Skip to main content
Erschienen in: Clinical Pharmacokinetics 4/2007

01.04.2007 | Review Article

The Clinical Pharmacokinetics of Escitalopram

verfasst von: Dr Niranjan Rao

Erschienen in: Clinical Pharmacokinetics | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

Escitalopram is the (S)-enantiomer of the racemic selective serotonin reuptake inhibitor antidepressant citalopram. Clinical studies have shown that escitalopram is effective and well tolerated in the treatment of depression and anxiety disorders. Following oral administration, escitalopram is rapidly absorbed and reaches maximum plasma concentrations in approximately 3–4 hours after either single-or multiple-dose administration. The absorption of escitalopram is not affected by food. The elimination half-life of escitalopram is about 27–33 hours and is consistent with once-daily administration. Steady-state concentrations are achieved within 7–10 days of administration. Escitalopram has low protein binding (56%) and is not likely to cause interactions with highly protein-bound drugs. It is widely distributed throughout tissues, with an apparent volume of distribution during the terminal phase after oral administration (Vz/F) of about 1100L. Unmetabolised escitalopram is the major compound in plasma. S-demethylcitalopram (S-DCT), the principal metabolite, is present at approximately one-third the level of escitalopram; however, S-DCT is a weak inhibitor of serotonin reuptake and does not contribute appreciably to the therapeutic activity of escitalopram. The didemethyl metabolite of escitalopram (S-DDCT) is typically present at or below quantifiable concentrations. Escitalopram and S-DCT exhibit linear and dose-proportional pharmacokinetics following single or multiple doses in the 10–30 mg/day dose range. Adolescents, elderly individuals and patients with hepatic impairment do not have clinically relevant differences in pharmacokinetics compared with healthy young adults, implying that adjustment of the dosage is not necessary in these patient groups. Escitalopram is metabolised by the cytochrome P450 (CYP) isoenzymes CYP2C19, CYP2D6 and CYP3A4. However, ritonavir, a potent inhibitor of CYP3A4, does not affect the pharmacokinetics of escitalopram. Coadministration of escitalopram 20mg following steady-state administration of cimetidine or omeprazole led to a 72% and 51% increase, respectively, in escitalopram exposure compared with administration alone. These changes were not considered clinically relevant. In vitro studies have shown that escitalopram has negligible inhibitory effects on CYP isoenzymes and P-glycoprotein, suggesting that escitalopram is unlikely to cause clinically significant drug-drug interactions. The favourable pharmacokinetic profile of escitalopram suggests clinical utility in a broad range of patients.
Literatur
2.
Zurück zum Zitat Hyttel J, Bogeso KP, Perregaard J, et al. The pharmacological effect of citalopram resides in the (S)-(+)-enantiomer. J Neural Transm Gen Sect 1992; 88(2): 157–60PubMedCrossRef Hyttel J, Bogeso KP, Perregaard J, et al. The pharmacological effect of citalopram resides in the (S)-(+)-enantiomer. J Neural Transm Gen Sect 1992; 88(2): 157–60PubMedCrossRef
3.
Zurück zum Zitat Sanchez C, Bergqvist PB, Brennum LT, et al. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 2003; 167(4): 353–62 Sanchez C, Bergqvist PB, Brennum LT, et al. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 2003; 167(4): 353–62
4.
Zurück zum Zitat Sanchez C, Bogeso KP, Ebert B, et al. Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology (Berl) 2004; 174(2): 163–76CrossRef Sanchez C, Bogeso KP, Ebert B, et al. Escitalopram versus citalopram: the surprising role of the R-enantiomer. Psychopharmacology (Berl) 2004; 174(2): 163–76CrossRef
5.
Zurück zum Zitat Owens MJ, Knight DL, Nemeroff CB. Second-generation SS-RIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 2001; 50(5): 345–50PubMedCrossRef Owens MJ, Knight DL, Nemeroff CB. Second-generation SS-RIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 2001; 50(5): 345–50PubMedCrossRef
6.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29(8): 1102–9 von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29(8): 1102–9
7.
Zurück zum Zitat Stahl SM, Gergel I, Li D. Escitalopram in the treatment of panic disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2003; 64(11): 1322–7PubMedCrossRef Stahl SM, Gergel I, Li D. Escitalopram in the treatment of panic disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 2003; 64(11): 1322–7PubMedCrossRef
8.
Zurück zum Zitat Burke WJ, Gergel I, Bose A. Fixed-dose trial of the single isomer SSRI escitalopram in depressed outpatients. J Clin Psychiatry 2002; 63(4): 331–6PubMedCrossRef Burke WJ, Gergel I, Bose A. Fixed-dose trial of the single isomer SSRI escitalopram in depressed outpatients. J Clin Psychiatry 2002; 63(4): 331–6PubMedCrossRef
9.
Zurück zum Zitat Wade A, Michael Lemming O, Bang Hedegaard K. Escitalopram 10 mg/day is effective and well tolerated in a placebo-controlled study in depression in primary care. Int Clin Psychopharmacol 2002; 17(3): 95–102PubMedCrossRef Wade A, Michael Lemming O, Bang Hedegaard K. Escitalopram 10 mg/day is effective and well tolerated in a placebo-controlled study in depression in primary care. Int Clin Psychopharmacol 2002; 17(3): 95–102PubMedCrossRef
10.
Zurück zum Zitat Rapaport MH, Bose A, Zheng H. Escitalopram continuation treatment prevents relapse of depressive episodes. J Clin Psychiatry 2004; 65(1): 44–9PubMedCrossRef Rapaport MH, Bose A, Zheng H. Escitalopram continuation treatment prevents relapse of depressive episodes. J Clin Psychiatry 2004; 65(1): 44–9PubMedCrossRef
11.
Zurück zum Zitat Waugh J, Goa KL. Escitalopram: a review of its use in the management of major depressive and anxiety disorders. CNS Drugs 2003; 17(5): 343–62PubMedCrossRef Waugh J, Goa KL. Escitalopram: a review of its use in the management of major depressive and anxiety disorders. CNS Drugs 2003; 17(5): 343–62PubMedCrossRef
12.
Zurück zum Zitat Davidson JR, Bose A, Korotzer A, et al. Escitalopram in the treatment of generalized anxiety disorder: double-blind, placebo controlled, flexible-dose study. Depress Anxiety 2004; 19(4): 234–40PubMedCrossRef Davidson JR, Bose A, Korotzer A, et al. Escitalopram in the treatment of generalized anxiety disorder: double-blind, placebo controlled, flexible-dose study. Depress Anxiety 2004; 19(4): 234–40PubMedCrossRef
13.
Zurück zum Zitat Montgomery SA, Loft H, Sanchez C, et al. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 2001; 88(5): 282–6PubMedCrossRef Montgomery SA, Loft H, Sanchez C, et al. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 2001; 88(5): 282–6PubMedCrossRef
14.
Zurück zum Zitat Gorman JM, Korotzer A, Su G. Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo-controlled trials. CNS Spectrums 2002; 7 (4 Suppl.1): 40–4 Gorman JM, Korotzer A, Su G. Efficacy comparison of escitalopram and citalopram in the treatment of major depressive disorder: pooled analysis of placebo-controlled trials. CNS Spectrums 2002; 7 (4 Suppl.1): 40–4
15.
Zurück zum Zitat Drewes P, Thijssen I, Mengel H, et al. A single-dose cross-over pharmacokinetic study comparing racemic citalopram (40 mg) with the S-enantiomer of citalopram (escitalopram, 20 mg) in healthy male subjects [abstract]. National Institute of Mental Health/41 st Annual New Clinical Drug Evaluation Unit Meeting, 2001 May 28–31; Phoenix (AZ) [online]. Available from URL: http://www.nimh.nih.gov/ncdeu/abstracts2001/ncdeu2045.cfm [Accessed 2006 Nov 8] Drewes P, Thijssen I, Mengel H, et al. A single-dose cross-over pharmacokinetic study comparing racemic citalopram (40 mg) with the S-enantiomer of citalopram (escitalopram, 20 mg) in healthy male subjects [abstract]. National Institute of Mental Health/41 st Annual New Clinical Drug Evaluation Unit Meeting, 2001 May 28–31; Phoenix (AZ) [online]. Available from URL: http://​www.​nimh.​nih.​gov/​ncdeu/​abstracts2001/​ncdeu2045.​cfm [Accessed 2006 Nov 8]
16.
Zurück zum Zitat Sogaard B, Mengel H, Rao N, et al. The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 2005; 45(12): 1400–6PubMedCrossRef Sogaard B, Mengel H, Rao N, et al. The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 2005; 45(12): 1400–6PubMedCrossRef
17.
Zurück zum Zitat Joffe P, Larsen FS, Pedersen V, et al. Single-dose pharmacokinetics of citalopram in patients with moderate renal insufficiency or hepatic cirrhosis compared with healthy subjects. Eur J Clin Pharmacol 1998; 54(3): 237–42PubMedCrossRef Joffe P, Larsen FS, Pedersen V, et al. Single-dose pharmacokinetics of citalopram in patients with moderate renal insufficiency or hepatic cirrhosis compared with healthy subjects. Eur J Clin Pharmacol 1998; 54(3): 237–42PubMedCrossRef
18.
Zurück zum Zitat Sidhu J, Priskorn M, Poulsen M, et al. Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 1997; 9(7): 686–92PubMedCrossRef Sidhu J, Priskorn M, Poulsen M, et al. Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 1997; 9(7): 686–92PubMedCrossRef
19.
Zurück zum Zitat Rochat B, Amey M, Baumann P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit 1995; 17(3): 273–9PubMedCrossRef Rochat B, Amey M, Baumann P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit 1995; 17(3): 273–9PubMedCrossRef
22.
Zurück zum Zitat Uhr M, Grauer MT. abcblab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 2003; 37(3): 179–85PubMedCrossRef Uhr M, Grauer MT. abcblab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 2003; 37(3): 179–85PubMedCrossRef
23.
Zurück zum Zitat Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcblab (mdrlab) P-glycoprotein gene disruption. Biol Psychiatry 2003; 54(8): 840–6PubMedCrossRef Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcblab (mdrlab) P-glycoprotein gene disruption. Biol Psychiatry 2003; 54(8): 840–6PubMedCrossRef
24.
Zurück zum Zitat Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdrla P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22(4): 380–7PubMedCrossRef Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdrla P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22(4): 380–7PubMedCrossRef
25.
Zurück zum Zitat Rochat B, Baumann P, Audus KL. Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 1999; 831(1–2): 229–36PubMedCrossRef Rochat B, Baumann P, Audus KL. Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 1999; 831(1–2): 229–36PubMedCrossRef
26.
Zurück zum Zitat Oyehaug E, Ostensen ET, Salvesen B. High-performance liquid chromatographic determination of citalopram and four of its metabolites in plasma and urine samples from psychiatric patients. J Chromatogr 1984; 308: 199–208PubMedCrossRef Oyehaug E, Ostensen ET, Salvesen B. High-performance liquid chromatographic determination of citalopram and four of its metabolites in plasma and urine samples from psychiatric patients. J Chromatogr 1984; 308: 199–208PubMedCrossRef
27.
Zurück zum Zitat Rochat B, Amey M, Van Gelderen H, et al. Determination of the enantiomers of citalopram, its demethylated and propionic acid metabolites in human plasma by chiral HPLC. Chirality 1995; 7(6): 389–95PubMedCrossRef Rochat B, Amey M, Van Gelderen H, et al. Determination of the enantiomers of citalopram, its demethylated and propionic acid metabolites in human plasma by chiral HPLC. Chirality 1995; 7(6): 389–95PubMedCrossRef
28.
Zurück zum Zitat Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913–58PubMedCrossRef Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913–58PubMedCrossRef
29.
Zurück zum Zitat Herrlin K, Yasui-Furukori N, Tybring G, et al. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol 2003; 56(4): 415–21PubMedCrossRef Herrlin K, Yasui-Furukori N, Tybring G, et al. Metabolism of citalopram enantiomers in CYP2C19/CYP2D6 phenotyped panels of healthy Swedes. Br J Clin Pharmacol 2003; 56(4): 415–21PubMedCrossRef
30.
Zurück zum Zitat Rochat B, Kosel M, Boss G, et al. Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem Pharmacol 1998; 56(1): 15–23PubMedCrossRef Rochat B, Kosel M, Boss G, et al. Stereoselective biotransformation of the selective serotonin reuptake inhibitor citalopram and its demethylated metabolites by monoamine oxidases in human liver. Biochem Pharmacol 1998; 56(1): 15–23PubMedCrossRef
31.
Zurück zum Zitat Kosel M, Gnerre C, Voirol P, et al. In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations. Mol Psychiatry 2002; 7(2): 181–8PubMedCrossRef Kosel M, Gnerre C, Voirol P, et al. In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations. Mol Psychiatry 2002; 7(2): 181–8PubMedCrossRef
32.
Zurück zum Zitat Kragh-Sorensen P, Overo KF, Petersen OL, et al. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol (Copenh) 1981; 48(1): 53–60CrossRef Kragh-Sorensen P, Overo KF, Petersen OL, et al. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol (Copenh) 1981; 48(1): 53–60CrossRef
33.
Zurück zum Zitat Dalgaard L, Larsen C. Metabolism and excretion of citalopram in man: identification of O-acyl- and N-glucuronides. Xenobiotica 1999; 29(10): 1033–41PubMedCrossRef Dalgaard L, Larsen C. Metabolism and excretion of citalopram in man: identification of O-acyl- and N-glucuronides. Xenobiotica 1999; 29(10): 1033–41PubMedCrossRef
34.
Zurück zum Zitat Periclou A, Rao N, Sherman T, et al. Single-dose pharmacokinetic study of escitalopram in adolescents and adults [abstract]. Pharmacotherapy 2003; 23(10): 1361–2 Periclou A, Rao N, Sherman T, et al. Single-dose pharmacokinetic study of escitalopram in adolescents and adults [abstract]. Pharmacotherapy 2003; 23(10): 1361–2
35.
Zurück zum Zitat Areberg J, Christophersen JS, Poulsen MN, et al. The pharmacokinetics of escitalopram in patients with hepatic impairment. AAPS J 2006; 8(1): E14–9PubMedCrossRef Areberg J, Christophersen JS, Poulsen MN, et al. The pharmacokinetics of escitalopram in patients with hepatic impairment. AAPS J 2006; 8(1): E14–9PubMedCrossRef
36.
Zurück zum Zitat Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Drug interactions with newer antidepressants: role of human cytochromes P450. J Clin Psychiatry 1998; 59 Suppl. 15: 19–27PubMed Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Drug interactions with newer antidepressants: role of human cytochromes P450. J Clin Psychiatry 1998; 59 Suppl. 15: 19–27PubMed
37.
Zurück zum Zitat Ketter TA, Flockhart DA, Post RM, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol 1995; 15(6): 387–98PubMedCrossRef Ketter TA, Flockhart DA, Post RM, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol 1995; 15(6): 387–98PubMedCrossRef
38.
Zurück zum Zitat Harvey AT, Preskorn SH. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J Clin Psychopharmacol 1996; 16(5): 345–55PubMedCrossRef Harvey AT, Preskorn SH. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J Clin Psychopharmacol 1996; 16(5): 345–55PubMedCrossRef
39.
Zurück zum Zitat Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999; 54(12): 947–51PubMedCrossRef Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999; 54(12): 947–51PubMedCrossRef
40.
Zurück zum Zitat Lane RM. Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 1996; 11 Suppl. 5: 31–61PubMedCrossRef Lane RM. Pharmacokinetic drug interaction potential of selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 1996; 11 Suppl. 5: 31–61PubMedCrossRef
41.
Zurück zum Zitat Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37PubMedCrossRef Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37PubMedCrossRef
42.
Zurück zum Zitat Brosen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45(6): 1211–4PubMedCrossRef Brosen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45(6): 1211–4PubMedCrossRef
43.
Zurück zum Zitat Rasmussen BB, Nielsen TL, Brosen K. Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol 1998; 54(9–10): 735–40PubMedCrossRef Rasmussen BB, Nielsen TL, Brosen K. Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Eur J Clin Pharmacol 1998; 54(9–10): 735–40PubMedCrossRef
44.
Zurück zum Zitat Gutierrez MM, Rosenberg J, Abramowitz W. An evaluation of the potential for pharmacokinetic interaction between escitalopram and the cytochrome P450 3A4 inhibitor ritonavir. Clin Ther 2003; 25(4): 1200–10PubMedCrossRef Gutierrez MM, Rosenberg J, Abramowitz W. An evaluation of the potential for pharmacokinetic interaction between escitalopram and the cytochrome P450 3A4 inhibitor ritonavir. Clin Ther 2003; 25(4): 1200–10PubMedCrossRef
45.
Zurück zum Zitat Mailing D, Poulsen MN, Sogaard B. The effect of cimetidine or omeprazole on the pharmacokinetics of escitalopram in healthy subjects. Br J Clin Pharmacol 2005; 60(3): 287–90CrossRef Mailing D, Poulsen MN, Sogaard B. The effect of cimetidine or omeprazole on the pharmacokinetics of escitalopram in healthy subjects. Br J Clin Pharmacol 2005; 60(3): 287–90CrossRef
46.
Zurück zum Zitat Gram LF, Hansen MG, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15(1): 18–24PubMedCrossRef Gram LF, Hansen MG, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15(1): 18–24PubMedCrossRef
47.
Zurück zum Zitat Baettig D, Bondolfi G, Montaldi S, et al. Tricyclic antidepressant plasma levels after augmentation with citalopram: a case study. Eur J Clin Pharmacol 1993; 44(4): 403–5PubMedCrossRef Baettig D, Bondolfi G, Montaldi S, et al. Tricyclic antidepressant plasma levels after augmentation with citalopram: a case study. Eur J Clin Pharmacol 1993; 44(4): 403–5PubMedCrossRef
48.
Zurück zum Zitat Larsen F, Priskorn M, Overo KF. Lack of citalopram effect on oral digoxin pharmacokinetics. J Clin Pharmacol 2001; 41(3): 340–6PubMedCrossRef Larsen F, Priskorn M, Overo KF. Lack of citalopram effect on oral digoxin pharmacokinetics. J Clin Pharmacol 2001; 41(3): 340–6PubMedCrossRef
49.
Zurück zum Zitat Baumann P, Nil R, Souche A, et al. A double-blind, placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol 1996; 16(4): 307–14PubMedCrossRef Baumann P, Nil R, Souche A, et al. A double-blind, placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol 1996; 16(4): 307–14PubMedCrossRef
50.
Zurück zum Zitat Nolting A, Abramowitz W. Lack of interaction between citalopram and the CYP3A4 substrate triazolam. Pharmacotherapy 2000; 20(7): 750–5PubMedCrossRef Nolting A, Abramowitz W. Lack of interaction between citalopram and the CYP3A4 substrate triazolam. Pharmacotherapy 2000; 20(7): 750–5PubMedCrossRef
51.
Zurück zum Zitat Priskorn M, Sidhu JS, Larsen F, et al. Investigation of multiple dose citalopram on the pharmacokinetics and pharmacodynamics of racemic warfarin. Br J Clin Pharmacol 1997; 44(2): 199–202PubMedCrossRef Priskorn M, Sidhu JS, Larsen F, et al. Investigation of multiple dose citalopram on the pharmacokinetics and pharmacodynamics of racemic warfarin. Br J Clin Pharmacol 1997; 44(2): 199–202PubMedCrossRef
52.
Zurück zum Zitat Möller SE, Larsen F, Pitsiu M, et al. Effect of citalopram on plasma levels of oral theophylline. Clin Ther 2000; 22(12): 1494–501PubMedCrossRef Möller SE, Larsen F, Pitsiu M, et al. Effect of citalopram on plasma levels of oral theophylline. Clin Ther 2000; 22(12): 1494–501PubMedCrossRef
53.
Zurück zum Zitat Steinacher L, Vandel P, Zullino DF, et al. Carbamazepine augmentation in depressive patients non-responding to citalopram: a pharmacokinetic and clinical pilot study. Eur Neuropsychopharmacol 2002; 12(3): 255–60PubMedCrossRef Steinacher L, Vandel P, Zullino DF, et al. Carbamazepine augmentation in depressive patients non-responding to citalopram: a pharmacokinetic and clinical pilot study. Eur Neuropsychopharmacol 2002; 12(3): 255–60PubMedCrossRef
54.
Zurück zum Zitat Möller SE, Larsen F, Khant AZ, et al. Lack of effect of citalopram on the steady-state pharmacokinetics of carbamazepine in healthy male subjects. J Clin Psychopharmacol 2001; 21(5): 493–9PubMedCrossRef Möller SE, Larsen F, Khant AZ, et al. Lack of effect of citalopram on the steady-state pharmacokinetics of carbamazepine in healthy male subjects. J Clin Psychopharmacol 2001; 21(5): 493–9PubMedCrossRef
55.
Zurück zum Zitat Bondolfi G, Chautems C, Rochat B, et al. Non-response to citalopram in depressive patients: pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Psychopharmacology (Berl) 1996; 128(4): 421–5CrossRef Bondolfi G, Chautems C, Rochat B, et al. Non-response to citalopram in depressive patients: pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Psychopharmacology (Berl) 1996; 128(4): 421–5CrossRef
56.
Zurück zum Zitat Bondolfi G, Lissner C, Kosel M, et al. Fluoxetine augmentation in citalopram non-responders: pharmacokinetic and clinical consequences. Int J Neuropsychopharmacol 2000; 3(1): 55–60PubMedCrossRef Bondolfi G, Lissner C, Kosel M, et al. Fluoxetine augmentation in citalopram non-responders: pharmacokinetic and clinical consequences. Int J Neuropsychopharmacol 2000; 3(1): 55–60PubMedCrossRef
57.
Zurück zum Zitat Weiss J, Dormann SM, Martin-Facklam M, et al. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 2003; 305(1): 197–204PubMedCrossRef Weiss J, Dormann SM, Martin-Facklam M, et al. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther 2003; 305(1): 197–204PubMedCrossRef
Metadaten
Titel
The Clinical Pharmacokinetics of Escitalopram
verfasst von
Dr Niranjan Rao
Publikationsdatum
01.04.2007
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 4/2007
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200746040-00002

Weitere Artikel der Ausgabe 4/2007

Clinical Pharmacokinetics 4/2007 Zur Ausgabe