Skip to main content
Erschienen in: Clinical Pharmacokinetics 7/2001

01.07.2001 | Leading Article

Morphine-6-Glucuronide

An Analgesic of the Future?

verfasst von: Dr Jörn Lötsch, Gerd Geisslinger

Erschienen in: Clinical Pharmacokinetics | Ausgabe 7/2001

Einloggen, um Zugang zu erhalten

Abstract

Morphine-6-β-glucuronide (M6G) is an opioid agonist that plays a role in the clinical effects of morphine. Although M6G probably crosses the blood-brain barrier with difficulty, during long term morphine administration it may reach sufficiently high CNS concentrations to exert clinically relevant opioid effects. As a consequence of its almost exclusive renal elimination, M6G may accumulate in the body of patients with impaired renal function and cause severe opioid adverse effects with insidious onset and long persistence.
Its profile of receptor affinities, however, gives reason to speculate that M6G may exhibit analgesic effects while causing fewer adverse effects than morphine. This is supported by reports of the good tolerability of intrathecal and intravenous injections of M6G in humans with intact renal function. M6G may thus be contemplated as an analgesic for short term postoperative analgesia, especially for intrathecal analgesic therapy. In addition, its possibly higher potency than morphine makes M6G a candidate opioid for local or peripheral analgesic therapy. However, current knowledge is too incomplete to finally judge the clinical usefulness of M6G. The next topics for clinical research on M6G should include: (i) a comparison of the potencies of M6G and morphine to cause wanted and unwanted clinical effects; (ii) development of a predictive population pharmacokinetic-pharmacodynamic model of M6G with calculation of the transfer half-life between plasma and effect site; and (iii) identification of cofactors influencing the action of M6G that can serve as predictors for the clinical outcome of morphine/M6G therapy in an individual including the pharmacogenetics of M6G.
Literatur
1.
Zurück zum Zitat Hasselström J, Alexander N, Bringel C, et al. Single-dose and steady-state kinetics of morphine and its metabolites in cancer patients: a comparison of two oral formulations. Eur J Clin Pharmacol 1991; 40: 585–91PubMed Hasselström J, Alexander N, Bringel C, et al. Single-dose and steady-state kinetics of morphine and its metabolites in cancer patients: a comparison of two oral formulations. Eur J Clin Pharmacol 1991; 40: 585–91PubMed
2.
Zurück zum Zitat Kamata O, Watanabe S, Ishii S, et al. Analgesic effect of morphine glucuronides. Proceedings of the 89th Meeting Pharmacology Society of Japan; 1969: 443 Kamata O, Watanabe S, Ishii S, et al. Analgesic effect of morphine glucuronides. Proceedings of the 89th Meeting Pharmacology Society of Japan; 1969: 443
3.
Zurück zum Zitat Tiseo PJ, Thaler HT, Lapin J, et al. Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain 1995; 61: 47–54PubMedCrossRef Tiseo PJ, Thaler HT, Lapin J, et al. Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain 1995; 61: 47–54PubMedCrossRef
4.
Zurück zum Zitat Hanna MH, Peat SJ, Woodham M, et al. Analgesic efficacy and CSF pharmacokinetics of intrathecal morphine-6-glucuronide: comparison with morphine. Br J Amaesth 1990; 64: 547–50CrossRef Hanna MH, Peat SJ, Woodham M, et al. Analgesic efficacy and CSF pharmacokinetics of intrathecal morphine-6-glucuronide: comparison with morphine. Br J Amaesth 1990; 64: 547–50CrossRef
5.
Zurück zum Zitat Peat SJ, Hanna MH, Durcan M, et al. Morphine-6-glucuronide in post operative pain [abstract]. Proceedings of the 9th World Congress of Pain; 1999 Aug 22–27; Veinna. Seattle (WA): International Association for the Study of Pain, 2000: 334–5 Peat SJ, Hanna MH, Durcan M, et al. Morphine-6-glucuronide in post operative pain [abstract]. Proceedings of the 9th World Congress of Pain; 1999 Aug 22–27; Veinna. Seattle (WA): International Association for the Study of Pain, 2000: 334–5
6.
Zurück zum Zitat Don HF, Dieppa RA, Taylor P. Narcotic analgesics in anuric patients. Anesthesiology 1975; 42: 745–7PubMedCrossRef Don HF, Dieppa RA, Taylor P. Narcotic analgesics in anuric patients. Anesthesiology 1975; 42: 745–7PubMedCrossRef
7.
Zurück zum Zitat Suri A, Estes KS, Geisslinger G, et al. Pharmacokinetic-pharmacodynamic relationships for analgesics. Int J Clin Pharmacol Ther 1997; 35(8): 307–23PubMed Suri A, Estes KS, Geisslinger G, et al. Pharmacokinetic-pharmacodynamic relationships for analgesics. Int J Clin Pharmacol Ther 1997; 35(8): 307–23PubMed
8.
Zurück zum Zitat Crotty B, Watson KJ, Desmond PV, et al. Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol 1989; 36(5): 501–6PubMedCrossRef Crotty B, Watson KJ, Desmond PV, et al. Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol 1989; 36(5): 501–6PubMedCrossRef
9.
Zurück zum Zitat Hasselström J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 1990; 29: 289–97PubMedCrossRef Hasselström J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 1990; 29: 289–97PubMedCrossRef
10.
Zurück zum Zitat Patwardhan RV, Johnson RF, Hoyumpa Jr A, et al. Normal metabolism of morphine in cirrhosis. Gastroenterology 1981; 81: 1006–11PubMed Patwardhan RV, Johnson RF, Hoyumpa Jr A, et al. Normal metabolism of morphine in cirrhosis. Gastroenterology 1981; 81: 1006–11PubMed
11.
Zurück zum Zitat Shelly MP, Quinn KG, Park GR. Pharmacokinetics of morphine in patients following orthotopic liver transplantation. Br J Anaesth 1989; 63: 375–9PubMedCrossRef Shelly MP, Quinn KG, Park GR. Pharmacokinetics of morphine in patients following orthotopic liver transplantation. Br J Anaesth 1989; 63: 375–9PubMedCrossRef
12.
Zurück zum Zitat Mazoit JX, Sandouk P, Scherrmann JM, et al. Extrahepatic metabolism of morphine occurs in humans. Clin Pharmacol Ther 1990; 48(6): 613–8PubMedCrossRef Mazoit JX, Sandouk P, Scherrmann JM, et al. Extrahepatic metabolism of morphine occurs in humans. Clin Pharmacol Ther 1990; 48(6): 613–8PubMedCrossRef
13.
Zurück zum Zitat Sloan PA, Mather LE, McLean CF, et al. Physiological disposition of i.v. morphine in sheep. Br J Anaesth 1991; 67(4): 378–86PubMedCrossRef Sloan PA, Mather LE, McLean CF, et al. Physiological disposition of i.v. morphine in sheep. Br J Anaesth 1991; 67(4): 378–86PubMedCrossRef
14.
Zurück zum Zitat Bodenham A, Quinn K, Park GR. Extrahepatic morphine metabolism in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1989; 63: 380–4PubMedCrossRef Bodenham A, Quinn K, Park GR. Extrahepatic morphine metabolism in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1989; 63: 380–4PubMedCrossRef
15.
Zurück zum Zitat Wahlström A, Winblad B, Bixo M, et al. Human brain metabolism of morphine and naloxone. Pain 1988; 35: 121–7PubMedCrossRef Wahlström A, Winblad B, Bixo M, et al. Human brain metabolism of morphine and naloxone. Pain 1988; 35: 121–7PubMedCrossRef
16.
Zurück zum Zitat Wahlström A, Pacifici GM, Lindstrom B, et al. Human liver morphine UDP-glucuronyl transferase enantioselectivity and inhibition by opioid congeners and oxazepam. Br J Pharmacol 1988; 94: 864–70PubMedCrossRef Wahlström A, Pacifici GM, Lindstrom B, et al. Human liver morphine UDP-glucuronyl transferase enantioselectivity and inhibition by opioid congeners and oxazepam. Br J Pharmacol 1988; 94: 864–70PubMedCrossRef
17.
Zurück zum Zitat Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997; 25(1): 1–4PubMed Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997; 25(1): 1–4PubMed
18.
Zurück zum Zitat Green MD, King CD, Mojarrabi B, et al. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 1998; 26(6): 507–12PubMed Green MD, King CD, Mojarrabi B, et al. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 1998; 26(6): 507–12PubMed
19.
Zurück zum Zitat Faura CC, Collins SL, Moore RA, et al. Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain 1998; 74(1): 43–53PubMedCrossRef Faura CC, Collins SL, Moore RA, et al. Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain 1998; 74(1): 43–53PubMedCrossRef
20.
Zurück zum Zitat Wahlström A, Lenhammar L, Ask B, et al. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 1994; 74: 23–7CrossRef Wahlström A, Lenhammar L, Ask B, et al. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 1994; 74: 23–7CrossRef
21.
Zurück zum Zitat Bhargava HN, Rahmani NH, Villar VM, et al. Effects of naltrexone on pharmacodynamics and pharmacokinetics of intravenously administered morphine in the rat. Pharmacology 1993; 46(2): 66–74PubMedCrossRef Bhargava HN, Rahmani NH, Villar VM, et al. Effects of naltrexone on pharmacodynamics and pharmacokinetics of intravenously administered morphine in the rat. Pharmacology 1993; 46(2): 66–74PubMedCrossRef
22.
Zurück zum Zitat Lawrence AJ, Michalkiewicz A, Morley JS, et al. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions. Biochem Pharmacol 1992; 43: 2335–40PubMedCrossRef Lawrence AJ, Michalkiewicz A, Morley JS, et al. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions. Biochem Pharmacol 1992; 43: 2335–40PubMedCrossRef
23.
Zurück zum Zitat Rane A, Gawronska S, Svensson JO. Natural (−)- and unnatural (+)-enantiomers of morphine: comparative metabolism and effect of morphine and phenobarbital treatment. J Pharmacol Exp Ther 1985; 234: 761–5PubMed Rane A, Gawronska S, Svensson JO. Natural (−)- and unnatural (+)-enantiomers of morphine: comparative metabolism and effect of morphine and phenobarbital treatment. J Pharmacol Exp Ther 1985; 234: 761–5PubMed
24.
Zurück zum Zitat Narayan SS, Hayton WL, Yost GS. Chronic ethanol consumption causes increased glucuronidation of morphine in rabbits. Xenobiotica 1991; 21(4): 515–24PubMedCrossRef Narayan SS, Hayton WL, Yost GS. Chronic ethanol consumption causes increased glucuronidation of morphine in rabbits. Xenobiotica 1991; 21(4): 515–24PubMedCrossRef
25.
Zurück zum Zitat Aasmundstad TA, Lillekjendlie B, Morland J. Ethanol interference with morphine metabolism in isolated guinea pig hepatocytes. Pharmacol Toxicol 1996; 79(3): 114–9PubMedCrossRef Aasmundstad TA, Lillekjendlie B, Morland J. Ethanol interference with morphine metabolism in isolated guinea pig hepatocytes. Pharmacol Toxicol 1996; 79(3): 114–9PubMedCrossRef
26.
Zurück zum Zitat Bhat R, Abu H, Chari G, et al. Morphine metabolism in acutely ill preterm newborn infants. J Pediatr 1992; 120: 795–9PubMedCrossRef Bhat R, Abu H, Chari G, et al. Morphine metabolism in acutely ill preterm newborn infants. J Pediatr 1992; 120: 795–9PubMedCrossRef
27.
Zurück zum Zitat Hartley R, Green M, Quinn M, et al. Pharmacokinetics of morphine infusion in premature neonates. Arch Dis Child 1993; 69: 55–8PubMedCrossRef Hartley R, Green M, Quinn M, et al. Pharmacokinetics of morphine infusion in premature neonates. Arch Dis Child 1993; 69: 55–8PubMedCrossRef
28.
Zurück zum Zitat Lynn A, Nespeca MK, Bratton SL, et al. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg 1998; 86(5): 958–63PubMed Lynn A, Nespeca MK, Bratton SL, et al. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg 1998; 86(5): 958–63PubMed
29.
Zurück zum Zitat Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 2 — clinical use. Paediatr Anaesth 1997; 7(2): 93–101PubMedCrossRef Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 2 — clinical use. Paediatr Anaesth 1997; 7(2): 93–101PubMedCrossRef
30.
Zurück zum Zitat Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 1 — pharmacokinetics. Paediatr Anaesth 1997; 7(1): 5–11PubMedCrossRef Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 1 — pharmacokinetics. Paediatr Anaesth 1997; 7(1): 5–11PubMedCrossRef
31.
Zurück zum Zitat Choonara I, Lawrence A, Michalkiewicz A, et al. Morphine metabolism in neonates and infants. Br J Clin Pharmacol 1992; 34: 434–7PubMedCrossRef Choonara I, Lawrence A, Michalkiewicz A, et al. Morphine metabolism in neonates and infants. Br J Clin Pharmacol 1992; 34: 434–7PubMedCrossRef
32.
Zurück zum Zitat Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol 1989; 28: 599–604PubMedCrossRef Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol 1989; 28: 599–604PubMedCrossRef
33.
Zurück zum Zitat Hartley R, Quinn M, Green M, et al. Morphine glucuronidation in premature neonates. Br J Clin Pharmacol 1993; 35: 314–7PubMed Hartley R, Quinn M, Green M, et al. Morphine glucuronidation in premature neonates. Br J Clin Pharmacol 1993; 35: 314–7PubMed
34.
Zurück zum Zitat Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990; 47: 12–9PubMedCrossRef Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990; 47: 12–9PubMedCrossRef
35.
Zurück zum Zitat Loh HH, Liu HC, Cavalli A, et al. Mu opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res 1998; 54(2): 321–6PubMedCrossRef Loh HH, Liu HC, Cavalli A, et al. Mu opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res 1998; 54(2): 321–6PubMedCrossRef
36.
Zurück zum Zitat Schuller AG, King MA, Zhang J, et al. Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 1999; 2(2): 151–6PubMedCrossRef Schuller AG, King MA, Zhang J, et al. Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 1999; 2(2): 151–6PubMedCrossRef
37.
Zurück zum Zitat Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci 1991; 48: 2165–71PubMedCrossRef Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci 1991; 48: 2165–71PubMedCrossRef
38.
Zurück zum Zitat Löser SV, Meyer J, Freudenthaler S, et al. Morphine-6-O-beta-D-glucuronide but not morphine-3-O-beta-D-glucuronide binds to mu-, delta- and kappa- specific opioid binding sites in cerebral membranes. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(2): 192–7PubMedCrossRef Löser SV, Meyer J, Freudenthaler S, et al. Morphine-6-O-beta-D-glucuronide but not morphine-3-O-beta-D-glucuronide binds to mu-, delta- and kappa- specific opioid binding sites in cerebral membranes. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(2): 192–7PubMedCrossRef
39.
Zurück zum Zitat Hucks D, Thompson PI, McLoughlin L, et al. Explanation at the opioid receptor level for differing toxicity of morphine and morphine 6-glucuronide. Br J Cancer 1992; 65: 122–6PubMedCrossRef Hucks D, Thompson PI, McLoughlin L, et al. Explanation at the opioid receptor level for differing toxicity of morphine and morphine 6-glucuronide. Br J Cancer 1992; 65: 122–6PubMedCrossRef
40.
Zurück zum Zitat Thompson PI, Hucks D, McLoughlin L, et al. Comparative opiate receptor affinities of morphine and its active metabolite morphine-6-glucuronide. Br J Cancer 1990; 62: 484CrossRef Thompson PI, Hucks D, McLoughlin L, et al. Comparative opiate receptor affinities of morphine and its active metabolite morphine-6-glucuronide. Br J Cancer 1990; 62: 484CrossRef
41.
Zurück zum Zitat Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–83PubMed Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–83PubMed
42.
Zurück zum Zitat Oguri K, Yamada M, Shigezane J, et al. Enhanced binding of morphine and nalorphine to opioid delta receptor by glucuronate and sulfate conjugations at the 6-position. Life Sci 1987; 41: 1457–64PubMedCrossRef Oguri K, Yamada M, Shigezane J, et al. Enhanced binding of morphine and nalorphine to opioid delta receptor by glucuronate and sulfate conjugations at the 6-position. Life Sci 1987; 41: 1457–64PubMedCrossRef
43.
Zurück zum Zitat Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993; 16: 1–18PubMedCrossRef Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993; 16: 1–18PubMedCrossRef
44.
45.
Zurück zum Zitat Min BH, Augustin LB, Felsheim RF, et al. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene. Proc Natl Acad Sci U S A 1994; 91(19): 9081–5PubMedCrossRef Min BH, Augustin LB, Felsheim RF, et al. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene. Proc Natl Acad Sci U S A 1994; 91(19): 9081–5PubMedCrossRef
46.
Zurück zum Zitat Pasternak GW. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 2001; 22(2): 67–70PubMedCrossRef Pasternak GW. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 2001; 22(2): 67–70PubMedCrossRef
47.
Zurück zum Zitat Pan YX, Xu J, Bolan E, et al. Identification and characterization of three new alternatively spliced mu-opioid receptor isoforms. Mol Pharmacol 1999; 56(2): 396–403PubMed Pan YX, Xu J, Bolan E, et al. Identification and characterization of three new alternatively spliced mu-opioid receptor isoforms. Mol Pharmacol 1999; 56(2): 396–403PubMed
48.
Zurück zum Zitat Brown GP, Yang K, Ouerfelli O, et al. 3H-morphine-6-beta-glucuronide binding in brain membranes and an MOR-1-transfected cell line. J Pharmacol Exp Ther 1997; 282(3): 1291–7PubMed Brown GP, Yang K, Ouerfelli O, et al. 3H-morphine-6-beta-glucuronide binding in brain membranes and an MOR-1-transfected cell line. J Pharmacol Exp Ther 1997; 282(3): 1291–7PubMed
49.
Zurück zum Zitat Rossi GC, Leventhal L, Pan YX, et al. Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6-beta-glucuronide antinociception. J Pharmacol Exp Ther 1997; 281(1): 109–14PubMed Rossi GC, Leventhal L, Pan YX, et al. Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6-beta-glucuronide antinociception. J Pharmacol Exp Ther 1997; 281(1): 109–14PubMed
50.
Zurück zum Zitat Rossi GC, Pan YX, Brown GP, et al. Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6 beta-glucuronide receptor. FEBS Lett 1995; 369(2-3): 192–6PubMedCrossRef Rossi GC, Pan YX, Brown GP, et al. Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6 beta-glucuronide receptor. FEBS Lett 1995; 369(2-3): 192–6PubMedCrossRef
51.
Zurück zum Zitat Shimomura K, Kamata O, Ueki S, et al. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971; 105: 45–52PubMedCrossRef Shimomura K, Kamata O, Ueki S, et al. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971; 105: 45–52PubMedCrossRef
52.
Zurück zum Zitat Yoshimura H, Ida S, Oguri K, et al. Biochemical basis for analgesic activity ofmorphine-6-glucuronide: I. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol 1973; 22: 1423–30PubMedCrossRef Yoshimura H, Ida S, Oguri K, et al. Biochemical basis for analgesic activity ofmorphine-6-glucuronide: I. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol 1973; 22: 1423–30PubMedCrossRef
53.
Zurück zum Zitat Stain F, Barjavel MJ, Sandouk P, et al. Analgesic response and plasma and brain extracellular fluid pharmacokinetics of morphine and morphine-6-beta-D-glucuronide in the rat. J Pharmacol Exp Ther 1995; 274: 852–7PubMed Stain F, Barjavel MJ, Sandouk P, et al. Analgesic response and plasma and brain extracellular fluid pharmacokinetics of morphine and morphine-6-beta-D-glucuronide in the rat. J Pharmacol Exp Ther 1995; 274: 852–7PubMed
54.
Zurück zum Zitat Abbott FV, Palmour RM. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci 1988; 43: 1685–95PubMedCrossRef Abbott FV, Palmour RM. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci 1988; 43: 1685–95PubMedCrossRef
55.
Zurück zum Zitat Frances B, Gout R, Campistron G, et al. Morphine-6-glucuronide is more mu-selective and potent in analgesic tests than morphine. Prog Clin Biol Res 1990; 328: 477–80PubMed Frances B, Gout R, Campistron G, et al. Morphine-6-glucuronide is more mu-selective and potent in analgesic tests than morphine. Prog Clin Biol Res 1990; 328: 477–80PubMed
56.
Zurück zum Zitat Frances B, Gout R, Monsarrat B, et al. Further evidence that morphine-6 beta-glucuronide is a more potent opioid agonist than morphine. J Pharmacol Exp Ther 1992; 262: 25–31PubMed Frances B, Gout R, Monsarrat B, et al. Further evidence that morphine-6 beta-glucuronide is a more potent opioid agonist than morphine. J Pharmacol Exp Ther 1992; 262: 25–31PubMed
57.
Zurück zum Zitat Gong QL, Hedner T, Hedner J, et al. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol 1991; 193: 47–56PubMedCrossRef Gong QL, Hedner T, Hedner J, et al. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol 1991; 193: 47–56PubMedCrossRef
58.
Zurück zum Zitat Gong QL, Hedner J, Bjorkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain 1992; 48: 249–55PubMedCrossRef Gong QL, Hedner J, Bjorkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain 1992; 48: 249–55PubMedCrossRef
59.
Zurück zum Zitat Lötsch J, Tegeder I, Angst MS, et al. Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 2000; 66(24): 2393–403PubMedCrossRef Lötsch J, Tegeder I, Angst MS, et al. Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 2000; 66(24): 2393–403PubMedCrossRef
60.
Zurück zum Zitat Hand CW, Blunnie WP, Claffey LP, et al. Potential analgesic contribution from morphine-6-glucuronide in CSF [letter]. Lancet 1987; II: 1207–8CrossRef Hand CW, Blunnie WP, Claffey LP, et al. Potential analgesic contribution from morphine-6-glucuronide in CSF [letter]. Lancet 1987; II: 1207–8CrossRef
61.
Zurück zum Zitat Hanks GW, Hoskin PJ, Aherne GW, et al. Explanation for potency of repeated oral doses of morphine? Lancet 1987; II: 723–5CrossRef Hanks GW, Hoskin PJ, Aherne GW, et al. Explanation for potency of repeated oral doses of morphine? Lancet 1987; II: 723–5CrossRef
62.
Zurück zum Zitat Hoskin PJ, Hanks GW, Heron CW, et al. M6G and its analgesic action in chronic use [letter]. Clin J Pain 1989; 5: 199–200PubMedCrossRef Hoskin PJ, Hanks GW, Heron CW, et al. M6G and its analgesic action in chronic use [letter]. Clin J Pain 1989; 5: 199–200PubMedCrossRef
63.
Zurück zum Zitat Joel SP, Osborne RJ, Nixon NS, et al. Morphine-6-glucuronide, an important metabolite [letter]. Lancet 1985; I: 1099–100CrossRef Joel SP, Osborne RJ, Nixon NS, et al. Morphine-6-glucuronide, an important metabolite [letter]. Lancet 1985; I: 1099–100CrossRef
64.
Zurück zum Zitat Portenoy RK, Thaler HT, Inturrisi CE, et al. The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clin Pharmacol Ther 1992; 51: 422–31PubMedCrossRef Portenoy RK, Thaler HT, Inturrisi CE, et al. The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clin Pharmacol Ther 1992; 51: 422–31PubMedCrossRef
65.
Zurück zum Zitat Faura CC, Moore RA, Horga JF, et al. Morphine and morphine-6-glucuronide plasma concentrations and effect in cancer pain. J Pain Symptom Manage 1996; 11(2): 95–102PubMedCrossRef Faura CC, Moore RA, Horga JF, et al. Morphine and morphine-6-glucuronide plasma concentrations and effect in cancer pain. J Pain Symptom Manage 1996; 11(2): 95–102PubMedCrossRef
66.
Zurück zum Zitat Tighe KE, Webb AM, Hobbs GJ. Persistently high plasma morphine-6-glucuronide levels despite decreased hourly patient-controlled analgesia morphine use after single-dose diclofenac: potential for opioid-related toxicity. Anesth Analg 1999; 88(5): 1137–42PubMed Tighe KE, Webb AM, Hobbs GJ. Persistently high plasma morphine-6-glucuronide levels despite decreased hourly patient-controlled analgesia morphine use after single-dose diclofenac: potential for opioid-related toxicity. Anesth Analg 1999; 88(5): 1137–42PubMed
67.
Zurück zum Zitat Dennis GC, Soni D, Dehkordi O, et al. Analgesic responses to intrathecal morphine in relation to CSF concentrations of morphine-3,beta-glucuronide and morphine-6, beta-glucuronide. Life Sci 1999; 64(19): 1725–31PubMedCrossRef Dennis GC, Soni D, Dehkordi O, et al. Analgesic responses to intrathecal morphine in relation to CSF concentrations of morphine-3,beta-glucuronide and morphine-6, beta-glucuronide. Life Sci 1999; 64(19): 1725–31PubMedCrossRef
68.
Zurück zum Zitat Klepstad P, Kaasa S, Borchgrevink PC. Start of oral morphine to cancer patients: effective serum morphine concentrations and contribution from morphine-6-glucuronide to the analgesia produced by morphine. Eur J Clin Pharmacol 2000; 55(10): 713–9PubMedCrossRef Klepstad P, Kaasa S, Borchgrevink PC. Start of oral morphine to cancer patients: effective serum morphine concentrations and contribution from morphine-6-glucuronide to the analgesia produced by morphine. Eur J Clin Pharmacol 2000; 55(10): 713–9PubMedCrossRef
69.
Zurück zum Zitat Grace D, Fee JP. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. Anesth Analg 1996; 83: 1055–9PubMed Grace D, Fee JP. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. Anesth Analg 1996; 83: 1055–9PubMed
70.
Zurück zum Zitat Abbott FV, Franklin KB. Morphine-6-glucuronide contributes to rewarding effects of opiates. Life Sci 1991; 48: 1157–63PubMedCrossRef Abbott FV, Franklin KB. Morphine-6-glucuronide contributes to rewarding effects of opiates. Life Sci 1991; 48: 1157–63PubMedCrossRef
71.
Zurück zum Zitat Pelligrino DA, Riegler FX, Albrecht RF. Ventilatory effects of fourth cerebroventricular infusions of morphine-6- or morphine-3-glucuronide in the awake dog. Anesthesiology 1989; 71: 936–40PubMedCrossRef Pelligrino DA, Riegler FX, Albrecht RF. Ventilatory effects of fourth cerebroventricular infusions of morphine-6- or morphine-3-glucuronide in the awake dog. Anesthesiology 1989; 71: 936–40PubMedCrossRef
72.
Zurück zum Zitat Osborne R, Joel S, Trew D, et al. Analgesic activity of morphine-6-glucuronide [letter]. Lancet 1988; I: 828CrossRef Osborne R, Joel S, Trew D, et al. Analgesic activity of morphine-6-glucuronide [letter]. Lancet 1988; I: 828CrossRef
73.
Zurück zum Zitat Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34: 130–8PubMedCrossRef Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34: 130–8PubMedCrossRef
74.
Zurück zum Zitat Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol 1995; 40(2): 145–52PubMed Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol 1995; 40(2): 145–52PubMed
75.
Zurück zum Zitat Buetler TM, Wilder-Smith OH, Wilder-Smith CH, et al. Analgesic action of i.v. morphine-6-glucuronide in healthy volunteers. Br J Anaesth 2000; 84(1): 97–9PubMedCrossRef Buetler TM, Wilder-Smith OH, Wilder-Smith CH, et al. Analgesic action of i.v. morphine-6-glucuronide in healthy volunteers. Br J Anaesth 2000; 84(1): 97–9PubMedCrossRef
76.
Zurück zum Zitat Lötsch J, Kobal G, Stockmann A, et al. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology 1997; 87(6): 1348–58PubMedCrossRef Lötsch J, Kobal G, Stockmann A, et al. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology 1997; 87(6): 1348–58PubMedCrossRef
77.
Zurück zum Zitat Motamed C, Mazoit X, Ghanouchi K, et al. Preemptive intravenous morphine-6-glucuronide is ineffective for postoperative pain relief. Anesthesiology 2000; 92(2): 355–60PubMedCrossRef Motamed C, Mazoit X, Ghanouchi K, et al. Preemptive intravenous morphine-6-glucuronide is ineffective for postoperative pain relief. Anesthesiology 2000; 92(2): 355–60PubMedCrossRef
78.
Zurück zum Zitat Penson RT, Joel SP, Bakhshi K, et al. Randomized placebo controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 2000; 68(6): 667–76PubMedCrossRef Penson RT, Joel SP, Bakhshi K, et al. Randomized placebo controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 2000; 68(6): 667–76PubMedCrossRef
79.
Zurück zum Zitat Peat SJ, Hanna MH, Woodham M, et al. Morphine-6-glucuronide: effects on ventilation in normal volunteers. Pain 1991; 45: 101–4PubMedCrossRef Peat SJ, Hanna MH, Woodham M, et al. Morphine-6-glucuronide: effects on ventilation in normal volunteers. Pain 1991; 45: 101–4PubMedCrossRef
80.
Zurück zum Zitat Schmidt N, Brune K, Geisslinger G. Opioid receptor agonist potencies of morphine and morphine-6-glucuronide in the guinea-pig ileum. Eur J Pharmacol 1994; 255: 245–7PubMedCrossRef Schmidt N, Brune K, Geisslinger G. Opioid receptor agonist potencies of morphine and morphine-6-glucuronide in the guinea-pig ileum. Eur J Pharmacol 1994; 255: 245–7PubMedCrossRef
81.
82.
83.
Zurück zum Zitat Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28(3): 345–472PubMedCrossRef Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28(3): 345–472PubMedCrossRef
84.
Zurück zum Zitat Aderjan RE, Skopp G. Formation and clearance of active and inactive metabolites of opiates in humans. Ther Drug Monit 1998; 20(5): 561–9PubMedCrossRef Aderjan RE, Skopp G. Formation and clearance of active and inactive metabolites of opiates in humans. Ther Drug Monit 1998; 20(5): 561–9PubMedCrossRef
85.
Zurück zum Zitat Bigler D, Christensen CB, Eriksen J, et al. Morphine, morphine-6-glucuronide and morphine-3-glucuronide concentrations in plasma and cerebrospinal fluid during long-term high-dose intrathecal morphine administration. Pain 1990; 41: 15–8PubMedCrossRef Bigler D, Christensen CB, Eriksen J, et al. Morphine, morphine-6-glucuronide and morphine-3-glucuronide concentrations in plasma and cerebrospinal fluid during long-term high-dose intrathecal morphine administration. Pain 1990; 41: 15–8PubMedCrossRef
86.
Zurück zum Zitat Hanna MH, Peat SJ, Knibb AA, et al. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaesth 1991; 66: 103–7PubMedCrossRef Hanna MH, Peat SJ, Knibb AA, et al. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaesth 1991; 66: 103–7PubMedCrossRef
87.
Zurück zum Zitat Lötsch J, Weiss M, Kobal G, et al. Pharmacokinetics of morphine-6-glucuronide and its formation from morphine after intravenous administration. Clin Pharmacol Ther 1998; 63(6): 629–39PubMedCrossRef Lötsch J, Weiss M, Kobal G, et al. Pharmacokinetics of morphine-6-glucuronide and its formation from morphine after intravenous administration. Clin Pharmacol Ther 1998; 63(6): 629–39PubMedCrossRef
88.
Zurück zum Zitat Stain-Texier F, Sandouk P, Scherrmann JM. Intestinal absorption and stability of morphine 6-glucuronide in different physiological compartments of the rat. Drug Metab Dispos 1998; 26(5): 383–7PubMed Stain-Texier F, Sandouk P, Scherrmann JM. Intestinal absorption and stability of morphine 6-glucuronide in different physiological compartments of the rat. Drug Metab Dispos 1998; 26(5): 383–7PubMed
89.
Zurück zum Zitat Lötsch J, Stockmann A, Kobal G, et al. Pharmacokinetics of morphine and its glucuronides after i.v. infusion of morphine and morphine-6-glucuronide in healthy volunteers. Clin Pharmacol Ther 1996; 60: 316–25PubMedCrossRef Lötsch J, Stockmann A, Kobal G, et al. Pharmacokinetics of morphine and its glucuronides after i.v. infusion of morphine and morphine-6-glucuronide in healthy volunteers. Clin Pharmacol Ther 1996; 60: 316–25PubMedCrossRef
90.
Zurück zum Zitat Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance ofmorphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34: 53–9PubMedCrossRef Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance ofmorphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34: 53–9PubMedCrossRef
91.
Zurück zum Zitat Angst MS, Bührer M, Lötsch J. Insidious intoxication after morphine treatment in renal failure: delayed onset of morphine-6-glucuronide action. Anesthesiology 2000; 92(5): 1473–6PubMedCrossRef Angst MS, Bührer M, Lötsch J. Insidious intoxication after morphine treatment in renal failure: delayed onset of morphine-6-glucuronide action. Anesthesiology 2000; 92(5): 1473–6PubMedCrossRef
92.
Zurück zum Zitat Bodd E, Jacobsen D, Lund E, et al. Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol 1990; 9: 317–21PubMedCrossRef Bodd E, Jacobsen D, Lund E, et al. Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol 1990; 9: 317–21PubMedCrossRef
93.
Zurück zum Zitat Hagen NA, Foley KM, Cerbone DJ, et al. Chronic nausea and morphine-6-glucuronide. J Pain Symptom Manage 1991; 6: 125–8PubMedCrossRef Hagen NA, Foley KM, Cerbone DJ, et al. Chronic nausea and morphine-6-glucuronide. J Pain Symptom Manage 1991; 6: 125–8PubMedCrossRef
94.
Zurück zum Zitat Hanna MH, D’Costa F, Peat SJ, et al. Morphine-6-glucuronide disposition in renal impairment. Br J Anaesth 1993;70: 511–4PubMedCrossRef Hanna MH, D’Costa F, Peat SJ, et al. Morphine-6-glucuronide disposition in renal impairment. Br J Anaesth 1993;70: 511–4PubMedCrossRef
95.
Zurück zum Zitat Hasselström J, Berg U, Lofgren A, et al. Long lasting respiratory depression induced by morphine-6-glucuronide? Br J Clin Pharmacol 1989; 27: 515–8PubMedCrossRef Hasselström J, Berg U, Lofgren A, et al. Long lasting respiratory depression induced by morphine-6-glucuronide? Br J Clin Pharmacol 1989; 27: 515–8PubMedCrossRef
96.
Zurück zum Zitat Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993; 54: 158–67PubMedCrossRef Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993; 54: 158–67PubMedCrossRef
97.
Zurück zum Zitat Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role ofmorphine-6-glucuronide. BMJ Clin Res Ed 1986; 292: 1548–9CrossRef Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role ofmorphine-6-glucuronide. BMJ Clin Res Ed 1986; 292: 1548–9CrossRef
98.
Zurück zum Zitat Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47: 13–9PubMedCrossRef Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47: 13–9PubMedCrossRef
99.
Zurück zum Zitat Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth 1989; 62: 28–32PubMedCrossRef Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth 1989; 62: 28–32PubMedCrossRef
100.
Zurück zum Zitat Pauli-Magnus C, Hofmann U, Mikus G, et al. Pharmacokinetics of morphine and its glucuronides following intravenous administration of morphine in patients undergoing continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1999; 14(4): 903–9PubMedCrossRef Pauli-Magnus C, Hofmann U, Mikus G, et al. Pharmacokinetics of morphine and its glucuronides following intravenous administration of morphine in patients undergoing continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1999; 14(4): 903–9PubMedCrossRef
101.
Zurück zum Zitat Bion JF, Logan BK, Newman PM, et al. Sedation in intensive care: morphine and renal function. Intens Care Med 1986; 12(5): 359–65CrossRef Bion JF, Logan BK, Newman PM, et al. Sedation in intensive care: morphine and renal function. Intens Care Med 1986; 12(5): 359–65CrossRef
102.
Zurück zum Zitat Huwyler J, Drewe J, Klusemann C, et al. Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 1996; 118(8): 1879–85PubMedCrossRef Huwyler J, Drewe J, Klusemann C, et al. Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 1996; 118(8): 1879–85PubMedCrossRef
103.
Zurück zum Zitat Huwyler J, Drewe J, Gutmann H, et al. Modulation of morphine-6-glucuronide penetration into the brain by P-glycoprotein. Int J Clin Pharmacol Ther 1998; 36(2): 69–70PubMed Huwyler J, Drewe J, Gutmann H, et al. Modulation of morphine-6-glucuronide penetration into the brain by P-glycoprotein. Int J Clin Pharmacol Ther 1998; 36(2): 69–70PubMed
104.
Zurück zum Zitat Thompson SJ, Koszdin K, Bernards CM, et al. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 2000; 92(5): 1392–9PubMedCrossRef Thompson SJ, Koszdin K, Bernards CM, et al. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 2000; 92(5): 1392–9PubMedCrossRef
105.
Zurück zum Zitat Letrent SP, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27(7): 827–34PubMed Letrent SP, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27(7): 827–34PubMed
106.
Zurück zum Zitat Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla (−/−) and mdrla (+/+) mice. Br J Pharmacol 1999; 128(3): 563–8PubMedCrossRef Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla (−/−) and mdrla (+/+) mice. Br J Pharmacol 1999; 128(3): 563–8PubMedCrossRef
107.
Zurück zum Zitat Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8PubMedCrossRef Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8PubMedCrossRef
108.
Zurück zum Zitat Mickley LA, Lee JS, Weng Z, et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood 1998; 91(5): 1749–56PubMed Mickley LA, Lee JS, Weng Z, et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood 1998; 91(5): 1749–56PubMed
109.
Zurück zum Zitat Drewe J, Ball HA, Beglinger C, et al. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol 2000; 50(3): 237–46PubMedCrossRef Drewe J, Ball HA, Beglinger C, et al. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol 2000; 50(3): 237–46PubMedCrossRef
110.
Zurück zum Zitat Race JE, Grassl SM, Williams WJ, et al. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999; 255(2): 508–14PubMedCrossRef Race JE, Grassl SM, Williams WJ, et al. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999; 255(2): 508–14PubMedCrossRef
111.
Zurück zum Zitat Lötsch J, Kobal G, Geisslinger G. No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration. Clin Neuropharmacol 1998; 21(6): 351–4PubMed Lötsch J, Kobal G, Geisslinger G. No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration. Clin Neuropharmacol 1998; 21(6): 351–4PubMed
112.
Zurück zum Zitat Gardmark M, Hammarlund-Udenaes M. Delayed antinociceptive effect following morphine-6-glucuronide administration in the rat: pharmacokinetic/pharmacodynamic modelling. Pain 1998; 74(2-3): 287–96PubMedCrossRef Gardmark M, Hammarlund-Udenaes M. Delayed antinociceptive effect following morphine-6-glucuronide administration in the rat: pharmacokinetic/pharmacodynamic modelling. Pain 1998; 74(2-3): 287–96PubMedCrossRef
113.
Zurück zum Zitat Aasmundstad TA, Morland J, Paulsen RE. Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 1995; 275: 435–41PubMed Aasmundstad TA, Morland J, Paulsen RE. Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 1995; 275: 435–41PubMed
114.
Zurück zum Zitat Van Crugten JT, Somogyi AA, Nation RL, et al. Concentration-effect relationships of morphine and morphine-6 beta-glucuronide in the rat. Clin Exp Pharmacol Physiol 1997; 24(5): 359–64PubMedCrossRef Van Crugten JT, Somogyi AA, Nation RL, et al. Concentration-effect relationships of morphine and morphine-6 beta-glucuronide in the rat. Clin Exp Pharmacol Physiol 1997; 24(5): 359–64PubMedCrossRef
115.
Zurück zum Zitat Hull CJ, Van Beem HB, McLeod K, et al. A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50(11): 1113–23PubMedCrossRef Hull CJ, Van Beem HB, McLeod K, et al. A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50(11): 1113–23PubMedCrossRef
116.
Zurück zum Zitat Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71PubMed Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71PubMed
117.
Zurück zum Zitat Kramer TH, d’Amours RH, Buettner BS. Pharmacodynamic model of the effects of morphine-6-glucuronide during patient-controlled analgesia. Clin Pharmacol Ther 1996; 59: 132CrossRef Kramer TH, d’Amours RH, Buettner BS. Pharmacodynamic model of the effects of morphine-6-glucuronide during patient-controlled analgesia. Clin Pharmacol Ther 1996; 59: 132CrossRef
118.
Zurück zum Zitat Bickel U, Schumacher O, Kang YS, et al. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther 1996; 278: 107–13PubMed Bickel U, Schumacher O, Kang YS, et al. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther 1996; 278: 107–13PubMed
119.
Zurück zum Zitat Carrupt PA, Testa B, Bechalany A, et al. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991; 34: 1272–5PubMedCrossRef Carrupt PA, Testa B, Bechalany A, et al. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991; 34: 1272–5PubMedCrossRef
120.
Zurück zum Zitat Avdeef A, Barrett DA, Shaw PN, et al. Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates. J Med Chem 1996; 39(22): 4377–81PubMedCrossRef Avdeef A, Barrett DA, Shaw PN, et al. Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates. J Med Chem 1996; 39(22): 4377–81PubMedCrossRef
121.
Zurück zum Zitat Goucke CR, Hackett LP, Ilett KF. Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 1994; 56(2): 145–9PubMedCrossRef Goucke CR, Hackett LP, Ilett KF. Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 1994; 56(2): 145–9PubMedCrossRef
122.
Zurück zum Zitat Portenoy RK, Khan E, Layman M, et al. Chronic morphine therapy for cancer pain: plasma and cerebrospinal fluid morphine and morphine-6-glucuronide concentrations. Neurology 1991; 41: 1457–61PubMedCrossRef Portenoy RK, Khan E, Layman M, et al. Chronic morphine therapy for cancer pain: plasma and cerebrospinal fluid morphine and morphine-6-glucuronide concentrations. Neurology 1991; 41: 1457–61PubMedCrossRef
123.
Zurück zum Zitat Hain RD, Hardcastle A, Pinkerton CR, et al. Morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children. Br J Clin Pharmacol 1999; 48(1): 37–42PubMedCrossRef Hain RD, Hardcastle A, Pinkerton CR, et al. Morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children. Br J Clin Pharmacol 1999; 48(1): 37–42PubMedCrossRef
124.
Zurück zum Zitat Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain 1995; 62(2): 147–54PubMedCrossRef Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain 1995; 62(2): 147–54PubMedCrossRef
125.
Zurück zum Zitat Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16PubMedCrossRef Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16PubMedCrossRef
126.
Zurück zum Zitat Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16PubMedCrossRef Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16PubMedCrossRef
127.
Zurück zum Zitat Stain-Texier F, Boschi G, Sandouk P, et al. Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 1999; 128(4): 917–24PubMedCrossRef Stain-Texier F, Boschi G, Sandouk P, et al. Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 1999; 128(4): 917–24PubMedCrossRef
128.
Zurück zum Zitat Likar R, Kapral S, Steinkellner H, et al. Dose-dependency of intra-articular morphine analgesia. Br J Anaesth 1999; 83(2): 241–4PubMedCrossRef Likar R, Kapral S, Steinkellner H, et al. Dose-dependency of intra-articular morphine analgesia. Br J Anaesth 1999; 83(2): 241–4PubMedCrossRef
129.
Zurück zum Zitat Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-en-dorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998; 95(16): 9608–13PubMedCrossRef Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-en-dorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998; 95(16): 9608–13PubMedCrossRef
Metadaten
Titel
Morphine-6-Glucuronide
An Analgesic of the Future?
verfasst von
Dr Jörn Lötsch
Gerd Geisslinger
Publikationsdatum
01.07.2001
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 7/2001
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200140070-00001

Weitere Artikel der Ausgabe 7/2001

Clinical Pharmacokinetics 7/2001 Zur Ausgabe

Review Articles

Pegylation