Skip to main content
Log in

Clinical Pharmacology of Loop Diuretics

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The clinical pharmacology of torasemide, bumetanide, piretanide and furosemide (frusemide) is discussed. These drugs share a similar mechanism of action in inhibiting Na+-K+-2Cl reabsorption at the thick ascending limb of the loop of Henle. They differ in their routes of metabolism, pharmacokinetics, and potency. Whether such differences are clinically important requires further study. Bumetanide and torasemide are metabolised by cytochrome P450 pathways, whereas furosemide is glucuronidated. These different routes of metabolism may have clinically important implications. Bumetanide, furosemide, and piretanide have similar pharmacokinetics, whereas the clearance of torasemide is less and the half-life concomitantly longer than the other 3 agents. Thus, torasemide has a longer duration of action. The rank order of potency is bumetanide > piretanide ≡ torasemide > furosemide, although efficacy appears the same. Despite much being known about these diuretics, many clinically important questions remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brater DC. Pocket manual of drug use in clinical medicine. 4th edition. BC Decker, Toronto, 1989

    Google Scholar 

  • Brater DC, Anderson S, Baird B, Kaojarern S. Effects of piretanide in normal subjects. Clinical Pharmacology and Therapeutics 34: 324–330, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Brater DC, Chennavasin P, Day B, Burdette A, Anderson S. Bumetanide and furosemide. Clinical Pharmacology and Therapeutics 34: 207–213, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Brater DC, Leinfelder J, Anderson S. Clinical pharmacology of torasemide, a new loop diuretic. Clinical Pharmacology and Therapeutics 42: 187–192, 1987

    Article  PubMed  CAS  Google Scholar 

  • Burg MB. Tubular chloride transport and the mode of action of some diuretics. Kidney International 9: 189–197, 1976

    Article  PubMed  CAS  Google Scholar 

  • Burke TJ, Robinson RR, Clapp JR. Determinants of the effect of furosemide on the proximal tubule. Kidney International 1: 12–18, 1972

    Article  PubMed  CAS  Google Scholar 

  • Chennavasin P, Seiwell R, Brater DC, Liang WMM. Pharmacodynamic analysis of the furosemide-probenecid interaction in man. Kidney International 16: 187–195, 1979

    Article  PubMed  CAS  Google Scholar 

  • Christensen S, Steiness E, Christensen H. Tubular sites of furosemide natriuresis in volume-replaced and volume-depleted conscious rats. Journal of Pharmacology and Experimental Therapeutics 239: 211–218, 1986

    PubMed  CAS  Google Scholar 

  • Ellison DH, Velázquez H, Wright FS. Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. Journal of Clinical Investigation 83: 113–126, 1989

    Article  PubMed  CAS  Google Scholar 

  • Epstein M, Lepp BA, Hoffman DS, Levinson R. Potentiation of furosemide by metolazone in refractory edema. Current Therapeutic Research 21: 656–667, 1977

    Google Scholar 

  • Halladay SC, Carter DE, Sipes IG, Brodie BB, Bressler R. Evidence for the metabolism of bumetanide in man. Life Sciences 17: 1003–1009, 1975

    Article  PubMed  CAS  Google Scholar 

  • Halladay SC, Carter DE, Sipes IG. A relationship between the metabolism of bumetanide and its diuretic activity in the rat. Drug Metabolism and Disposition 6: 45–49, 1978

    PubMed  CAS  Google Scholar 

  • Hammarlund MM, Oldind B, Paalzow LK. Acute tolerance to furosemide diuresis in humans. Pharmacokinetic-pharmacodynamic modeling. Journal of Pharmacology and Experimental Therapeutics 233: 447–452, 1985

    PubMed  CAS  Google Scholar 

  • Hammarlund-Udenaes M, Benet LZ. Furosemide pharmacokinetics and pharmacodynamics in health and disease — an update. Journal of Pharmacokinetics and Biopharmaceutics 17: 1–46, 1989

    Article  PubMed  CAS  Google Scholar 

  • Herschuelz A, Deger F, Douchamps J, Ducarne H, Broeckhuysen J. Comparative pharmacodynamics of torasemide and furosemide in patients with oedema. Arzneimittel-Forschung/Drug Research 38: 180–183, 1988

    Google Scholar 

  • Jacobson HR and Kokko JP. Diuretics: sites and mechanisms of action. Annual Review of Pharmacology and Toxicology 16: 201–214, 1976

    Article  PubMed  CAS  Google Scholar 

  • Kaissling B, Stanton BA. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. American Journal of Physiology 255: F1256–F1268, 1988

    PubMed  CAS  Google Scholar 

  • Kaojarern S, Day B, Brater DC. The time course of delivery of furosemide into urine: an independent determinant of overall response. Kidney International 22: 69–74, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kelly RA, Wilcox CS, Mitch WE, Meyer TW, Souney PF, et al. Response of the kidney to furosemide. II. Effect of captopril on sodium balance. Kidney International 24: 233–239, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kirkendall WM, Stein JH. Clinical pharmacology of furosemide and ethacrynic acid. American Journal of Cardiology 22: 162–167, 1968

    Article  PubMed  CAS  Google Scholar 

  • Lau HSH, Shih LJ, Smith DE. Effect of probenecid on the dose-response relationship of bumetanide at steady state. Journal of Pharmacology and Experimental Therapeutics 227: 51–54, 1983

    PubMed  CAS  Google Scholar 

  • Lesne M. Comparison of the pharmacokinetics and pharmacodynamics of torasemide and furosemide in healthy volunteers. Arzneimittel-Forschung/Drug Research 38: 160–163, 1988

    CAS  Google Scholar 

  • Lupinacci L, Puschett JB. An examination of the site and mechanism of action of torasemide in man. Journal of Clinical Pharmacology 28: 441–447, 1988

    PubMed  CAS  Google Scholar 

  • Neugebauer G, Besenfelder E, Mollendorff EV. Pharmacokinetics and metabolism of torasemide in man. Drug Research 38: 164–166, 1988

    PubMed  CAS  Google Scholar 

  • Odlind B. Relationship between tubular secretion of furosemide and its saluretic effect. Journal of Pharmacology and Experimental Therapeutics 208: 515–521, 1979

    PubMed  CAS  Google Scholar 

  • Odlind B, Beermann B, Lindström B. Coupling between renal tubular secretion and effect of bumetanide. Clinical Pharmacology and Therapeutics 34: 805–809, 1983

    Article  PubMed  CAS  Google Scholar 

  • Olesen KH, Sigurd B. The supra-additive natriuretic effect addition of quinethazone or bendroflumethiazide during long-term treatment with furosemide and spironolactone. Acta Medica Scandinavica 190: 233–240, 1971

    Article  PubMed  CAS  Google Scholar 

  • Puschett JB, Goldberg M. The acute effects of furosemide on acid and electrolyte excretion in man. Journal of Laboratory and Clinical Medicine 71: 666–677, 1968

    PubMed  CAS  Google Scholar 

  • Ram CVS, Reichgott MJ. Treatment of loop-diuretic resistant edema by the addition of metolazone. Current Therapeutic Research 22: 686–690, 1977

    CAS  Google Scholar 

  • Sigurd B, Olesen KH, Wennevold A. The supra-additive natriuretic effect addition of bendroflumethiazide and bumetanide in congestive heart failure. American Heart Journal 89: 163–170, 1975

    Article  PubMed  CAS  Google Scholar 

  • Smith DE, Lin ET, Benet LZ. Absorption and disposition of furosemide in healthy volunteers, measured with a metabolite-specific assay. Drug Metabolism and Disposition 8: 337–342, 1980

    PubMed  CAS  Google Scholar 

  • Spahn H, Knauf H, Mutschier E. Pharmacodynamics and kinetics of torasemide and its metabolites in chronic renal failure after intravenous administration of 20mg torasemide. In Gnoreucci VE, Dal Canton A (Eds) Diuretics: basic pharmacological and clinical aspects, pp. 376–378, Martinus Nijhoff, Boston, 1987

    Chapter  Google Scholar 

  • Stanton BA, Kaissling B. Adaptation of distal tubule and collecting duct to increased Na delivery. II. Na+ and K+ transport. American Journal of Physiology 255: F1269–F1275, 1988

    PubMed  CAS  Google Scholar 

  • Stason WB, Cannon PJ, Heinemann HO, Laragh JH. Furosemide. A clinical evaluation of its diuretic action. Circulation 34: 910–920, 1966

    Article  PubMed  CAS  Google Scholar 

  • Voelker JR, Cartwright-Brown D, Anderson S, Leinfelder J, Sica DA, et al. Comparison of loop diuretics in patients with chronic renal insufficiency. Kidney International 32: 572–578, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wilcox CS, Guzman NJ, Mitch WE, Kelly RA, Maroni BJ, et al. Na+, K+, and BP homeostasis in man during furosemide: effects of prazosin and captopril. Kidney International 31: 135–141, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wilcox CS, Mitch WE, Kelly RA, Skorecki K, Meyer TW, et al. Response of the kidney to furosemide. I. Effect of salt intake and renal compensation. Journal of Laboratory and Clinical Medicine 102: 450–458, 1983

    PubMed  CAS  Google Scholar 

  • Wittner M, Di Stefano A, Schlatter E, Delarge J, Greger R. Torasemide inhibits NaCl reabsorption in the thick ascending limb of the loop of Henle. Pflügers Archiv. European Journal of Physiology 407: 611–614, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wittner M, Di Stefano A, Wangemann P, Delarge J, Liegeois JF, et al. Analogues of torasemide — structure function relationships — experiments in the thick ascending limb of the loop of Henle of rabbit nephron. Pflügers Archiv. European Journal of Physiology 408: 54–62, 1987

    Article  PubMed  CAS  Google Scholar 

  • Wollam GL, Tarazi RC, Bravo EL, Dustan HP. Diuretic potency of combined hydrochlorothiazide and furosemide therapy in patients with azotemia. American Journal of Medicine 72: 929–938, 1982

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brater, D.C. Clinical Pharmacology of Loop Diuretics. Drugs 41 (Suppl 3), 14–22 (1991). https://doi.org/10.2165/00003495-199100413-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199100413-00004

Keywords

Navigation