromatography assay method. Biopharm Drug Dispos 1993; 14: 257–63

    Article  PubMed  CAS  Google Scholar 

  23. Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 1979; 16: 195–202

    Article  PubMed  Google Scholar 

  24. Tucker GT, Casey C, Phillips PJ, et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 1981; 12: 235–46

    Article  PubMed  CAS  Google Scholar 

  25. Sambol NC, O’Connor MD, Lin ET, et al. Pharmacokinetics (PK) and pharmacodynamics (PD) of metformin HC1 (Met) in healthy (H) individuals and individuals with noninsulin-dependent diabetes mellitus (NIDDM) [abstract]. Clin Pharmacol Ther 1993; 53: 211

    Google Scholar 

  26. Noel M. Kinetic study of normal and sustained release dosage forms of metformin in normal subjects. Res Clin For 1979; 1: 35–45

    CAS  Google Scholar 

  27. Isnard F, Lavieuville M, Gut M. Pharmacocinétique de la metformine. In: Journées de Diabétologie de l’Hôtel-Dieu. Paris: Flammarion, Médecine-Sciences, 1980: 305–12

    Google Scholar 

  28. Karttunen P, Uusitupa M, Lamminsivu U. The pharmacokinetics of metformin: a comparison of the properties of a rapid-release and a sustained-release preparation. Int J Clin Pharmacol Ther Toxicol 1983; 21: 31–6

    PubMed  CAS  Google Scholar 

  29. Arafat T, Kaddoumi A, Shami M, et al. Pharmacokinetics and pharmacodynamics of two oral formulations of metformin hydrochloride. Adv Ther 1994; 11: 21–33

    Google Scholar 

  30. Brookes LO, Sambol NC, Lin ET, et al. Effect of dosage form, dose and food on the pharmacokinetics of metformin [abstract]. Pharm Res 1991; 8 Suppl.: S320

  31. Pentikäinen PJ. Bioavailability of metformin: comparison of solution, rapidly dissolving tablet, and three sustained release products. Int J Clin Pharmacol Ther Toxicol 1986; 24: 213–20

    PubMed  Google Scholar 

  32. Beckmann R. Resorption, Verteilung im Organismus und Ausscheidung von Metformin. Diabetologia 1969; 5: 318–24

    Article  PubMed  CAS  Google Scholar 

  33. Vidon N, Chaussade S, Noel M, et al. Metformin in the digestive tract. Diabetes Res Clin Pract 1988; 4: 223–9

    Article  PubMed  CAS  Google Scholar 

  34. Bailey CJ, Wilcock C, Turner SL. Subcellular localization of metformin [abstract]. Diabetologia 1991; 34 Suppl. 2: A29

    Google Scholar 

  35. Debry G, Cherrier FP. Etude du mode d’excrétion du NN diméthyl-biguanide chez le diabétique adulte. Therapie 1965; 20: 351–8

    PubMed  CAS  Google Scholar 

  36. Hermann LS. Metformin: a review of its pharmacological properties and therapeutic use. Diabete Metab 1979; 5: 233–45

    PubMed  CAS  Google Scholar 

  37. Coetzee EJ, Jackson WP. Metformin in management of pregnant insulin-dependent diabetics. Diabetologia 1979; 16: 241–5

    Article  PubMed  CAS  Google Scholar 

  38. Bruneder H, Klein HJ, Isnard F, et al. Fasting metformin levels in ambulatory treated diabetic patients [abstract]. Excerpta Medica 1979;ICS 481: 33,82P

    Google Scholar 

  39. Marchetti P, Gregorio F, Benzi L, et al. Diurnal pattern of plasma metformin concentrations and its relation to metabolic effects in type 2 (non-insulin-dependent) diabetic patients. Diabete Metab 1990; 16: 473–8

    PubMed  CAS  Google Scholar 

  40. Swift CG, McLaren S, MacLean D, et al. Plasma concentrations of oral hypoglycaemic drugs in diabetic clinic patients [abstract]. Br J Clin Pharmacol 1979; 8: 406P–7P

    Article  PubMed  CAS  Google Scholar 

  41. Marchetti P, Navalesi R. Pharmacokinetic-pharmacodynamic relationships of oral hypoglycaemic agents: an update. Clin Pharmacokinet 1989; 16: 100–28

    Article  PubMed  CAS  Google Scholar 

  42. Marchetti P, Benzi L, Cecchetti P, et al. Plasma biguanide levels are correlated with metabolic effects in diabetic patients. Clin Pharmacol Ther 1987; 41: 450–4

    Article  PubMed  CAS  Google Scholar 

  43. Marchetti P, Benzi L, Cerri M, et al. Effect of plasma metformin concentrations on serum lipid levels in type II diabetic patients. Acta Diabetol Lat 1988; 25: 55–62

    Article  PubMed  CAS  Google Scholar 

  44. Benzi L, Trischitta V, Ciccarone A, et al. Improvement with metformin in insulin internalization and processing in monocytes from NIDDM patients. Diabetes 1990; 39: 844–9

    Article  PubMed  CAS  Google Scholar 

  45. Mclntyre HD, Paterson CA, Ma A, et al. Metformin increases insulin sensitivity and basal glucose clearance in type 2 (non-insulin dependent) diabetes mellitus. Aust NZ J Med 1991; 21: 714–9

    Article  Google Scholar 

  46. Hermann LS, Scherstén B, Melander A. Antihyperglycaemic efficacy, response prediction and dose-response relations of treatment with metformin and sulphonylurea, alone and in primary combination. Diabetic Med 1994; 11: 953–60

    Article  PubMed  CAS  Google Scholar 

  47. Campbell IW. Metformin and the sulphonylureas: the comparative risk. Horm Metab Res 1985; 15 Suppl.: 105–11

    CAS  Google Scholar 

  48. Irsigler K, Kritz H, Regal H, et al. Biguanid-induzierte und Biguanid-assoziierte Laktazidose: Serum und Gewebsspiegel der Biguanide bei Hyperlaktämie und Laktazidose. Wien Klin Wochenschr 1979; 91: 59–65

    PubMed  CAS  Google Scholar 

  49. Perrot D, Claris O, Guillaume C, et al. Metformine et acidose lactique: intérêt du dosage plasmatique initial de metformine et de l’hémodialyse. Ann Med Interne (Paris) 1986;137: 169–70

    CAS  Google Scholar 

  50. Lambert H, Isnard F, Delorme N, et al. Approche physiopathologique des hyperlactatémies pathologiques chez le diabétique: intérêt de la metforminémie. Ann Fr Anesth Reanim 1987; 6: 88–94

    Article  PubMed  CAS  Google Scholar 

  51. Lalau JD, Lacroix C, Compagnon P, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care 1995; 18: 779–84

    Article  PubMed  CAS  Google Scholar 

  52. Lacroix C, Hermelin A, Gerson M, et al. Acidose lactique imputable à la meformine. Intérêt des taux intraérythrocytaires. Presse Med 1988; 17: 1158

    PubMed  CAS  Google Scholar 

  53. Lalau JD, Lacroix C. Lessons from in vivo and in vitro studies of metformin concentrations in plasma and in erythrocytes [abstract]. Diabetologia 1992; 35 Suppl.: A199

    Google Scholar 

  54. Stocks AE, Schneider JJ, Ma A, et al. Metformin therapy in chronic renal insufficiency [abstract]. Diabetic Med 1987; 4: 580A

    Google Scholar 

  55. Assan R, Heuclin C, Ganeval D, et al. Metformin induced lactic acidosis in the presence of acute renal failure. Diabetologia 1977; 13: 211–17

    Article  PubMed  CAS  Google Scholar 

  56. Lalau JD, Westeel PF, Debussche X, et al. Bicarbonate haemodialysis: an adequate treatment for lactic acidosis in diabetics treated by metformin. Intensive Care Med 1987; 13: 383–7

    Article  PubMed  CAS  Google Scholar 

  57. Lalau JD, Debussche X, Fournier A, et al. Prise en charge et traitement de 1’acidose lactique. In: Journées de Diabétologie de l’Hôtel-Dieu. Paris: Flammarion, Médecine-Sciences, 1990: 89–103

    Google Scholar 

  58. Lalau JD, Andrejak M, Morinière P, et al. Hemodialysis in the treatment of lactic acidosis in diabetics treated by metformin: a study of metformin elimination. Int J Clin Pharmacol Ther Toxicol 1989: 27: 285–8

    PubMed  CAS  Google Scholar 

  59. Morley JE, Perry HM. The management of diabetes mellitus in older individuals. Drugs 1991; 41: 548–65

    Article  PubMed  CAS  Google Scholar 

  60. Knight PV, Semple CG, Kesson CM. The use of metformin in the older patient. J Clin Exp Gerontol 1986; 8: 51–8

    Google Scholar 

  61. Chalmers J, McBain AM, Brown IRF, et al. Metformin: is its use contraindicated in the elderly? Pract Diabetes 1992; 9: 51–3

    Article  Google Scholar 

  62. Alberti KGMM, Gries FA. Management of non-insulin-dependent diabetes mellitus in Europe. A consensus view. Diabetic Med 1988; 5: 275–81

    Article  PubMed  CAS  Google Scholar 

  63. Lalau JD, Vermersch A, Hary L, et al. Type 2 diabetes in the elderly: an assessment of metformin (metformin in the elderly). Int J Clin Pharmacol Ther Toxicol 1990; 28: 329–32

    PubMed  CAS  Google Scholar 

  64. Bismuth C, Gaultier M, Conso F, et al. Acidose lactique induite par l’ingestion excessive de metformine. Nouv Presse Med 1976; 5: 261–3

    PubMed  CAS  Google Scholar 

  65. Larcan A, Lambert H, Ginsbourger F. Acute intoxication by metformin (instead of phenformin) hyperlactatemia reversible with extra-renal purification. Vet Hum Toxicol 1979; 21 Suppl.: 19–22

    PubMed  Google Scholar 

  66. McLelland J. Recovery from metformin overdose. Diabetic Med 1985; 2: 410–1

    Article  PubMed  CAS  Google Scholar 

  67. Beaudot C, Merceron RE, Joffroy Lavieuville MJ, et al. Hyperlactacidémie réversible chez un diabétique prenant une posologie excessive de metformine. Diabète Metab 1980; 6: 199–203

    PubMed  CAS  Google Scholar 

  68. Scheen AJ, Lefèbvre PJ. Antihyperglycaemic agents: drug interactions of clinical importance. Drug Safety 1995; 12: 32–45

    Article  PubMed  CAS  Google Scholar 

  69. Scheen AJ, Ferreira Alves de Magalhaes AC, Salvatore T, et al. Reduction of the acute bioavailability of metformin by the alpha-glucosidase inhibitor acarbose in normal man. Eur J Clin Invest 1994; 24 Suppl. 3: 50–4

    Article  PubMed  CAS  Google Scholar 

  70. Chiasson JL, Josse RG, Hunt JA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med 1994; 121: 928–35

    PubMed  CAS  Google Scholar 

  71. Somogyi A, Stockley C, Keal J, et al. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 1987; 23: 545–51

    Article  PubMed  CAS  Google Scholar 

  72. Gin H, Orgerie MB, Aubertin J. The influence of guar gum on absorption of metformin from the gut in healthy volunteers. Horm Metab Res 1989; 21: 81–3

    Article  PubMed  CAS  Google Scholar 

  73. Scheen AJ, Lefèbvre PJ. Pharmacological treatment of the obese diabetic patient. Diabète Metab 1993; 19: 547–59

    PubMed  CAS  Google Scholar 

  74. Scheen AJ, Lefèbvre PJ. La metformine: des effets métaboliques aux indications thérapeutiques. Med Hyg (Geneve) 1993; 51: 1993–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheen, A.J. Clinical Pharmacokinetics of Metformin. Clin-Pharmacokinet 30, 359–371 (1996). https://doi.org/10.2165/00003088-199630050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630050-00003

Keywords

Navigation