Skip to main content
Log in

Sevoflurane

A Review of its Pharmacodynamic and Pharmacokinetic Properties and its Clinical Use in General Anaesthesia

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Synopsis

Sevoflurane is an ether inhalation general anaesthetic agent with lower solubility in blood than isoflurane or halothane but not desflurane. The low solubility and the absence of pungency facilitate rapid mask induction; the low blood solubility also expedites ‘wash-out’ and therefore recovery from anaesthesia. Sevoflurane produces dose-dependent CNS, cardiovascular and respiratory depressant effects that generally parallel those of isoflurane.

Sevoflurane is degraded by carbon dioxide absorbents to nephrotoxic (in rats) haloalkenes, although renal toxicity has not been observed in humans. Compared with other inhalation anaesthetics, negligible quantities of carbon monoxide are generated from degradation of sevoflurane by carbon dioxide absorbents.

Sevoflurane has negligible airway irritant effects, which facilitate s a ‘smooth’ induction, even in comparison with halothane in paediatric patients, and makes sevoflurane especially amenable to rapid induction of anaesthesia in adults and children. Emergence, orientation and postoperative cognitive and psychomotor function recovery of paediatric outpatients is significantly more rapid from sevoflurane than from halothane anaesthesia. In adult inpatients and outpatients, emergence and orientation are significantly faster after sevoflurane than after isoflurane but not desflurane anaesthesia. Other recovery parameters (e.g. times to sitting, ambulation) occur at similar times after either sevoflurane or desflurane anaesthesia. Recovery of psychomotor function occurs at generally similar times after sevoflurane, isoflurane or desflurane.

Compared with propofol, sevoflurane facilitates more predictable extubation times and significantly better postoperative modified Aldrete scores in outpatients, although cognitive and psychomotor recovery occurs at similar times for both agents.

As a supplement to opioid anaesthesia during coronary bypass graft surgery or in those at risk for myocardial ischaemia, sevoflurane is comparable to isoflurane. Limited data suggest that it is also as useful as isoflurane for the maintenance of anaesthesia during neurosurgical or obstetric procedures.

Sevoflurane is well tolerated by adult and paediatric patients during induction of anaesthesia, with a low incidence of mild airway complications (breath-holding, coughing, excitement and laryngospasm). During rapid induction, it is particularly better tolerated than isoflurane or halothane. Sevoflurane has a lower potential for hepatic injury than halothane. Unlike methoxyflurane, sevoflurane undergoes minimal intrarenal defluorination, which may account for the lack of fluoride ion-induced nephrotoxicity in humans, despite elevated plasma fluoride levels after its use.

In summary, sevoflurane provides for a rapid and smooth induction of, and recovery from, anaesthesia. These features combined with its favourable cardiovascular profile should make sevoflurane the agent of choice for inhalation induction in adult and paediatric anaesthesia. Although further clinical evaluation will define the role of this agent relative to that of propofol and desflurane, sevoflurane should also prove to be a valuable alternative anaesthetic agent for adults in both outpatient and inpatient surgery.

Physical and Pharmacodynamic Properties

Sevoflurane is a polyfluorinated methyl isopropyl ether inhalation general anaesthetic with lower solubility in blood and body tissues than halothane but not desflurane. Its anaesthetic potency is ≈50% less than that of isoflurane but ≈ 30% more than that of desflurane. Sevoflurane is readily degraded by carbon dioxide absorbents to haloalkene byproducts that are nephrotoxic in rats, but there is no evidence of such toxicity in humans. In contrast to some other inhalation anaesthetic agents, which are degraded by carbon dioxide absorbents with generation of carbon monoxide, sevoflurane degradation generates negligible quantities of carbon monoxide.

The dose-dependent EEG and cerebrovascular depressant effects of sevoflurane generally parallel those of isoflurane. Sevoflurane produces cerebrovasodilation, suppresses somatosensory-evoked potentials and facilitates preservation of cerebral blood flow responsiveness to changes in arterial carbon dioxide tension. Cerebral blood flow autoregulation is maintained during sevoflurane anaesthesia, unlike the dose-dependent impairment seen with desflurane or other inhalation agents. As with other inhalation anaesthetics, cerebral metabolism is maintained at a reduced rate during sevoflurane anaesthesia.

Sevoflurane is a dose-dependent cardiovascular depressant generally similar to isoflurane and desflurane, with some exceptions. Sevoflurane, unlike isoflurane and desflurane, is not associated with sympathoexcitatory activity upon introduction or with rapid increases in inspired concentrations; in this regard sevoflurane provides a more stable heart rate profile than either isoflurane or desflurane. However, it is similar to these agents in that it does not potentiate cardiac arrhythmias induced by epinephrine (adrenaline). Sevoflurane, like other inhalation anaesthetics, produces a dose-dependent decrease in blood pressure, and, compared with isoflurane, it facilitates rapid alteration of the depth of anaesthesia.

In adults, the depression of cardiovascular function and myocardial contractility produced by sevoflurane is similar to that seen with isoflurane but less than that of halothane or enflurane. The cardiovascular depressant effect is attenuated during spontaneous ventilation, in the presence of nitrous oxide 60% or with prolonged exposure to sevoflurane. Sevoflurane has a negligible effect on coronary blood flow, and canine models indicate that, like desflurane, it does not induce a ‘coronary steal’ phenomenon. Sevoflurane is similar to isoflurane in its effects on regional blood flow, including to visceral organs, and systemic vascular resistance. Baroreflex function is reduced by sevoflurane in a manner similar to that of isoflurane and desflurane.

Sevoflurane produces a more profound dose-dependent ventilatory depression than is seen with enflurane or halothane at />-1 minimum alveolar concentrations (MAC). The depressant effect leads to a decreased minute respiratory volume. Sevoflurane inhibits hypoxic pulmonary vasoconstriction and tracheal smooth muscle contraction. Compared with other inhalation anaesthetics, sevoflurane causes negligible airway irritation and does not induce the cough reflex.

Sevoflurane resembles other inhalation anaesthetics in its effect on neuromuscular relaxation and potentiation of skeletal muscle relaxation induced by neuromuscular blocking agents. It permits tracheal intubation without adjunctive neuromuscular blocking agents; laryngeal mask insertion can also be accomplished with sevoflurane alone at concentrations slightly lower than those required for tracheal intubation.

Pharmacokinetic Properties

The alveolar equilibration of sevoflurane is rapid (85% complete within 30 minutes) compared with that of isoflurane (73%) or halothane (58%) but not desflurane (90%). The estimated tissue distribution of sevoflurane is similar to that of isoflurane.

Sevoflurane is eliminated faster than isoflurane despite its greater blood: tissue partition coefficient. Thus, ‘wash-out’ of sevoflurane in the first 2 hours after discontinuation of anaesthesia is ≈1.6-fold more rapid than with isoflurane but slower than desflurane. Mean pulmonary elimination clearance of sevoflurane (3.58 L/min) is not significantly different from that of isoflurane (3.62 L/min), and total body clearance of both agents is identical (3.6 L/min).

Sevoflurane undergoes dose-independent hepatic biotransformation, principally by cytochrome P450 (CYP) 2E1, with 1 to 5% of the absorbed dose of sevoflurane undergoing metabolism to liberate inorganic fluoride ions (F-) and hexafluoroisopropanol (HFIP) as the principal byproducts. The latter compound accounts for 82% of the organic fluorinated metabolites. HFIP is rapidly glucuronidated and then undergoes rapid urinary excretion. Sevoflurane, unlike methoxvflurane, undergoes minimal renal defluorination.

Clinical Evaluation

Rapid induction of anaesthesia with sevoflurane is as effective as that with isoflurane or halothane and considerably more pleasant. Several clinical studies in outpatient anaesthesia which compared sevoflurane with halothane found that induction of anaesthesia was ‘smoother’ and faster, and tracheal intubation more rapid with sevoflurane. Emergence, extubation, orientation and postoperative recovery of cognitive and psychomotor function after sevoflurane anaesthesia was more rapid than after halothane anaesthesia, although patient readiness for discharge was not consistently earlier.

Emergence and orientation from outpatient anaesthesia were more rapid after sevoflurane than after isoflurane anaesthesia in adults but not after desflurane anaesthesia in adults or children, whereas times to ambulation or readiness for discharge were comparable among the 3 agents. Data from inpatient comparative studies of sevoflurane and isoflurane in adults reflected similar trends, with the exception that postoperative orientation in these patients did not occur consistently earlier with sevoflurane. Recovery rates of postoperative psychomotor function after sevoflurane or isoflurane anaesthesia were similar.

Extubation times were similar after propofol or sevoflurane, but more predictable with the latter agent in ambulatory patients. Recovery of cognitive and psychomotor functions occurred at similar times for both agents, although postoperative modified Aldrete scores were significantly better with sevoflurane than with propofol. In contrast, data from inpatients show that sevoflurane provided significantly shorter times to extubation, emergence and orientation than did propofol.

Present data indicate that, as a supplement to opioid anaesthesia during coronary artery bypass graft surgery or in patients at risk for myocardial ischaemia, sevoflurane is comparable to isoflurane. In obstetric surgery, limited data show that sevoflurane, at 1% end-tidal concentrations, is as useful as isoflurane (0.5%) for the maintenance of anaesthesia, without any adverse maternal or neonatal outcomes. In neurosurgical procedures, sevoflurane anaesthesia produced changes in cerebrovascular haemodynamics comparable to those seen with isoflurane anaesthesia.

Tolerability

Sevoflurane, like isoflurane or halothane, is well tolerated by patients predisposed to asthma. In adults and children, it is less pungent than halothane or isoflurane, and airway complications (breath-holding, coughing, excitement and laryngospasm) during induction of anaesthesia are generally mild, transient and lower in incidence. During rapid induction of anaesthesia, sevoflurane is particularly better tolerated than isoflurane or halothane. Changes in haemodynamic variables tend to be minimal during induction and maintenance of anaesthesia with sevoflurane.

Occasional agitation upon awakening from sevoflurane anaesthesia has been reported in children, with postoperative restlessness and agitation evident during recovery. Postoperative nausea has occurred in 2 to 74% of patients recovering from sevoflurane anaesthesia, whereas emesis has been reported in 2 to 50% of patients.

Sevoflurane has a lower potential for hepatotoxicity than halothane, despite rare reports of transient elevation of hepatic enzymes. However, HFIP-induced toxicity has not been observed in humans. Increases in plasma F- levels after sevoflurane anaesthesia, including multiple exposure to this agent, have not been associated with nephrotoxicity, impairment of renal concentrating function or worsening of renal impairment in humans. Nephrotoxicity induced by pentafluoroisopropenyl fluoromethyl ether (also known as ‘Compound A’ — the principal byproduct from degradation of sevoflurane by carbon dioxide absorbents) has not been observed in humans, although only a limited number of patients exposed to sevoflurane have received the agent via anaesthetic circuits incorporating carbon dioxide absorbents in low-flow systems.

Sevoflurane, like other inhalation anaesthetic agents, can trigger malignant hyperthermia and, to date, this syndrome has occurred in 3 Japanese patients.

Drug Interactions

Nitrous oxide and opioids reduce the MAC of sevoflurane. In children, the decrease in MAC is not proportional to the concentration of nitrous oxide.

The pharmacological activity of neuromuscular blocking agents is potentiated by sevoflurane, which is also synergistic with lidocaine (lignocaine) and procainamide.

Dosage and Administration

Sevoflurane is recommended for induction and/or maintenance of general anaesthesia in adult and paediatric patients undergoing inpatient or outpatient surgical procedures.

Inspired concentrations of sevoflurane 1 to 8% can be used for induction of anaesthesia, with or without pre-anaesthetic medication. Anaesthesia can also be induced by rapid inhalation of sevoflurane 6 to 8%. Concentrations of sevoflurane 1.5 to 3% without nitrous oxide (or 0.5 to 3% with nitrous oxide) can be used for maintenance of surgical anaesthesia. At present, because of limited clinical experience with sevoflurane in low-flow systems, fresh gas flow rates <2 L/min are not recommended in a circle absorber system.

Sevoflurane should not be administered to patients with known or suspected genetic susceptibility to malignant hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryce-Smith R, O’Brien HD. Fluothane: a non-explosive volatile anaesthetic agent. BMJ 1956 Oct; 2: 969–72

    Article  CAS  PubMed  Google Scholar 

  2. Johnstone M. The human cardiovascular response to fluothane anaesthesia. Br J Anaesth 1956; 28: 392–410

    Article  CAS  PubMed  Google Scholar 

  3. Suckling CW. Some chemical and physical factors in the development of fluothane. Br J Anaesth 1957; 29: 466–72

    Article  CAS  PubMed  Google Scholar 

  4. Merrett KL, Jones RM. Inhalational anaesthetic agents. Br J Hosp Med 1994 Sep; 52(6): 260–3

    Google Scholar 

  5. Jones RM. Desflurane and sevoflurane: inhalation anaesthetics for this decade? Br J Anaesth 1990 Oct; 65(4): 527–36

    Article  CAS  PubMed  Google Scholar 

  6. Marshall BE, Longnecker DE. General anaesthetics. In: Gilman AG, Rall TW, Nies AL, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press, 1990: 285–310

    Google Scholar 

  7. Frink EJ, Brown BR. Sevoflurane. Baillieres Clin Anaesth 1993 Dec; 7(4): 899–913

    Article  Google Scholar 

  8. Wallin RF, Napoli MD, Regan BM. Laboratory investigation of a new series of inhalation anesthetic agents: the halomethyl polyfluoroisopropyl ethers. In: Fink BR, editor. Cellular biology and toxicity of anesthetics. Baltimore: Williams & Wilkins, 1972: 286–95

    Google Scholar 

  9. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology 1990 May; 72(5): 793–6

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda N, Eger EI, Weiskopf RB, et al. Solubility of desflurane (I-653), sevoflurane, isoflurane, and halothane in human blood [in Japanese]. Masui 1991 Jul; 40(7): 1059–62

    CAS  PubMed  Google Scholar 

  11. Laster MJ, Fang Z, Eger EI. Specific gravities of desflurane, enflurane, halothane, isoflurane, and sevoflurane. Anesth Analg 1994 Jun; 78(6): 1152–3

    Article  CAS  PubMed  Google Scholar 

  12. Abbott Laboratories. Sevoflurane volatile liquid for inhalation. Product information

  13. Eger EI. New inhaled anesthetics. Anesthesiology 1994 Apr; 80(4): 906–22

    Article  CAS  PubMed  Google Scholar 

  14. Ohmeda PPD Inc. Product information: Forane. 1995 Physicians’ Desk Reference 49th ed., 1740.

  15. Wyeth Ayerst Laboratories. Product information: Fluothane. 1995 Physicians’ Desk Reference 49th ed., 2668-9

  16. Marti RA, Spahr-Schopfer I, Forster A. Place of sevoflurane and desflurane in pediatric anaesthesia [in French]. Med Hyg 1994 Dec; 52: 2593–8

    Google Scholar 

  17. Scheller MS, Saidman LJ, Partridge BL. MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anaesth 1988 Feb; 35(2): 153–6

    Article  CAS  PubMed  Google Scholar 

  18. Katoh T, Ikeda K. The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 1987 Mar; 66: 301–3

    Article  CAS  PubMed  Google Scholar 

  19. Rampil IJ, Lockhart SH, Zwass MS, et al. Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 1991 Mar; 74(3): 429–33

    Article  CAS  PubMed  Google Scholar 

  20. Quasha AL, Eger EI, Tinker JH. Determination and applications of MAC. Anesthesiology 1980 Oct; 53(4): 315–34

    Article  CAS  PubMed  Google Scholar 

  21. Hornbein TF, Eger EI, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982 Jul; 61(7): 553–6

    Article  CAS  PubMed  Google Scholar 

  22. Strum DP, Eger EI. Partition coefficients for sevoflurane in human blood, saline, and olive oil. Anesth Analg 1987 Jul; 66(1): 654–6

    CAS  PubMed  Google Scholar 

  23. Eger EI. Partition coefficients of I-653 in human blood, saline, and olive oil. Anesth Analg 1987 Oct; 66(10): 971–3

    CAS  PubMed  Google Scholar 

  24. Miller RD. Anesthesia. 4th ed. New York: Churchill Livingstone, 1994

    Google Scholar 

  25. Yasuda N, Targ AG, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 1989 Sep; 69(3): 370–3

    Article  CAS  PubMed  Google Scholar 

  26. Kety SS, Harmel MH, Broomell HT, et al. The solubility of nitrous oxide in blood and brain. J Biol Chem 1948; 173: 487–96

    CAS  PubMed  Google Scholar 

  27. Lerman J, Gregory G, Willis M, et al. Age and solubility of volatile anesthetics in blood. Anesthesiology 1984 Aug; 61(2): 139–43

    Article  CAS  PubMed  Google Scholar 

  28. Eger EI, Bahlman SH, Munson ES. The effect of age on the rate of increase of alveolar anesthetic concentration. Anesthesiology 1971 Oct; 35(4): 365–72

    Article  CAS  PubMed  Google Scholar 

  29. Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 1965 Nov–Dec; 26(6): 756–63

    Article  PubMed  Google Scholar 

  30. Targ AG, Yasuda N, Eger EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in plastics and rubber composing a conventional anesthetic circuit. Anesth Analg 1989 Aug; 69(2): 218–25

    Article  CAS  PubMed  Google Scholar 

  31. Taylor RH, Lerman J. Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology 1991 Dec; 75(6): 975–9

    Article  CAS  PubMed  Google Scholar 

  32. Fisher DM, Zwass MS. MAC of desflurane in 60% nitrous oxide in infants and children. Anesthesiology 1992 Mar; 76(3): 354–6

    Article  CAS  PubMed  Google Scholar 

  33. Gold MI, Abello D, Herrington C. Minimum alveolar concentration of desflurane in patients older than 65 yr. Anesthesiology 1993 Oct; 79(4): 710–4

    Article  CAS  PubMed  Google Scholar 

  34. Gregory GA, Eger EI, Munson ES. The relationship between age and halothane requirement in man. Anesthesiology 1969 May; 30(5): 488–91

    Article  CAS  PubMed  Google Scholar 

  35. Stevens WD, Dolan WM, Gibbons RT, et al. Minimum alveolar concentration (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 1975 Feb; 42(2): 197–200

    Article  CAS  PubMed  Google Scholar 

  36. Saidman LJ, Eger EI. Effect of nitrous oxide and of narcotic premedication on the alveolar concentration required for anesthesia. Anesthesiology 1964; 25: 302–6

    Article  CAS  PubMed  Google Scholar 

  37. Imamura S, Katoh T, Ikeda K. MAC50 (minimum alveolar concentration) of enflurane in infant and children [in Japanese]. J Clin Anesth 1986; 10: 445–8

    Google Scholar 

  38. Gion H, Saidman LJ. The minimum alveolar concentration of enflurane in man. Anesthesiology 1971 Oct; 35(4): 361–4

    Article  CAS  PubMed  Google Scholar 

  39. Cameron CB, Robinson S, Gregory GA. The minimum anesthetic concentration of isoflurane in children. Anesth Analg 1984 Apr; 63(4): 418–20

    Article  CAS  PubMed  Google Scholar 

  40. Nakajima Y, Nakajima R, Ikeda K. The effect of pentazocine on minimum alveolar concentration of sevoflurane for adults and elderly patients [abstract]. Anesth Analg 1993 Feb; 76(2S) Suppl.: S282

    Google Scholar 

  41. Lerman J, Sikich N, Kleinman S, et al. The pharmacology of sevoflurane in infants and children. Anesthesiology 1994 Apr; 80(4): 814–24

    Article  CAS  PubMed  Google Scholar 

  42. Inomata S, Watanabe S, Taguchi M, et al. End-tidal sevoflurane concentration for tracheal intubation and minimum alveolar concentration in pediatric patients. Anesthesiology 1994 Jan; 80(1): 93–6

    Article  CAS  PubMed  Google Scholar 

  43. Katoh T, Ikeda K. Minimum alveolar concentration of sevoflurane in children. Br J Anaesth 1992 Feb; 68(2): 139–41

    Article  CAS  PubMed  Google Scholar 

  44. Fragen RJ, Dunn K. Determination of the minimum alveolar concentration of sevoflurane with and without nitrous oxide in elderly and young adults [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A361

    Google Scholar 

  45. Kimura T, Watanabe S, Asakura N, et al. Determination of endtidal sevoflurane concentration for tracheal intubation and minimum alveolar anesthetic concentration in adults. Anesth Analg 1994 Aug; 79(2): 378–81

    Article  CAS  PubMed  Google Scholar 

  46. Nakajima R, Nakajima Y, Ikeda K. Minimum alveolar concentrations of sevoflurane in elderly patients. Br J Anaesth 1993 Mar; 70(3): 273–5

    Article  CAS  PubMed  Google Scholar 

  47. Stoelting R, Longnecker D, Eger EI. Minimum alveolar concentrations in man on awakening from methoxyflurane, halothane, ether and fluroxene anesthesia: MAC awake. Anesthesiology 1970 Jul; 33(1): 5–9

    Article  CAS  PubMed  Google Scholar 

  48. Epstein RH, Mendel HG, Guarnieri KM, et al. Sevoflurane versus halothane for general anesthesia in pediatric patients: a comparative study of vital signs, induction, and emergence. J Clin Anesth 1995 May; 7: 237–44

    Article  CAS  PubMed  Google Scholar 

  49. Katoh T, Suguro Y, Ikeda T, et al. Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 1993 Feb; 76: 348–52

    CAS  PubMed  Google Scholar 

  50. Katoh T, Suguro Y, Kimura T, et al. Cerebral awakening concentration of sevoflurane and isoflurane predicted during slow and fast alveolar washout. Anesth Analg 1993 Nov; 77(5): 1012–7

    Article  CAS  PubMed  Google Scholar 

  51. Katoh T, Suguro Y, Nakajima R, et al. Blood concentrations of sevoflurane and isoflurane on recovery from anaesthesia. Br J Anaesth 1992 Sep; 69(3): 259–62

    Article  CAS  PubMed  Google Scholar 

  52. Graham SG. The desflurane Tec 6 vaporizer. Br J Anaesth 1994 Apr; 72(4): 470–3

    Article  CAS  PubMed  Google Scholar 

  53. Weiskopf RB, Sampson D, Moore MA. The desflurane (Tec 6) vaporizer: design, design considerations and performance evaluation. Br J Anaesth 1994 Apr; 72(4): 474–9

    Article  CAS  PubMed  Google Scholar 

  54. Frink EJ, Malan TP, Morgan SE, et al. Quantification of the degradation products of sevoflurane in two CO2 absorbants during low-flow anesthesia in surgical patients. Anesthesiology 1992 Dec; 77(6): 1064–9

    Article  PubMed  Google Scholar 

  55. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime: toxicity of the byproducts. Anesthesiology 1992 Dec; 77(6): 1155–64

    Article  CAS  PubMed  Google Scholar 

  56. Nakazawa M, Miyano K, Toriumi K, et al. Differential reactivities of three kinds of carbon dioxide absorbents with high concentration of sevoflurane [in Japanese]. Masui 1994 Aug; 43(8): 1216–20

    CAS  PubMed  Google Scholar 

  57. Zhang XF, Miyano K, Nakazawa M, et al. Differential reactivities of three kinds of carbon dioxide absorbents with sevoflurane [in Japanese]. Masui 1994 Mar; 43(3): 378–82

    CAS  PubMed  Google Scholar 

  58. Kudo M, Kudo T, Matsuki A. Reaction products of sevoflurane with new soda lime-A under various conditions [in Japanese]. Masui 1990 May; 39(5): 626–31

    CAS  PubMed  Google Scholar 

  59. Kudo M, Kudo T, Oyama T, et al. Reaction products of sevoflurane with components of sodalime under various conditions [in Japanese]. Masui 1990 Jan; 39(1): 39–44

    CAS  PubMed  Google Scholar 

  60. Hanaki C, Fujii K, Morio M, et al. Decomposition of sevoflurane by sodalime. Hiroshima J Med Sci 1987 Mar; 36: 61–7

    CAS  PubMed  Google Scholar 

  61. Huang C, Venturella V, Cholli A, et al. Detailed investigation of fluoromethyl l, l, l, 3, 3, 3-hexafluoro-2-propyl ether sevoflurane) and its degradation products: 1. Synthesis of fluorinated, soda lime induced degradation products. Journal of Fluorine Chemistry 1988; 45: 239–53

    Article  Google Scholar 

  62. Fee JPH, Murray JM, Luney SR. Molecular sieves: an alternative method of carbon dioxide removal which does not generate compound A during simulated low-flow sevoflurane anaesthesia. Anaesthesia 1995 Oct; 50(10): 841–5

    Article  CAS  PubMed  Google Scholar 

  63. Strum DP, Eger EI. The degradation, absorption, and solubility of volatile anesthetics in soda lime depend on water content. Anesth Analg 1994 Feb; 78(2): 340–8

    Article  CAS  PubMed  Google Scholar 

  64. Ruzicka JA, Hidalgo JC, Tinker JH, et al. Inhibition of volatile sevoflurane degradation product formation in an anesthesia circuit by a reduction in soda lime temperature. Anesthesiology 1994 Jul; 81(1): 238–44

    Article  CAS  PubMed  Google Scholar 

  65. Wong DT, Lerman J. Factors affecting the rate of disappearance of sevoflurane in Baralyme. Laboratory investigations. Can J Anaesth 1992 Apr; 39(4): 366–9

    Article  CAS  PubMed  Google Scholar 

  66. Liu J, Laster MJ, Eger EI, et al. Absorption and degradation of sevoflurane and isoflurane in a conventional anesthetic circuit. Anesth Analg 1991 Jun; 72(6): 785–9

    Article  CAS  PubMed  Google Scholar 

  67. Strum DP, Johnson BH, Eger EI. Stability of sevoflurane in soda lime. Anesthesiology 1987 Nov; 67(5): 779–81

    Article  CAS  PubMed  Google Scholar 

  68. Eger EI. Stability of I-653 in soda lime. Anesth Analg 1987 Oct; 66: 983–5

    CAS  PubMed  Google Scholar 

  69. Miyano K, Nakazawa M, Tanifuji Y, et al. Reactivity of sevoflurane with carbon dioxide absorbents — comparison of soda lime and Baralyme [in Japanese]. Masui 1991 Mar; 40(3): 384–90

    CAS  PubMed  Google Scholar 

  70. Moon RE. CO poisoning during anesthesia poses puzzles. Anesth Patient Safety Foundation Newsletter 1994; 9: 13–6

    Google Scholar 

  71. Moon RE, Meyer AF, Scott DL, et al. Intraoperative carbon monoxide toxicity [abstract]. Anesthesiology 1990 Sep; 73(3A) Suppl.: A1049

    Google Scholar 

  72. Moon RE, Ingram C, Brunner EA, et al. Spontaneous generation of carbon monoxide with anesthetic circuits [abstract]. Anesthesiology 1991 Sep; 75(3A) Suppl.: A873

    Article  Google Scholar 

  73. Fang ZX, Eger EI, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme®. Anesth Analg 1995 Jun; 80(6): 1187–93

    CAS  PubMed  Google Scholar 

  74. Frink EJ, Nogami WM, Morgan SE. Sevoflurane does not produce carbon dioxide when exposed to dry Baralyme during anesthesia in swine [abstract]. Proceedings of the 11th World Congress of Anaesthesiologists, 1996; Apr 11–14, Sydney, Australia. In press

    Google Scholar 

  75. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994 Feb; 367: 607–14

    Article  CAS  PubMed  Google Scholar 

  76. Kosk-Kosicka D, Roszczynska G. Inhibition of plasma membrane Ca2+-ATPase activity by volatile anesthetics. Anesthesiology 1993 Oct; 79(4): 774–80

    Article  CAS  PubMed  Google Scholar 

  77. Ogasawara H, Ishihara H, Matsuki A. Effect of sevoflurane anesthesia on catecholamine metabolism in rat brain [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S357

    Google Scholar 

  78. Harris B, Wong G, Skolnick P. Neurochemical actions of inhalation anesthetics at the GABAA receptor complex. J Pharmacol Exp Ther 1993; 265(3): 1392–8

    CAS  PubMed  Google Scholar 

  79. Moody EJ. Prospects for the development of new volatile anaesthetics. Expert Opin Invest Drug 1995; 4(10): 971–83

    Article  CAS  Google Scholar 

  80. Frink EJ, Brown BR. Sevoflurane. Anaesth Pharmacol Rev 1994; 2(1): 61–7

    CAS  Google Scholar 

  81. Ikeda K, Kazama T, Doi M, et al. Sevoflurane [in Japanese]. Anesthesia Today 1992; 1(1): 10–7

    Google Scholar 

  82. Lerman J. Sevoflurane in pediatric anesthesia. Anesth Analg 1995 Dec; 81 Suppl. 6S: S4–S10

    Article  CAS  PubMed  Google Scholar 

  83. Ebert TJ, Harkin CP, Muzi M. Cardiovascular responses to sevoflurane: a review. Anesth Analg 1995 Dec; 81 Suppl. 6S: S11–22

    Article  CAS  PubMed  Google Scholar 

  84. Green WB. The ventilatory effects of sevoflurane. Anesth Analg 1995 Dec; 81 Suppl. 6S: S23–6

    Article  CAS  PubMed  Google Scholar 

  85. Young CJ, Apfelbaum JL. Inhalation anesthetics: desflurane and sevoflurane. J Clin Anesth 1995 Nov; 7(7): 564–77

    Article  CAS  PubMed  Google Scholar 

  86. Conzen PF, Vollmar B, Habazettl H, et al. Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg 1992 Jan; 74(1): 79–88

    Article  CAS  PubMed  Google Scholar 

  87. Crawford MW, Lerman J, Saldivia V, et al. Hemodynamic and organ blood flow responses to halothane and sevoflurane anesthesia during spontaneous ventilation. Anesth Analg 1992 Dec; 75(6): 1000–6

    Article  CAS  PubMed  Google Scholar 

  88. Sugioka S. Effects of sevoflurane on intracranial pressure and formation and absorption of cerebrospinal fluid in cats [in Japanese]. Masui 1992 Sep; 41(9): 1434–42

    CAS  PubMed  Google Scholar 

  89. Scheller MS, Tateishi A, Drummond JC, et al. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 1988 Apr; 68(4): 548–51

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi H, Toyozawa K, Yura M, et al. Effect of sevoflurane on intracranial pressure in dogs [in Japanese]. Masui 1987 Jun; 36(6): 862–5

    CAS  PubMed  Google Scholar 

  91. Manohar M. Regional brain blood flow and cerebral cortical O2consumption during sevoflurane anesthesia in healthy isocapnic swine. J Cardiovasc Pharmacol 1986 Nov–Dec; 8(6): 1268–75

    Article  CAS  PubMed  Google Scholar 

  92. Takahashi H, Murata K, Ikeda K. Sevoflurane does not increase intracranial pressure in hyperventilated dogs. Br J Anaesth 1993 Oct; 71(4): 551–5

    Article  CAS  PubMed  Google Scholar 

  93. Berkowitz RA, McDonald TB, Cunningham FE, et al. Effect of sevoflurane and halothane on cerebral blood flow velocity in children [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S34

    Google Scholar 

  94. Kitaguchi K, Ohsumi H, Kuro M, et al. Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology 1993 Oct; 79(4): 704–9

    Article  CAS  PubMed  Google Scholar 

  95. Kuriyama Y, Sawada T, Niimi T, et al. Monitoring system of cerebral blood flow and cerebral metabolism. Part I. Measurement of cerebral blood flow and cerebral oxygen consumption by use of argon and mass spectrometry in clinical cases [in Japanese]. Kokyu to Junkan 1981 Feb; 29(2): 147–52

    CAS  PubMed  Google Scholar 

  96. Ornstein E, Young WL, Fleischer LH, et al. Desflurane and isoflurane have similar effects on cerebral blood flow in patients with intracranial mass lesions. Anesthesiology 1993 Sep; 79(3): 498–502

    Article  CAS  PubMed  Google Scholar 

  97. Drummond JC, Todd MM. The response of the feline cerebral circulation to PaCO2 during anesthesia with isoflurane and halothane and during sedation with nitrous oxide. Anesthesiology 1985; 62: 268–73

    Article  CAS  PubMed  Google Scholar 

  98. Cho S, Fujigaki T, Nishiwaki Y, et al. Effects of sevoflurane with and without N2O on human cerebral blood flow velocity response to CO2 [abstract]. Anesthesiology 1994 Sep; 81 Suppl. 3A: A134

    Google Scholar 

  99. Fujibayashi T, Sugiura Y, Yanagimoto M, et al. Brain energy metabolism and blood flow during sevoflurane and halothane anaesthesia: effects of hypocapnia and blood pressure fluctuations [corrected and republished article originally printed in Acta Anaesthesiol Scand 1993 Nov; 37 (8): 806-10]. Acta Anaesthesiol Scand 1994 May; 38: 413–8

    Article  CAS  PubMed  Google Scholar 

  100. Strebel S, Lam AM, Matta B, et al. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 1995 Jul; 83(1): 66–76

    Article  CAS  PubMed  Google Scholar 

  101. Miletich DJ, Ivankovich AD, Albrecht RF, et al. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg 1976; 55: 100–9

    CAS  PubMed  Google Scholar 

  102. Kurokawa H, Fujii K, Nakagawa I, et al. Effect of sevoflurane on blood flow velocity in the vertebral artery [in Japanese]. Masui 1994 Oct; 43(10): 1515–9

    CAS  PubMed  Google Scholar 

  103. Kameyama Y Effect of isoflurane and sevoflurane on evoked potentials and EEG [in Japanese]. Masui 1994 May; 43(5): 657–64

    CAS  PubMed  Google Scholar 

  104. Koitabashi T, Ochiai R, Takeda J, et al. Quantitative analysis of electroencephalographic (EEG) activity during sevoflurane anesthesia [in Japanese]. Masui 1992 Dec; 41(12): 1946–50

    CAS  PubMed  Google Scholar 

  105. Rampil I, Lockhart S, Eger EI, et al. The electroencephalographic effects of desflurane in humans. Anesthesiology 1991 Mar; 74(3): 434–9

    Article  CAS  PubMed  Google Scholar 

  106. Rampil I, Weiskopf R, Brown J, et al. 1653 and isoflurane produce similar dose-related changes in the electroencephalogram of pigs. Anesthesiology 1988; 69: 298–302

    Article  CAS  PubMed  Google Scholar 

  107. Osawa M, Shingu K, Murakawa M, et al. Effects of sevoflurane on central nervous system electrical activity in cats. Anesth Analg 1994 Jul; 79(1): 52–7

    Article  CAS  PubMed  Google Scholar 

  108. Scheller MS, Nakakimura K, Fleischer JE, et al. Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth 1990 Sep; 65(3): 388–92

    Article  CAS  PubMed  Google Scholar 

  109. Nishiyama Y, Ito M. Effects of isoflurane, sevoflurane and enflurane on median nerve somatosensory evoked potentials in humans [in Japanese]. Masui 1993 Mar; 42(3): 339–43

    CAS  PubMed  Google Scholar 

  110. Malan TP, DiNardo JA, Isner RJ, et al. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 1995 Nov; 83(5): 918–28

    Article  CAS  PubMed  Google Scholar 

  111. Kikura M, Ikeda K. Comparison of effects of sevoflurane/ni-trous oxide and enflurane/nitrous oxide on myocardial contractility in humans: load independent and noninvasive assessment with transesophageal echocardiography. Anesthesiology 1993 Aug; 79(2): 235–43

    Article  CAS  PubMed  Google Scholar 

  112. Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 1981 Feb; 54(2): 100–6

    Article  CAS  PubMed  Google Scholar 

  113. Kasuda H, Akazawa S, Shimizu R. The echocardiographic assessment of left ventricular performance during sevoflurane and halothane anesthesia. J Anesth 1990; 4: 295–302

    Article  CAS  PubMed  Google Scholar 

  114. Yli-Hankala A, Randell T, Seppälä T, et al. Increases in hemodynamic variables and catecholamine levels after rapid increase in isoflurane concentration. Anesthesiology 1993 Feb; 78(2): 266–71

    Article  CAS  PubMed  Google Scholar 

  115. Ebert TJ, Muzi M, Lopatka CW, et al. Neurocirculatory responses to sevoflurane in humans: a comparison to desflurane. Anesthesiology 1995 Jul; 83(1): 88–95

    Article  CAS  PubMed  Google Scholar 

  116. Frink EJ, Malan TP, Atlas M, et al. Clinical comparison of sevoflurane and isoflurane in healthy patients. Anesth Analg 1992 Feb; 74(2): 241–5

    Article  PubMed  Google Scholar 

  117. Weiskopf RB, Moore MA, Eger EI, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentrations in humans. Anesthesiology 1994 May; 80(5): 1035–45

    Article  CAS  PubMed  Google Scholar 

  118. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993 Sep; 79(3): 444–53

    Article  CAS  PubMed  Google Scholar 

  119. Kern C, Frei FJ. Hemodynamic responses to sevoflurane during inhalational induction in children [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1316

    Google Scholar 

  120. Johnston RR, Eger EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976; 55: 709–12

    Article  CAS  PubMed  Google Scholar 

  121. Horrigan RW, Eger EI, Wilson C. Epinephrine-induced arrhythmias during enflurane anesthesia in man: a non-linear dose-response relationship and dose-dependent protection from lidocaine. Anesth Analg 1978; 57: 547–50

    CAS  PubMed  Google Scholar 

  122. Moore MA, Weiskopf RB, Eger EI, et al. Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anaesthesia in humans. Anesthesiology 1993 Nov; 79(5): 943–7

    Article  CAS  PubMed  Google Scholar 

  123. Navarro R, Weiskopf RB, Moore MA, et al. Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 1994 Mar; 80(3): 545–9

    Article  CAS  PubMed  Google Scholar 

  124. Tanaka H, Takata M, Yamamoto S, et al. Cardiovascular interaction during sevoflurane anesthesia in children assessed by transesophageal acoustic quantification [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A132

    Google Scholar 

  125. Kawana S, Wachi J, Nakayama M, et al. Comparison of haemodynamic changes induced by sevoflurane and halothane in paediatric patients. Can J Anaesth 1995 Jul; 42(7): 603–7

    Article  CAS  PubMed  Google Scholar 

  126. Weiskopf RB. Cardiovascular effects of desflurane in experimental animals and volunteers. Anaesthesia 1995 Oct; 50 Suppl.: 14–7

    Article  PubMed  Google Scholar 

  127. Weiskopf RB, Cahalan MK, Eger EI, et al. Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 1991 Aug; 73(2): 143–56

    CAS  PubMed  Google Scholar 

  128. Cahalan MK, Weiskopf RB, Eger EI, et al. Hemodynamic effects of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 1991 Aug; 73(2): 157–64

    Article  CAS  PubMed  Google Scholar 

  129. Frink EJ, Malan TP, Atlas M, et al. Hemodynamic changes during sevoflurane or isoflurane anesthesia in ASAI and ASA II surgical patients [abstract]. Anesthesiology 1991 Sep; 75(3A) Suppl.: A156

    Article  Google Scholar 

  130. Shigematsu T, Kobayashi M, Miyazawa N, et al. Effects of sevoflurane on hemodynamics during the induction of anesthesia compared with those of isoflurane, enflurane and halothane [in Japanese]. Masui 1993 Dec; 42(12): 1748–53

    CAS  PubMed  Google Scholar 

  131. Lerman J. Sevoflurane and desflurane in paediatric patients. Curr Opin Anesthesiol 1993; 6: 527–31

    Article  Google Scholar 

  132. Philip JH, Ji XB, Calalang ID, et al. Sevoflurane controls blood pressure faster than isoflurane [abstract]. Anesthesiology 1992 Sep; 77(3A) Suppl.: A384

    Article  Google Scholar 

  133. Inada Y, Ikeda K, Mori K, et al. Clinical evaluation of sevoflurane vs enflurane — a multi-center well-controlled study [in Japanese]. Masui 1987 Jun; 36(6): 875–89

    CAS  PubMed  Google Scholar 

  134. Mahadeviah A, Bennett J, Stewart J, et al. Desflurane versus isoflurane for control of the hemodynamic response to surgical stimulation [abstract]. Anesth Analg 1993 Feb; 76(2S) Suppl.: S235

    Google Scholar 

  135. Akata T, Kodama K, Takahashi S. Volatile anaesthetic actions on norepinephrine-induced contraction of small splanchnic resistance arteries. Can J Anaesth 1995; 42(11): 1040–50

    Article  CAS  PubMed  Google Scholar 

  136. Akata T, Nakashima M, Kodama K, et al. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery. Anesthesiology 1995 Jan; 82(1): 188–204

    Article  CAS  PubMed  Google Scholar 

  137. Yamaguchi A, Okabe E. Effect of sevoflurane on the vascular reactivity of rabbit mesenteric artery. Br J Anaesth 1995 May; 74(5): 576–82

    Article  CAS  PubMed  Google Scholar 

  138. Nakamura K, Terasako K, Toda H, et al. Mechanisms of inhibition of endothelium-dependent relaxation by halothane, isoflurane, and sevoflurane. Can J Anaesth 1994 Apr; 41(4): 340–6

    Article  CAS  PubMed  Google Scholar 

  139. Azma T, Fujii K, Yuge O. Inhibitory effect of sevoflurane on nitric oxide release from cultured endothelial cells. Eur J Pharmacol Mol Pharmacol 1995 Mar 15; 289: 33–9

    Article  CAS  Google Scholar 

  140. Yoshida K-i, Okabe E. Selective impairment of endotheliumdependent relaxation by sevoflurane: oxygen free radicals participation. Anesthesiology 1992 Mar; 76(3): 440–7

    Article  CAS  PubMed  Google Scholar 

  141. Lischke V, Busse R, Hecker M. Inhalation anesthetics inhibit the release of endothelium-derived hyperpolarizing factor in the rabbit carotid artery. Anesthesiology 1995 Sep; 83(3): 574–82

    Article  CAS  PubMed  Google Scholar 

  142. Mutoh T. Volatile anesthetics suppress cardiac function in man; an investigation based on systolic time intervals [in Japanese]. Masui 1993 Jan; 42(1): 83–90

    CAS  PubMed  Google Scholar 

  143. Kitahata H, Tanaka K, Kimura H, et al. Effects of sevoflurane on left ventricular diastolic function using transesophageal echocardiography [in Japanese]. Masui 1993 Mar; 42(3): 358–64

    CAS  PubMed  Google Scholar 

  144. Hirano M, Fujigaki T, Shibata O, et al. A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 1995 Apr; 80(4): 651–6

    CAS  PubMed  Google Scholar 

  145. Harkin CP, Pagel PS, Kersten JR, et al. Direct inotropic and lusitropic effects of sevoflurane. Anesthesiology 1994 Jul; 81(1): 156–67

    Article  CAS  PubMed  Google Scholar 

  146. Nakamura K, Toda H, Hatano Y, et al. Comparison of the direct effects of sevoflurane, isoflurane and halothane on isolated canine coronary arteries. Can J Anaesth 1993 Mar; 40(3): 257–61

    Article  CAS  PubMed  Google Scholar 

  147. Bernard J-M, Wouters PF, Doursout M-F, et al. Effects of sevoflurane and isoflurane on cardiac and coronary dynamics in chronically instrumented dogs. Anesthesiology 1990 Apr; 72(4): 659–62

    Article  CAS  PubMed  Google Scholar 

  148. Kazama T, Ikeda K. The comparative cardiovascular effects of sevoflurane with halothane and isoflurane. J Anesth 1988; 2(1): 63–8

    Article  CAS  PubMed  Google Scholar 

  149. Manohar M, Parks CM. Porcine systemic and regional organ blood flow during 1.0 and 1.5 minimum alveolar concentrations of sevoflurane anesthesia without and with 50% nitrous oxide. J Pharmacol Exp Ther 1984 Dec; 231(3): 640–8

    CAS  PubMed  Google Scholar 

  150. Larach DR, Schuler HG. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiology 1991 Aug; 75(2): 268–78

    Article  CAS  PubMed  Google Scholar 

  151. Hartman JC, Pagel PS, Kampine JP, et al. Influence of desflurane on regional distribution of coronary blood flow in a chronically instrumented canine model of multivessel coronary artery obstruction. Anesth Analg 1991 Mar; 72(3): 289–99

    Article  CAS  PubMed  Google Scholar 

  152. Kersten JR, Brayer AP, Pagel PS, et al. Perfusion of ischemic myocardium during anesthesia with sevoflurane. Anesthesiology 1994 Oct; 81(4): 995–1004

    Article  CAS  PubMed  Google Scholar 

  153. Kersten JR, Hartman JC, Pagel PS, et al. Volatile anesthetics and coronary collateral circulation. Adv Pharmacol 1994; 31: 269–84

    Article  CAS  PubMed  Google Scholar 

  154. Takahata O, Ichihara K, Ogawa H. Effects of sevoflurane on ischaemic myocardium in dogs. Acta Anaesthesiol Scand 1995 May; 39: 449–56

    Article  CAS  PubMed  Google Scholar 

  155. Nakaigawa Y, Akazawa S, Shimizu R, et al. Comparison of the effects of halothane, isoflurane, and sevoflurane on atrioventricular conduction times in pentobarbital-anesthetized dogs. Anesth Analg 1995; 81: 249–53

    CAS  PubMed  Google Scholar 

  156. Hamada H. The effect of isoflurane or sevoflurane on circulating blood volume — study under spontaneous breathing [in Japanese]. Masui 1993 Jan; 42(1): 40–5

    CAS  PubMed  Google Scholar 

  157. Hamada H. The effect of isoflurane or sevoflurane on circulating blood volume-a study under controlled ventilation [in Japanese]. Masui 1992 Sep; 41(9): 1426–33

    CAS  PubMed  Google Scholar 

  158. Ide T, Kochi T, Iijima K, et al. Distribution of diaphragm blood flow during sevoflurane anaesthesia in dogs. Can J Anaesth 1996 Jan; 43(1): 44–9

    Article  CAS  PubMed  Google Scholar 

  159. Crawford MW, Lerman J, Saldivia V, et al. The effect of adenosine-induced hypotension on systemic and splanchnic hemodynamics during halothane or sevoflurane anesthesia in the rat. Anesthesiology 1994 Jan; 80(1): 159–67

    Article  CAS  PubMed  Google Scholar 

  160. Kanaya N, Nakayama M, Fujita S, et al. Comparison of the effects of sevoflurane, isoflurane, and halothane on indocyanine green clearance. Br J Anaesth 1995 Feb; 74(2): 164–7

    Article  CAS  PubMed  Google Scholar 

  161. Sugai M, Kuroki K, Matsumoto N, et al. The effect of isoflurane or sevoflurane on hepatic circulation and oxygen metabolism during hypoxia in dogs [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S420

    Google Scholar 

  162. Crawford MW, Lerman J, Pilato M, et al. Haemodynamic and organ blood flow responses to sevoflurane during spontaneous ventilation in the rat: a dose-response study. Can J Anaesth 1992 Mar; 39(3): 270–6

    Article  CAS  PubMed  Google Scholar 

  163. Bernard J-M, Doursout M-F, Wouters P, et al. Effects of sevoflurane and isoflurane on hepatic circulation in the chronically instrumented dog. Anesthesiology 1992 Sep; 77(3): 541–5

    Article  CAS  PubMed  Google Scholar 

  164. Fujita Y, Kimura K, Hamada H, et al. Comparative effects of halothane, isoflurane, and sevoflurane on the liver with hepatic artery ligation in the beagle. Anesthesiology 1991 Aug; 75(2): 313–8

    Article  CAS  PubMed  Google Scholar 

  165. Frink EJ, Morgan SE, Coetzee A, et al. The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology 1992 Jan; 76(1): 85–90

    Article  CAS  PubMed  Google Scholar 

  166. Frink EJ. The hepatic effects of sevoflurane. Anesth Analg 1995 Dec; 81 Suppl. 6S: S46–50

    Article  CAS  PubMed  Google Scholar 

  167. Ozaki M, Sessler DI, Suzuki H, et al. Nitrous oxide decreases the threshold for vasoconstriction less than sevoflurane or isoflurane. Anesth Analg 1995 Jun; 80: 1212–6

    CAS  PubMed  Google Scholar 

  168. Hanagata K, Matsukawa T, Sessler DI, et al. Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 1995 Sep; 81(3): 581–4

    CAS  PubMed  Google Scholar 

  169. Moore MA, Weiskopf RB, Eger EI, et al. Rapid 1% increases of end-tidal desflurane concentration to greater than 5% transiently increase heart rate and blood pressure in humans. Anesthesiology 1994 Jul; 81(1): 94–8

    Article  CAS  PubMed  Google Scholar 

  170. Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg 1987 Mar; 66: 241–4

    Article  CAS  PubMed  Google Scholar 

  171. Kubota Y. Comparative study of sevoflurane with other inhalation agents. Anesth Prog 1992; 39: 118–24

    CAS  PubMed  Google Scholar 

  172. Ide T, Kochi T, Isono S, et al. Effect of sevoflurane on diaphragmatic contractility in dogs. Anesth Analg 1992 May; 74(5): 739–46

    Article  CAS  PubMed  Google Scholar 

  173. Ide T, Kochi T, Isono S, et al. Diaphragmatic function during sevoflurane anaesthesia in dogs. Can J Anaesth 1991 Jan; 38(1): 116–20

    Article  CAS  PubMed  Google Scholar 

  174. Kochi T, Izumi Y, Isono S, et al. Breathing pattern and occlusion pressure waveform in humans anesthetized with halothane or sevoflurane. Anesth Analg 1991 Sep; 73(3): 327–32

    Article  CAS  PubMed  Google Scholar 

  175. Doi K, Kasaba T, Kosaka Y. A comparative study of the depressive effects of halothane and sevoflurane on medullary respiratory neuron in cats [in Japanese]. Masui 1988 Dec; 37(12): 1466–77

    CAS  PubMed  Google Scholar 

  176. Doi M, Takahashi T, Ikeda K. Respiratory effects of sevoflurane used in combination with nitrous oxide and surgical stimulation. J Clin Anesth 1994 Jan–Feb; 6(1): 1–4

    Article  CAS  PubMed  Google Scholar 

  177. Satter MR, Martin CC, Oakes TR, et al. Synthesis of the fluorine-18 labeled inhalation anesthetics. Appl Radiat Isot 1994 Nov; 45(11): 1093–100

    Article  CAS  PubMed  Google Scholar 

  178. Doi M, Ikeda K. Airway irritation produced by volatile anaesthetics during brief inhalation: comparison of halothane, en-flurane, isoflurane and sevoflurane. Can J Anaesth 1993 Feb; 40(2): 122–6

    Article  CAS  PubMed  Google Scholar 

  179. Patel SS, Goa KL. Desflurane: a review of its pharmacodynamic and pharmacokinetic properties and its efficacy in general anaesthesia. Drugs 1995 Oct; 50(4): 742–67

    Article  CAS  PubMed  Google Scholar 

  180. Hashimoto Y, Hirota K, Matsuki A, et al. Continuous measurement of the bronchodilating effect of sevoflurane with a superfine bronchofiberscope [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1438

    Google Scholar 

  181. Wiklund CU, Rehder K, Ebberyd A, et al. Effects of sevoflurane on the isolated guinea pig trachea [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1439

    Google Scholar 

  182. Katoh T, Ikeda K. A comparison of sevoflurane with halothane, enflurane, and isoflurane on bronchoconstriction caused by histamine. Can J Anaesth 1994 Dec; 41(12): 1214–9

    Article  CAS  PubMed  Google Scholar 

  183. Yamakage M, Hirshman CA, Croxton TL. Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Am J Physiol 1995 Feb; 268(2 Pt 1): L187–91

    CAS  PubMed  Google Scholar 

  184. Mazzeo AJ, Cheng EY, Bosnajk ZJ, et al. Topographical differences in direct effects of desflurane and halothane on canine airway smooth muscle [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S274

    Google Scholar 

  185. Brichant J-F, Gunst SJ, Warner DO, et al. Halothane, enflurane, and isoflurane depress the peripheral vagal motor pathway in isolated canine tracheal smooth muscle. Anesthesiology 1991 Feb; 74(2): 325–32

    Article  CAS  PubMed  Google Scholar 

  186. Yamakage M, Kohro S, Kawamata T, et al. Inhibitory effects of four inhaled anesthetics on canine tracheal smooth muscle contraction and intracellular Ca2+ concentration. Anesth Analg 1993 Jul; 77(1): 67–72

    Article  CAS  PubMed  Google Scholar 

  187. Mitsuhata H, Saitoh J, Shimizu R, et al. Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiology 1994 Nov; 81(5): 1230–4

    Article  CAS  PubMed  Google Scholar 

  188. Ishibe Y, Gui X, Uno H, et al. Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology 1993 Dec; 79(6): 1348–53

    Article  CAS  PubMed  Google Scholar 

  189. Gissen AJ, Karis JH, Nastuk WL. Effect of halothane on neuromuscular transmission. JAMA 1966 Sep; 197(10): 770–4

    Article  CAS  PubMed  Google Scholar 

  190. Fukushima K, Izawa H, Miwa Y, et al. The interaction between inhalation anesthetics and vecuronium and its reversibility by neostigmine in man [abstract]. Anesth Analg 1993 Feb; 76(2S) Suppl.: S110

    Google Scholar 

  191. Izawa H, Takeda J, Fukushima K. The interaction between sevoflurane and vecuronium and its reversibility by neostigmine in man [abstract]. Anesthesiology 1992 Sep; 77(3A) Suppl.: A960

    Article  Google Scholar 

  192. Stead SW, Miller J, Beatie CD, et al. Rapidity of induction and elimination of halothane and sevoflurane in pediatric outpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1314

    Google Scholar 

  193. Rieger A, Hass I, Philippi W, et al. Induction and recovery characteristics of sevoflurane and halothane anaesthesia in paediatric ENT surgery [abstract]. Br J Anaesth 1995 May; 74 Suppl. 1: A315

    Google Scholar 

  194. Taguchi M, Watanabe S, Asakura N, et al. End-tidal sevoflurane concentrations for laryngeal mask airway insertion and for tracheal intubation in children. Anesthesiology 1994 Sep; 81(3): 628–31

    Article  CAS  PubMed  Google Scholar 

  195. Taivainen T, Tiainen P, Meretoja OA, et al. Comparison of the effects of sevoflurane and halothane on the quality of anaesthesia and serum glutathione transferase alpha and fluoride in paediatric patients. Br J Anaesth 1994 Nov; 73(5): 590–5

    Article  CAS  PubMed  Google Scholar 

  196. Piat V, Dubois M-C, Johanet S, et al. Induction and recovery characteristics and hemodynamic responses to sevoflurane and halothane in children. Anesth Analg 1994 Nov; 79(5): 840–4

    Article  CAS  PubMed  Google Scholar 

  197. Sarner JB, Levine M, Davis PJ, et al. Clinical characteristics of sevoflurane in children: a comparison with halothane. Anesthesiology 1995 Jan; 82(1): 38–46

    Article  CAS  PubMed  Google Scholar 

  198. Greenspun JC, Hannallah RS, Welborn LG, et al. Comparison of sevoflurane and halothane in pediatric ENT surgery [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S140

    Google Scholar 

  199. Naito Y, Tamai S, Shingu K, et al. Comparison between sevoflurane and halothane for paediatric ambulatory anaesthesia. Br J Anaesth 1991 Oct; 67(4): 387–9

    Article  CAS  PubMed  Google Scholar 

  200. Furuya Y, Tachibana C, Kobayashi N, et al. Comparison of sevoflurane and halothane in pediatric anesthesia [in Japanese]. Masui 1993 Jan; 42(1): 46–51

    CAS  PubMed  Google Scholar 

  201. Meretoja OA, Taivainen T, Räihä L, et al. Sevoflurane-N2O or halothane-N2O for paediatric bronchoscopy and gastroscopy. Br J Anaesth 1996. In press

  202. Saito K, Takayasu T, Nishigami J, et al. Determination of the volatile anesthetics halothane, enflurane, isoflurane, and sevoflurane in biological specimens by pulse-heating GCMS. J Anal Toxicol 1995 Mar–Apr; 19: 115–9

    CAS  PubMed  Google Scholar 

  203. Jiaxiang N, Sato N, Fujii K, et al. Urinary excretion of hexafluoroisopropanol glucuronide and fluoride in patients after sevoflurane anaesthesia. J Pharm Pharmacol 1993 Jan (1); 45: 67–9

    Article  Google Scholar 

  204. Watts MT, Escarzaga M, Williams CH. Gas chromatographic headspace analysis of sevoflurane in blood. J Chromatogr B Biomed Appl 1992 Jun; 577: 289–98

    Article  CAS  Google Scholar 

  205. Yasuda N, Lockhart SH, Eger EI, et al. Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 1991 Mar; 72(3): 316–24

    Article  CAS  PubMed  Google Scholar 

  206. Lockhart SH, Yasuda N, Peterson N, et al. Comparison of percutaneous losses of sevoflurane and isoflurane in humans. Anesth Analg 1991 Feb; 72(2): 212–5

    Article  CAS  PubMed  Google Scholar 

  207. Davidkova TI, Fujii K, Kikuchi H, et al. Urinary excretion of inorganic and organic fluoride after inhalation of sevoflurane. Hiroshima J Med Sci 1987 Mar; 36(1): 99–104

    CAS  PubMed  Google Scholar 

  208. Kikuchi H, Morio M, Fujii K, et al. Clinical evaluation and metabolism of sevoflurane in patients. Hiroshima J Med Sci 1987 Mar; 36: 93–7

    CAS  PubMed  Google Scholar 

  209. Fujii K, Morio M, Kikuchi H, et al. Pharmacokinetic study on excretion of inorganic fluoride ion, a metabolite of sevoflurane. Hiroshima J Med Sci 1987 Mar; 36: 89–92

    CAS  PubMed  Google Scholar 

  210. Stern RC, Towler SC, White PF, et al. Elimination kinetics of sevoflurane and halothane from blood, brain, and adipose tissue in the rat. Anesth Analg 1990 Dec; 71(6): 658–64

    Article  CAS  PubMed  Google Scholar 

  211. Xu Y, Tang P, Zhang W, et al. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Anesthesiology 1995 Oct; 83(4): 766–74

    Article  CAS  PubMed  Google Scholar 

  212. Allison JM, Gregory RS, Birch KP, et al. Determination of anaesthetic agent concentration by refractometry. Br J Anaesth 1995 Jan; 74: 85–8

    Article  CAS  PubMed  Google Scholar 

  213. Sugg BR, Palayiwa E, Davies WL. An automated interferometer for the analysis of anaesthetic gas mixtures. Br J Anaesth 1988 Oct; 61(4): 484–91

    Article  CAS  PubMed  Google Scholar 

  214. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 1995 Mar; 82(3): 689–99

    Article  CAS  PubMed  Google Scholar 

  215. Kharasch ED, Armstrong AS, Gunn K, et al. Clinical sevoflurane metabolism and disposition. II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology 1995 Jun; 82(6): 1379–88

    Article  CAS  PubMed  Google Scholar 

  216. Frink EJ, Malan TP, Isner RJ, et al. Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 1994 May; 80(5): 1019–25

    Article  CAS  PubMed  Google Scholar 

  217. Matsumura C, Kemmotsu O, Kawano Y, et al. Serum and urine inorganic fluoride levels following prolonged low-dose sevoflurane anesthesia combined with epidural block. J Clin Anesth 1994 Sep–Oct; 6: 419–24

    Article  CAS  PubMed  Google Scholar 

  218. Newman PJ, Quinn AC, Hall GM, et al. Circulating fluoride changes and hepatorenal function following sevoflurane anaesthesia. Anaesthesia 1994 Nov; 49(11): 936–9

    Article  CAS  PubMed  Google Scholar 

  219. Frink EJ, Malan TP, Brown EA, et al. Plasma inorganic fluoride levels with sevoflurane anesthesia in morbidly obese and non-obese patients. Anesth Analg 1993 Jun; 76(6): 1333–7

    PubMed  Google Scholar 

  220. Higuchi H, Satoh T, Arimura S, et al. Serum inorganic fluoride levels in mildly obese patients during and after sevoflurane anesthesia. Anesth Analg 1993 Nov; 77(5): 1018–21

    Article  CAS  PubMed  Google Scholar 

  221. Frink EJ, Ghantous H, Malan TP, et al. Plasma inorganic fluoride with sevoflurane anesthesia: correlation with indices of hepatic and renal function. Anesth Analg 1992 Feb; 74(2): 231–5

    Article  PubMed  Google Scholar 

  222. Kobayashi Y, Ochiai R, Takeda J, et al. Serum and urinary inorganic fluoride concentrations after prolonged inhalation of sevoflurane in humans. Anesth Analg 1992 May; 74(5): 753–7

    Article  CAS  PubMed  Google Scholar 

  223. Min KT, Shin YS, Kim JR, et al. Comparison of plasma inorganic fluoride concentration with sevoflurane-N2O and en-flurane-N2O anesthesia. Yonsei Med J 1994 Jun; 35(2): 218–22

    CAS  PubMed  Google Scholar 

  224. Shiraishi Y, Ikeda K. Uptake and biotransformation of sevoflurane in humans: a comparative study of sevoflurane with halothane, enflurane, and isoflurane. J Clin Anesth 1990 Nov–Dec; 2: 381–6

    Article  CAS  PubMed  Google Scholar 

  225. Payne AK, Morgan SE, Gandolfi AJ, et al. Biotransformation of sevoflurane by rat neonate liver slices. Drug Metab Dispos 1995 Apr; 23(4): 497–500

    CAS  PubMed  Google Scholar 

  226. Morgan SE, Frink EJ, Gandolfi AJ. A simplified gas chromatographic method for quantifying the sevoflurane metabolite hexafluoroisopropanol. Anesthesiology 1994 Jan; 80(1): 201–5

    Article  CAS  PubMed  Google Scholar 

  227. Baker MT, Ronnenberg WC, Ruzicka JA, et al. Inhibitory effects of deuterium substitution on the metabolism of sevoflurane by the rat. Drug Metab Dispos 1993 Nov–Dec; 21(6): 1170–1

    CAS  PubMed  Google Scholar 

  228. Fujii K, Morio M, Kikuchi K, et al. Ionchromatographic analysis of a glucuronide as a sevoflurane metabolite. Hiroshima J Anaesth 1987 Mar; 23(1): 3–7

    CAS  Google Scholar 

  229. Kennedy SK, Lonecker DE. History and principles of anesthesiology. In: Gilman AG, Rall TW, Nies AS, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press, 1990: 269–84

    Google Scholar 

  230. Yasuda N, Lockhart SH, Eger EI, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991 Mar; 74(3): 489–98

    Article  CAS  PubMed  Google Scholar 

  231. Landais A, Saint-Maurice C, Hamza J, et al. Sevoflurane elimination kinetics in children. Paed Anaesth 1995; 5: 297–301

    Article  CAS  Google Scholar 

  232. Carpenter RL, Eger EI, Johnson BH, et al. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 1986; 65: 575–82

    Article  CAS  PubMed  Google Scholar 

  233. Fassoulaki A, Lockhart SH, Freire BA, et al. Percutaneous loss of desflurane, isoflurane and halothane in humans. Anesthesiology 1991 Mar; 74(3): 479–83

    Article  CAS  PubMed  Google Scholar 

  234. Stoelting RK, Eger EI. Percutaneous loss of nitrous oxide, cyclopropane, ether and halothane in man. Anesthesiology 1969; 30: 278–83

    Article  CAS  PubMed  Google Scholar 

  235. Kharasch ED. Biotransformation of sevoflurane. Anesth Analg 1995 Dec; 81 Suppl. 6S: S27–38

    Article  CAS  PubMed  Google Scholar 

  236. Kharasch ED, Karol MD, Lanni C, et al. Clinical sevoflurane metabolism and disposition. I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology 1995 Jun; 82(6): 1369–78

    Article  CAS  PubMed  Google Scholar 

  237. Mitsufuji T, Shigemi K, Shiba R, et al. The effects of isoflurane and sevoflurane on renal functions. J Kyoto Pref Univ Med 1987; 96(4): 417–23

    Google Scholar 

  238. Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology 1993 Oct; 79(4): 795–807

    Article  CAS  PubMed  Google Scholar 

  239. Malan TP, Sameshima T, Mata H. Concentration dependence of sevoflurane metabolism in rats [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A438

    Google Scholar 

  240. Carpenter RL, Eger EI, Johnson BH, et al. The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 1986 Aug; 65(2): 201–5

    Article  CAS  PubMed  Google Scholar 

  241. Chase RE, Holaday DA, Fiserova-Bergerova V, et al. The biotransformation of ethrane in man. Anesthesiology 1971; 35: 262–7

    Article  CAS  PubMed  Google Scholar 

  242. Koblin DD, Weiskopf RB, Holmes MA, et al. Metabolism of 1-653 and isoflurane in swine. Anesth Analg 1989 Feb; 68(2): 147–9

    Article  CAS  PubMed  Google Scholar 

  243. Holaday DA, Fiserova-Bergerova V, Latto IP, et al. Resistance of isoflurane to biotransformation in man. Anesthesiology 1975 Sep; 43(3): 325–32

    Article  CAS  PubMed  Google Scholar 

  244. Koblin DD, Eger EI, Johnson BH, et al. I-653 resists degradation in rats. Anesth Analg 1988 Jun; 67(6): 534–8

    Article  CAS  PubMed  Google Scholar 

  245. Wallin RF, Regan BM, Napoli MD, et al. Sevoflurane: a new inhalational anesthetic agent. Anesth Analg 1975 Nov–Dec; 54(6): 758–65

    Article  CAS  PubMed  Google Scholar 

  246. Martis L, Lynch S, Napoli MD, et al. Biotransformation of sevoflurane in dogs and rats. Anesth Analg 1981 Apr; 60: 186–91

    CAS  PubMed  Google Scholar 

  247. Goldberg ME, Larijani GE, Cantillo J, et al. Time-course of elimination of serum inorganic fluoride ion following sevoflurane administration [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S152

    Google Scholar 

  248. Nishiyama T, Hirasaki A. Effects of sevoflurane anaesthesia on renal function — duration of administration and area under the curve and rate of decrease of serum inorganic fluoride. Eur J Anaesthesiol 1995; 12: 477–82

    CAS  PubMed  Google Scholar 

  249. Okuyama M, Imai M, Fujisawa E, et al. Fiberscopic intubation under general anesthesia for children with Goldenhar syndrome [in Japanese]. Masui 1994 Dec; 43(12): 1885–8

    CAS  PubMed  Google Scholar 

  250. Ueda Y, Shimomura T, Kurehara K, et al. Anesthetic management of a patient with 21-hydroxylase deficiency [in Japanese]. Masui 1994 Dec; 43(12): 1876–80

    CAS  PubMed  Google Scholar 

  251. Murakawa T, Kudo T, Kudo M, et al. Hormonal changes during removal of aldosterone-producing adrenal tumor under sevoflurane anesthesia [in Japanese]. Masui 1994 Oct; 43(8): 1529–33

    CAS  PubMed  Google Scholar 

  252. Fujita A, Okutani R, Fukuda T, et al. Anesthetic management in a patient with Beckwith-Wiedemann syndrome [in Japanese]. Masui 1994 Sep; 43(9): 1389–91

    CAS  PubMed  Google Scholar 

  253. Kohno K, Uchida H, Yamamoto N, et al. Sevoflurane anesthesia in a patient with multiple sclerosis [in Japanese]. Masui 1994 Aug; 43(8): 1229–32

    CAS  PubMed  Google Scholar 

  254. Masuda Y, Hayashi M, Obara H. Sevoflurane anesthesia for a patient with facioscapulohumeral muscle dystrophy [in Japanese]. Masui 1994 Apr; 43(4): 580–3

    CAS  PubMed  Google Scholar 

  255. Kurahashi K, Andoh T, Sato K, et al. Anesthesia in a patient with carnitine deficiency syndrome [in Japanese]. Masui 1993 Aug; 42(8): 1223–6

    CAS  PubMed  Google Scholar 

  256. Ueda Y, Okamoto T, Satoh T. General anesthesia conducted twice in myotonic dystrophy [in Japanese]. Masui 1993 May; 42(5): 742–5

    CAS  PubMed  Google Scholar 

  257. Ii C, Tanaka N, Okamura H, et al. Anesthetic management of a patient with acute intermittent porphyria [in Japanese]. Masui 1993 Dec; 42(12): 1849–52

    CAS  PubMed  Google Scholar 

  258. Sugimoto M, Shindo K, Shingu K, et al. Anesthetic management of an infant with Menkes disease [in Japanese]. Masui 1993 Sep; 42(9): 1351–4

    CAS  PubMed  Google Scholar 

  259. Yoshitake S, Matsumoto K, Miyagawa A, et al. Anesthetic consideration of a patient with congenital insensitivity to pain with anhidrosis [in Japanese]. Masui 1993 Aug; 42(8): 1233–6

    CAS  PubMed  Google Scholar 

  260. Kawamata M, Miyabe M, Nakae Y, et al. Continuous thoracic epidural blockade in combination with general anesthesia with nitrous oxide, oxygen, and sevoflurane in two patients with myasthenia gravis [in Japanese]. Masui 1993 Jun; 42(6): 898–901

    CAS  PubMed  Google Scholar 

  261. Saitoh K, Hirabayashi Y, Fukuda H, et al. Sevoflurane anesthesia in a patient following renal transplantation [in Japanese]. Masui 1993 May; 42(5): 746–9

    CAS  PubMed  Google Scholar 

  262. Matsumoto M, Sakai H. Sevoflurane anesthesia for a patient with insulinoma [in Japanese]. Masui 1992 Mar; 41(3): 446–9

    CAS  PubMed  Google Scholar 

  263. Yomosa H, Nakahashi K, Hayashi M, et al. General anesthesia with sevoflurane and vecuronium for patients with dystrophia myotonica and progressive muscular dystrophy [in Japanese]. Masui 1991 Nov; 40(11): 1730–5

    CAS  PubMed  Google Scholar 

  264. Ueda N, Kitamura Y, Hayashi Y, et al. Anaesthetic management of phaeochromocytoma associated with tricuspid atresia. Can J Anaesth 1991 Sep; 38(6): 780–4

    Article  CAS  PubMed  Google Scholar 

  265. Ogasawara H, Shimodate Y, Matsui M, et al. Sevoflurane anesthesia for a patient with arthrogryposis multiplex congenita [in Japanese]. Masui 1990 Jun; 39(6): 792–5

    CAS  PubMed  Google Scholar 

  266. Murakawa T, Tsubo T, Ogasawara H, et al. Plasma Cortisol levels during abdominal surgery under sevoflurane anesthesia: comparison between gastrointestinal and gynecological surgery [in Japanese]. Masui 1990 Jun; 39(6): 723–7

    CAS  PubMed  Google Scholar 

  267. Ogasawara H, Shimodate Y, Isozaki K, et al. Sevoflurane anesthesia for a patient with cerebral palsy [in Japanese]. Masui 1990 Apr; 39(4): 500–2

    CAS  PubMed  Google Scholar 

  268. Murakawa T, Kudo T, Kudo M, et al. Effects of surgical intervention on plasma levels of antidiuretic hormone and alpha-human atrial natriuretic polypeptide under sevoflurane anesthesia [in Japanese]. Masui 1989 Sep; 38(9): 1195–200

    CAS  PubMed  Google Scholar 

  269. Fujimoto K. Clinical study on sevoflurane in pediatric anesthesia [in Japanese]. Shinyaku to Rinsho 1992 Oct; 41(10): 2283–8

    Google Scholar 

  270. Haga S, Shima T, Momose K, et al. Anesthetic induction of children with high concentrations of sevoflurane [in Japanese]. Masui 1992 Dec; 41(12): 1951–5

    CAS  PubMed  Google Scholar 

  271. Inada Y, Ikeda K, Mori K, et al. Clinical evaluation of sevoflurane — a multi-center clinical trial [in Japanese]. Masui 1987 Jun; 36(6): 866–74

    CAS  PubMed  Google Scholar 

  272. Iwai S, Hoshina H, Murata H, et al. Clinical experiences with sevoflurane in pediatric anesthesia [in Japanese]. Masui 1987 Nov; 36(11): 1796–801

    CAS  PubMed  Google Scholar 

  273. Eriksson H, Haasio J, Korttila K. Recovery from sevoflurane and isoflurane anaesthesia after outpatient gynaecological laparoscopy. Acta Anaesthesiol Scand 1995; 39: 377–80

    Article  CAS  PubMed  Google Scholar 

  274. Dixon RA, Thornton JA. Tests of recovery from anaesthesia and sedation: intravenous diazepam in dentistry. Br J Anaesth 1973; 45: 207–15

    Article  CAS  PubMed  Google Scholar 

  275. Zimmerman IL, Woo-Sam JM. Digit Symbol. In: Zimmerman IL, Woo-Sam JM, editors. Clinical interpretation of the Wechsler adult intelligence scale. New York: Grune and Stratton, 1973: 121–31

    Google Scholar 

  276. Newman MG, Trieger N, Miller JC. Measuring recovery from anesthesia: a simple test. Anesth Analg 1969 Jan–Feb; 48(1): 136–40

    CAS  PubMed  Google Scholar 

  277. Aldrete JA, Kroulik D. A postanesthetic recovery score. Anesth Analg 1970 Nov–Dec; 49(6): 924–34

    Article  CAS  PubMed  Google Scholar 

  278. Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol 1974; 47: 211–8

    Article  Google Scholar 

  279. Bourne JG. General anesthesia for out-patients, with special reference to dental extraction. Proc Royal Soc Med 1954; 47: 416–22

    CAS  Google Scholar 

  280. Ruffle JM, Snider MT, Rosenberger JL. Rapid induction of halothane anaesthesia in man. Br J Anaesth 1985; 57: 607–11

    Article  CAS  PubMed  Google Scholar 

  281. Wilton NC, Thomas VL. Single breath induction of anaesthesia, using a vital capacity breath of halothane, nitrous oxide and oxygen. Anaesthesia 1986 May; 41(5): 472–6

    Article  CAS  PubMed  Google Scholar 

  282. Lamberty JM, Wilson IH. Single breath induction of anaesthesia with isoflurane. Br J Anaesth 1987; 59: 1214–8

    Article  CAS  PubMed  Google Scholar 

  283. Loper K, Reitan J, Bennett H, et al. Comparison of halothane and isoflurane for rapid anesthetic induction. Anesth Analg 1987; 66: 766–8

    Article  CAS  PubMed  Google Scholar 

  284. Yurino M, Kimura H. Efficient inspired concentration of sevoflurane for vital capacity rapid inhalation induction (VCRII) technique. J Clin Anesth 1995 May; 7(3): 228–31

    Article  CAS  PubMed  Google Scholar 

  285. Fukuda H, Kasuda H, Saitoh K, et al. Rapid induction of anesthesia with inhalation of sevoflurane [in Japanese]. Masui 1993 Dec; 42(12): 1744–7

    CAS  PubMed  Google Scholar 

  286. Yurino M, Kimura H. Comparison of induction time and characteristics between sevoflurane and sevoflurane/nitrous oxide. Acta Anaesthesiol Scand 1995; 39: 356–8

    Article  CAS  PubMed  Google Scholar 

  287. Yurino M, Kimura H. Induction of anesthesia with sevoflurane, nitrous oxide, and oxygen: a comparison of spontaneous ventilation and vital capacity rapid inhalation induction (VCRII) techniques. Anesth Analg 1993 Mar; 76(3): 598–601

    Article  CAS  PubMed  Google Scholar 

  288. Yurino M, Kimura H. A comparison of vital capacity breath and tidal breathing techniques for induction of anaesthesia with high sevoflurane concentrations in nitrous oxide and oxygen. Anaesthesia 1995 Apr; 50(4): 308–11

    Article  CAS  PubMed  Google Scholar 

  289. Inada E, Takasaki M, Kikuta Y, et al. Single-breath induction with sevoflurane in pediatric patients [abstract]. Anesthesiology 1992 Sep; 77(3A) Suppl.: A1145

    Article  Google Scholar 

  290. Sloan MH, Conrad PF, Karsunky PK, et al. Sevoflurane versus isoflurane: induction and recovery characteristics with single-breath inhaled inductions of anesthesia. Anesth Analg 1996. In press

  291. Yurino M, Kimura H. Vital capacity breath technique for rapid anaesthetic induction: comparison of sevoflurane and isoflurane. Anaesthesia 1992 Nov; 47(11): 946–9

    Article  CAS  PubMed  Google Scholar 

  292. Yurino M, Kimura H. Vital capacity rapid inhalation induction technique: comparison of sevoflurane and halothane. Can J Anaesth 1993 May; 40(5): 440–3

    Article  CAS  PubMed  Google Scholar 

  293. Binstock WB, Berkowitz R, Eyrich K, et al. A comparison of sevoflurane and halothane for induction and maintenance of anesthesia in pediatric ASA I and II outpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1313

    Google Scholar 

  294. Johannesson GP, Florén M, Lindahl SGE. Sevoflurane for ENT-surgery in children: a comparison with halothane. Acta An-aesthesiol Scand 1995 May; 39: 546–50

    Article  CAS  Google Scholar 

  295. Welborn LG, Frazier LJ, Hannallah RS, et al. Comparison of emergence of recovery characteristics of sevoflurane, desflur-ane and halothane in pediatric patients [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S550

    Google Scholar 

  296. Yamamoto I, Yukioka H, Fujimori M. Clinical study of postoperative sedation in pediatric patients—effects of inhalation anesthetics and postoperative analgesics [in Japanese]. Masui 1994 Aug; 43(8): 1191–5

    CAS  PubMed  Google Scholar 

  297. DeAngelis V, Zedie N, Lee H, et al. The effects of sevoflurane vs isoflurane on recovery from outpatient surgery [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S85

    Google Scholar 

  298. Loeb R, Wetchler BV, Schacher D, et al. Comparison of sevoflurane and isoflurane for anesthesia on adult outpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A3

    Google Scholar 

  299. Philip BK, Kallar SK, Bogetz MS, et al. Multicenter comparison of sevoflurane with isoflurane in nitrous oxide for ambulatory surgery [abstract]. Anesthesiology 1993 Sep; 79(3A) Suppl.: A40

    Google Scholar 

  300. Nathanson MH, Fredman B, Smith I, et al. Sevoflurane versus desflurane for outpatient anesthesia: a comparison of maintenance and recovery profiles. Anesth Analg 1995 Dec; 81(6): 1186–90

    CAS  PubMed  Google Scholar 

  301. Dubin SA, Huang S, Martin E, et al. Multicenter comparative study evaluating sevoflurane versus propofol in anesthesia maintenance and recovery in adult outpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A2

    Google Scholar 

  302. Fredman B, Nathanson MH, Smith I, et al. Sevoflurane for outpatient anesthesia: a comparison with propofol. Anesth Analg 1995 Oct; 81(4): 823–8

    CAS  PubMed  Google Scholar 

  303. Huang S, Wong CH, Yang JC, et al. Comparison of emergence and recovery times between sevoflurane and propofol as maintenance anesthetics in adult outpatient surgeries [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A6

    Google Scholar 

  304. Wandel C, Neff S, Böhrer H, et al. Recovery characteristics following anaesthesia with sevoflurane or propofol in adults undergoing out-patient surgery. Eur J Clin Pharmacol 1995; 48(3/4): 185–8

    CAS  PubMed  Google Scholar 

  305. Pregler J, Stead SW, Beatie CD, et al. Return of cognitive functions after sevoflurane and propofol general anesthetics [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: Al

    Google Scholar 

  306. Lien C, Belmont M, Hemmings H, et al. Efficacy of sevoflurane versus propofol for the induction and maintenance of anesthesia [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S282

    Google Scholar 

  307. Campbell C, Nahrwold ML, Miller DD. Clinical comparison of sevoflurane and isoflurane when administered with nitrous oxide for surgical procedures of intermediate duration. Can J Anaesth 1995 Oct; 42(10): 884–90

    Article  CAS  PubMed  Google Scholar 

  308. Cantillo J, Goldberg ME, Vekeman D, et al. Does sevoflurane provide more rapid recovery than isoflurane after prolonged administration? [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S67

    Google Scholar 

  309. DeSouza G, VandenBosch M, Dorta F, et al. A comparative study of sevoflurane and isoflurane for maintaining anesthesia in patients over 65 [abstract]. Anesthesiology 1994 Sep; 81 Suppl. 3A: A7

    Google Scholar 

  310. Gambling DR, Sharma SK, White PF, et al. Use of sevoflurane during elective Cesarean birth: a comparison with isoflurane and spinal anesthesia. Anesth Analg 1995 Jul; 81(1): 90–5

    CAS  PubMed  Google Scholar 

  311. Johnson JO, Sperry RJ, East KA. Efficacy of sevoflurane vs isoflurane for maintenance of anesthesia during neurosurgical procedures [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A220

    Google Scholar 

  312. Johnson JO, East KA, Stanley TH. A phase HI, multicenter, randomized, open-label study to compare the safety and tolerability of sevoflurane vs. isoflurane administered with N2O and O2 in ASA class I, II and III patients [abstract]. Anesthesiology 1993 Sep; 79(3A) Suppl.: A354

    Google Scholar 

  313. Quinn AC, Newman PJ, Hall GM, et al. Sevoflurane anaesthesia for major intra-abdominal surgery. Anaesthesia 1994 Jul; 49(7): 567–71

    Article  CAS  PubMed  Google Scholar 

  314. Smith I, Ding Y, White PF. Comparison of induction, maintenance, and recovery characteristics of sevoflurane-N2O and propofol-sevoflurane-N2O with propofol-isoflurane-N2O anesthesia. Anesth Analg 1992 Feb; 74(2): 253–9

    Article  CAS  PubMed  Google Scholar 

  315. Stead S, Miller J, Pregler J, et al. Recovery from sevoflurane and isoflurane anesthesia following prolonged exposure [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S468

    Google Scholar 

  316. Wiesner G, Schwürzer S, Hörauf K, et al. Emergence times, haemodynamics, and adverse effects of sevoflurane and isoflurane: a phase III, open-label, randomised, comparative study [in German]. Anaesthesist 1994 Sep; 43: 587–93

    Article  CAS  PubMed  Google Scholar 

  317. Blanco E, Vidal MI, Blanco J, et al. Comparison of maintenance and recovery characteristics of sevoflurane-nitrous oxide and enflurane-nitrous oxide anaesthesia. Eur J Anaesthesiol 1995 Sep; 12(5): 517–23

    CAS  PubMed  Google Scholar 

  318. Saito S, Goto F, Kadoi Y, et al. Comparative clinical study of induction and emergence time in sevoflurane and enflurane anaesthesia. Acta Anaesthesiol Scand 1989 Jul; 33: 389–90

    Article  CAS  PubMed  Google Scholar 

  319. Jellish WS, Lien C, Fontenot HJ, et al. Sevoflurane versus propofol for anesthesia induction and maintenance in adult inpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A367

    Google Scholar 

  320. White PF, Bartley-Arquilla A, Frosch C, et al. Effect of sevoflurane on the recovery profile in elderly patients [abstract]. Proceedings of the 11th World Congress of Anaesthesiologists, 1996; Apr 11–14, Sydney, Australia. In press

  321. Abbott Laboratories. Sevoflurane NDA# 20-478, Study 26 (sevo-92-010). Data on file.

  322. Rödig G, Keyl C, Wiesner G, et al. Effects of sevoflurane and isoflurane on systemic vascular resistance: use of cardiopulmonary bypass as a study model. Br J Anaesth 1996 Jan; 76(1): 9–12

    Article  PubMed  Google Scholar 

  323. Johnson JO, Sperry RJ, Lam A, et al. A phase III randomized open-label study to compare sevoflurane and isoflurane in neurosurgical patients [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S214

    Google Scholar 

  324. Abbott Laboratories. Sevoflurane NDA# 20-478, Study 38 (sevo-93-035). Data on file.

  325. Deriaz H, Duranteau R, Delva E, et al. Compared consumption of three volatile anesthetics (isoflurane, sevoflurane, desflurane) in simulated anesthesia [abstract]. Anesthesiology 1995 Sep; 83(3A) Suppl.: A1039

    Google Scholar 

  326. Lubarsky DA, Smith LR, Glass PSA. A comparison of maintenance drug costs of isoflurane, sevoflurane, and propofol with OR and PACU labor costs during a 60 minute outpatient procedure [abstract]. Anesthesiology 1995 Sep; 83(3A) Suppl.: A1035

    Google Scholar 

  327. Morisaki H, Suzuki G, Miyazawa N, et al. A clinical trial of sevoflurane in children for herniorrhaphy. J Anesth 1988; 2: 94–7

    Article  CAS  PubMed  Google Scholar 

  328. Johnston RG, Noseworthy TW, Friesen EG, et al. Isoflurane therapy for status asthmaticus in children and adults. Chest 1990 Mar; 97(3): 698–701

    Article  CAS  PubMed  Google Scholar 

  329. Saulnier FF, Durocher AV, Deturck RA, et al. Respiratory and hemodynamic effects of halothane in status asthmaticus. Intensive Care Med 1990; 16: 104–7

    Article  CAS  PubMed  Google Scholar 

  330. Otte RW, Fireman P. Isoflurane anesthesia for the treatment of refractory status asthmaticus. Ann Allergy 1991 Apr; 66(4): 305–9

    CAS  PubMed  Google Scholar 

  331. Yabe M, Enzan K, Takahashi H, et al. Anesthetic management of a patient with HELLP syndrome with bronchial asthma [in Japanese]. Masui 1993 Aug; 42(8): 1230–2

    CAS  PubMed  Google Scholar 

  332. Saitoh K, Fukuda H, Hirabayashi Y, et al. Sevoflurane anesthesia for asthmatic patients: report of five cases [in Japanese]. Masui 1992 Dec; 41: 1998–2001

    CAS  PubMed  Google Scholar 

  333. Fujibayashi T, Mizogami M, Niwa M, et al. About the merits of use of laryngeal mask airway and sevoflurane from the five cases of bronchial asthma [in Japanese]. Hiroshima J Anaesth 1991; 27(4): 383–6

    Google Scholar 

  334. Amagasa S, Miura Y, Kudo M, et al. Anesthetic management of a multiallergic patient scheduled for cholecystectomy [in Japanese]. Masui 1994 Dec; 43(12): 1871–5

    CAS  PubMed  Google Scholar 

  335. Gross JB, Callan C, Latif Z. Sevoflurane is suitable for routine mask induction in adults [abstract]. Proceedings of the 11th World Congress of Anaesthesiologists 1996; Apr 14–20, Sydney, Australia. In press

  336. Tomiyasu S, Hara T, Nakamura H, et al. Hemodynamic and catecholamine response to tracheal intubation during inhalation of isoflurane or sevoflurane [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S440

    Google Scholar 

  337. Yurino M, Kimura H. Rapid inhalation induction with high concentration of sevoflurane using a new vaporizer. Hokkaido Igaku Zasshi 1994 May; 69: 537–42

    CAS  PubMed  Google Scholar 

  338. Palazzo MGA, Strunin J. Anaesthesia and emesis. I: etiology. Can J Anaesth 1984 Mar; 31(2): 178–87

    Article  CAS  Google Scholar 

  339. Korttila K. Recovery from outpatient anaesthesia: factors affecting outcome. Anaesthesia 1995 Oct; 50 Suppl.: 22–8

    Article  PubMed  Google Scholar 

  340. Oh TE, Davis PJ. Pediatric outpatient anesthesia. In: Motoyama EK, editor. Anesthesia for infant and children. St. Louis: Mosby, 1990: 681–7

    Google Scholar 

  341. Felts JA, Poler SM, Spitznagel EL. Nitrous oxide, nausea, and vomiting after outpatient gynecologic surgery. J Clin Anesth 1990 May–Jun; 2(3): 168–71

    Article  CAS  PubMed  Google Scholar 

  342. Tomi K, Mashimo T, Tashiro C, et al. Alterations in pain threshold and psychomotor response associated with subanaesthetic concentrations of inhalation anaesthetics in humans. Br J Anaesth 1993 Jun; 70(6): 684–6

    Article  CAS  PubMed  Google Scholar 

  343. Lerman J, Prokocimer P, Bohannon S. Is the incidence of excitement in children during emergence from anaesthesia similar with sevoflurane and halothane? [abstract]. Proceedings of the 11th World Congress of Anaesthesiologists, 1996; Apr 14–20, Sydney, Australia. In press

    Google Scholar 

  344. Elliott RH, Strunin L. Hepatotoxicity of volatile anaesthetics. Br J Anaesth 1993 Mar; 70(3): 339–48

    Article  CAS  PubMed  Google Scholar 

  345. Kenna JG, Jones RM. The organ toxicity of inhaled anesthetics. Anesth Analg 1995 Dec; 81 Suppl. 6S: S51–66

    Article  CAS  PubMed  Google Scholar 

  346. Ray DC, Drummond GB. Halothane hepatitis. Br J Anaesth 1991 Jul; 67(1): 84–99

    Article  CAS  PubMed  Google Scholar 

  347. Kenna JG, Neuberger JM. Immunopathogenesis and treatment of halothane hepatitis. Clin Immunother 1995 Feb; 3(2): 108–24

    Article  Google Scholar 

  348. Green WB, Eckerson ML, Depa R, et al. Covalent binding of oxidative metabolites to hepatic protein not detectable after exposure to sevoflurane or desflurane [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A437

    Google Scholar 

  349. Darling JR, McBride DR, Trinick TR, et al. Comparison of the effects of sevoflurane with those of isoflurane on hepatic glutathione-S-transferase concentrations after body surface surgery [abstract]. Br J Anaesth 1994 Aug; 73(2): 268P

    Google Scholar 

  350. Yasuda N, Toriumi K, Tanifuji Y, et al. Liver and kidney function after low flow sevoflurane anesthesia in surgical patients [abstract]. Anesth Analg 1994 Feb; 78(2S) Suppl.: S494

    Google Scholar 

  351. Kaseno S, Dohzaki S, Yokota S, et al. Effects of sevoflurane anesthesia on postoperative hepatic function [abstract]. Anesthesiology 1992 Sep; 77(3A) Suppl.: A1065

    Article  Google Scholar 

  352. Bito H, Ikeda K. Plasma inorganic fluoride and intracircuit degradation product concentrations in long-duration, low-flow sevoflurane anesthesia. Anesth Analg 1994 Nov; 79(5): 946–51

    Article  CAS  PubMed  Google Scholar 

  353. Jones JS, Frink EJ. Evaluation of the safety and tolerability of sevoflurane administered in a low-flow, semi-closed anesthetic delivery system in ASA I and II surgical patients [abstract]. Clin Res 1992 Feb; 40(1): 14A

    Google Scholar 

  354. Frink EJ, Malan P, Patel C, et al. Hepatocellular function following sevoflurane or isoflurane anesthesia in cirrhotic patients [abstract]. Anesthesiology 1995 Sep; 83(3A) Suppl.: A329

    Google Scholar 

  355. Watanabe K, Hatakenaka S, Ikemune K, et al. A case of suspected liver dysfunction induced by sevoflurane anesthesia [in Japanese]. Masui 1993 Jun; 42(6): 902–5

    CAS  PubMed  Google Scholar 

  356. Shichinohe Y, Masuda Y, Takahashi H, et al. A case of postoperative hepatic injury after sevoflurane anesthesia [in Japanese]. Masui 1992 Nov; 41(11): 1802–5

    CAS  PubMed  Google Scholar 

  357. Ogawa M, Doi K, Mitsufuji T, et al. Drug induced hepatitis following sevoflurane anesthesia in a child [in Japanese]. Masui 1991 Oct; 40(10): 1542–5

    CAS  PubMed  Google Scholar 

  358. Enokibori M, Miyazaki Y, Hirota K, et al. A case of postoperative fulminant hepatitis after sevoflurane anesthesia [case report]. Masui 1992; 41: S94

    Google Scholar 

  359. Omori H, Seki S, Kanaya N, et al. A case of postoperative liver damage after isoflurane anesthesia followed by sevoflurane anesthesia. J Jpn Soc Clin Anesth 1994; 14(1): 68–71

    Article  Google Scholar 

  360. Kato H, Tsujimoto S, Minamoto Y. Halothane vs sevoflurane anesthesia for woman undergoing breast surgery — postoperative liver dysfunction minimal with sevoflurane [abstract]. Proceedings of the 9th European Congress of Anaesthesiology 1994; Oct 2–7, Jersualem, Israel. 22.

    Google Scholar 

  361. Hayes PC, Bouchier IAD, Beckett GJ. Glutathione S-transferase in humans in health and disease. Gut 1991 Jul; 32(7): 813–8

    Article  CAS  PubMed  Google Scholar 

  362. Hussey AJ, Aldridge LM, Paul D, et al. Plasma glutathione S-transferase concentration as a measure of hepatocellular integrity following a single general anaesthetic with halothane, enflurane or isoflurane. Br J Anaesth 1988; 60: 130–5

    Article  CAS  PubMed  Google Scholar 

  363. Mazze RI, Trudell JR, Cousins MJ. Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. Anesthesiology 1971 Sep; 35(3): 247–52

    Article  CAS  PubMed  Google Scholar 

  364. Mazze RI, Jamison R. Renal effects of sevoflurane [editorial]. Anesthesiology 1995 Sep; 83(3): 443–5

    Article  CAS  PubMed  Google Scholar 

  365. Cousins MJ, Mazze RI. Methoxyflurane nephrotoxicity: a study of dose response in man. JAMA 1973 Sep; 225(13): 1611–6

    Article  CAS  PubMed  Google Scholar 

  366. Holaday DA, Rudofsky S, Treuhaft PS. The metabolic degradation of methoxyflurane in man. Anesthesiology 1970; 33: 579–93

    Article  CAS  Google Scholar 

  367. Mazze RI. Fluorinated anaesthetic nephrotoxicity: an update. Can J Anaesth 1984; 31: S16–22

    Article  CAS  Google Scholar 

  368. Cousins MJ, Mazze RI, Kosek JC, et al. The etiology of methoxyflurane nephrotoxicity. J Pharmacol Exp Ther 1974; 190: 530–41

    CAS  PubMed  Google Scholar 

  369. Murray JM, Trinick TR. Plasma fluoride concentrations during and after prolonged anaesthesia: a comparison of halothane and isoflurane. Anesth Analg 1992 Feb; 74(2): 236–40

    Article  CAS  PubMed  Google Scholar 

  370. Spencer EM, Willatts SM, Prys-Roberts C. Plasma inorganic fluoride concentrations during and after prolonged (>24 h) isoflurane sedation: effect on renal function. Anesth Analg 1991 Dec; 73(6): 731–7

    Article  CAS  PubMed  Google Scholar 

  371. Arnold JH, Truog RD, Rice SA. Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg 1993 Mar; 76(3): 520–6

    Article  CAS  PubMed  Google Scholar 

  372. Kong KL, Tyler JE, Willatts SM, et al. Isoflurane sedation for patients undergoing mechanical ventilation: metabolism to inorganic fluoride and renal effects. Br J Anaesth 1990 Feb; 64(2): 159–62

    Article  CAS  PubMed  Google Scholar 

  373. Mazze RI, Woodruff RE, Heerdt ME, Isoniazid-induced enflurane defluorination in humans. Anesthesiology 1982; 57: 5–8

    Article  CAS  PubMed  Google Scholar 

  374. Mazze_RI, Sievenpiper TS, Stevenson J. Renal effects of enflurane and halothane in patients with abnormal renal function. Anesthesiology 1984; 60: 161–3

    Article  CAS  PubMed  Google Scholar 

  375. Cousins MJ, Greenstein LR, Hitt BA, et al. Metabolism and renal effects of enflurane in man. Anesthesiology 1976 Jan; 44(1); 44–53

    Article  CAS  PubMed  Google Scholar 

  376. Malan TP. Sevoflurane and renal function. Anesth Analg 1995 Dec; 81 Suppl. 6S: S39–45

    Article  CAS  PubMed  Google Scholar 

  377. Brown BR. Shibboleths and jigsaw puzzles: the fluoride nephrotoxicity enigma [editorial]. Anesthesiology 1995 Mar; 82(3): 607–8

    Article  PubMed  Google Scholar 

  378. Ohira N, Inada T, Hamai R. Influence of sevoflurane and isoflurane anesthesia on renal function in elderly patients [in Japanese]. Masui 1994 Dec; 43(12): 1842–5

    CAS  PubMed  Google Scholar 

  379. Miura M, Kudo A, Wakusawa R, et al. Serum inorganic fluoride concentrations and their urinary excretion during and after sevoflurane, isoflurane, or enflurane anesthesia in man [in Japanese]. Masui 1993 Apr; 42(4): 562–7

    CAS  PubMed  Google Scholar 

  380. Higuchi H, Sumikura H, Sumita S, et al. Renal function in patients with high serum fluoride concentrations after prolonged sevoflurane anesthesia. Anesthesiology 1995 Sep; 83(3): 449–58

    Article  CAS  PubMed  Google Scholar 

  381. Conzen PF, Nuscheler M, Melotte A, et al. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Anesth Analg 1995 Sep; 81(3): 569–75

    CAS  PubMed  Google Scholar 

  382. Gardner AM, Solomon DE, Gold M, et al. Sevoflurane vs isoflurane maintenance/recovery/fluoride concentrations/ length of exposure in elderly inpatients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A8

    Google Scholar 

  383. Kadota Y, Sameshima T, Gushiken T, et al. Increased inorganic fluoride levels following low concentration sevoflurane plus continuous epidural anesthesia [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A360

    Google Scholar 

  384. Goldberg ME, Cantillo J, Vekeman D, et al. Maintenance of anesthesia with sevoflurane: are serum fluoride levels of concern? [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A365

    Google Scholar 

  385. Funk W, Moldaschl J, Fushita Y, et al. Advantage of sevoflurane over halothane in anesthesia induction and emergence of pediatric patients [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1315

    Google Scholar 

  386. Kataria B, Montana J. Inorganic fluoride levels after inhalation of sevoflurane anesthetic in healthy children [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1317

    Google Scholar 

  387. Levine MF, Sarner J, Lerman J, et al. Plasma inorganic fluoride ion concentration in children after prolonged sevoflurane anaesthesia [abstract]. Can J Anaesth 1993 May; 40(5 Pt 2): A66

    Google Scholar 

  388. Kazama T, Ikeda K. The effect of prolonged administration of sevoflurane on serum concentration of fluoride ion in patients [abstract]. Anesthesiology 1991 Sep; 75(3A) Suppl.: A346

    Article  Google Scholar 

  389. Toriumi K, Ozaki M, Yasuda N, et al. Serum inorganic fluoride after extended exposure to sevoflurane in patients [abstract]. Anesthesiology 1991 Sep; 75(3A) Suppl.: A347

    Article  Google Scholar 

  390. McGrath B, Hodgins L, Frink E, et al. The effect of sevoflurane vs isoflurane on renal function in patients with renal insufficiency [abstract]. Anesth Analg 1995 Feb; 80(2S) Suppl.: S312

    Google Scholar 

  391. Kawai R, Bito H, Ikeuchi Y, et al. Effects of prolonged low-flow sevoflurane anesthesia on the renal tubular function: comparison with isoflurane [abstract]. Anesthesiology 1995 Sep; 83(3A) Suppl.: A328

    Google Scholar 

  392. Chelly JE, Hantier CB, Berry J, et al. Multi-center, open-label study to evaluate the effect of repeat exposure of sevoflurane in patients ASAI-III [abstract]. Anesthesiology 1995 Sep; 83(3A) Suppl.: A1076

    Google Scholar 

  393. Tatekawa S, Asada A, Nishikawa K, et al. Comparison of sevoflurane with isoflurane anesthesia for use in elective cesarean section [abstract]. Anesthesiology 1993 Sep; 79(3A) Suppl.: A1018

    Google Scholar 

  394. Igarashi M, Watanabe H, Iwasaki H, et al. Evaluation of lowflow sevoflurane anesthesia [in Japanese]. Masui 1994 Jun; 43(6): 854–8

    CAS  PubMed  Google Scholar 

  395. Higuchi H, Arimura S, Sumikura H, et al. Urine concentrating ability after prolonged sevoflurane anaesthesia. Br J Anaesth 1994 Aug; 73(2): 239–40

    Article  CAS  PubMed  Google Scholar 

  396. Munday IT, Stoddart PA, Jones RM, et al. Serum fluoride concentration and urine osmolality after enflurane and sevoflurane anesthesia in male volunteers. Anesth Analg 1995 Aug; 81(2): 353–9

    CAS  PubMed  Google Scholar 

  397. Kumano H, Osaka S, Ishimura N, et al. Effects of enflurane, isoflurane, and sevoflurane on renal tubular functions [in Japanese]. Masui 1992 Nov; 41(11): 1735–40

    CAS  PubMed  Google Scholar 

  398. Martin JL, Dodge ML, Pohl LR. Immunochemical detection of covalently modified kidney proteins in rats treated with the sevoflurane degradation product, compound A (Sevo-olefin) [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A436

    Google Scholar 

  399. Jin L, Baillie TA, Davis MR, et al. Nephrotoxicity of sevoflurane compound A [fluoromethyl-2, 2-difluoro-1-(trifluoromethyl)vinyl ether] in rats: evidence for glutathione and cysteine conjugate formation and the role of renal cysteine conjugate β-lyase. Biochem Biophys Res Commun 1995 May; 210(2): 498–506

    Article  CAS  PubMed  Google Scholar 

  400. Dekant W, Vamvakas S, Anders MW. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate β-lyase pathway. In: Anders MW, Dekant W, editors. Advances in Pharmacology, v. 27. San Diego: Academic Press, 1994: 115–62

    Google Scholar 

  401. Finkelstein MB, Baggs RB, Anders MW. Nephrotoxicity of the glutathione and cysteine conjugates of 2-bromo-2-chloro-1,1-difluoroethene. J Pharmacol Exp Ther 1992; 261(3): 1248–52

    CAS  PubMed  Google Scholar 

  402. Gonsowski CT, Laster MJ, Eger EI, et al. Toxicity of compound A in rats: effect of a 3-hour administration. Anesthesiology 1994 Mar; 80(3): 556–65

    Article  CAS  PubMed  Google Scholar 

  403. Gonsowski CT, Laster MJ, Eger EI, et al. Toxicity of compound A in rats: effect of increasing duration of administration. Anesthesiology 1994 Mar; 80(3): 566–73

    Article  CAS  PubMed  Google Scholar 

  404. Kandel L, Laster MJ, Eger EI, et al. Nephrotoxicity in rats undergoing a one-hour exposure to compound A. Anesth Analg 1995 Sep; 81(3): 559–63

    CAS  PubMed  Google Scholar 

  405. Keller KA, Callan C, Prokocimer P, et al. Inhalation toxicity study of a haloalkene degradant of sevoflurane, compound A (PIFE), in Sprague-Dawley rats. Anesthesiology 1995 Dec; 83(6): 1220–32

    Article  CAS  PubMed  Google Scholar 

  406. Bito H, Ikeda K. Effect of total flow rate on the concentration of degradation products generated by reaction between sevoflurane and soda lime. Br J Anaesth 1995 Jun; 74(6): 667–9

    Article  CAS  PubMed  Google Scholar 

  407. Bito H, Ikeda K. Long-duration, low-flow sevoflurane anesthesia using two carbon dioxide absorbents. Quantification of degradation products in the circuit. Anesthesiology 1994 Aug; 81(2): 340–5

    Article  CAS  PubMed  Google Scholar 

  408. Fang ZX, Eger EI. Factors affecting the concentration of compound A resulting from the degradation of sevoflurane by soda lime and Baralyme® in a standard anesthetic circuit. Anesth Analg 1995 Sep; 81(3): 564–8

    CAS  PubMed  Google Scholar 

  409. Bito H, Ikeda K. Closed-circuit anesthesia with sevoflurane in humans. Effects on renal and hepatic function and concentrations of breakdown products with soda lime in the circuit. Anesthesiology 1994 Jan; 80(1): 71–6

    Article  CAS  PubMed  Google Scholar 

  410. Foden ND, van Pelt FNAM, Jones RM. Dose dependent degradation of sevoflurane to compound A [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A432

    Google Scholar 

  411. Frink EJ, Isner RJ, Malan TP, et al. Sevoflurane degradation product concentrations with soda lime during prolonged anesthesia. J Clin Anesth 1994 May–Jun; 6(3): 239–42

    Article  PubMed  Google Scholar 

  412. Bito H, Ikeda K. Renal and hepatic function in surgical patients after low-flow sevoflurane or isoflurane anesthesia. Anesth Analg 1996 Jan; 82(1): 173–6

    CAS  PubMed  Google Scholar 

  413. Frink EJ, Green WB, Brown EA, et al. Sevoflurane degradation product concentration and hepatorenal function with soda lime in children [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A366

    Google Scholar 

  414. Munday IT, Foden ND, Ward PM, et al. Sevoflurane degradation in a circle system at 2 different fresh gas flow rates [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A433

    Google Scholar 

  415. Bito H, Ikeda K. Degradation products of sevoflurane during low-flow anaesthesia. Br J Anaesth 1995 Jan; 74(1): 56–9

    Article  CAS  PubMed  Google Scholar 

  416. Yasuda N, Mishina J, Miyano K, et al. Effects of sevoflurane administered using a low flow system on the liver and kidney [abstract]. Anesthesiology 1991 Sep; 75(3A) Suppl.: A345

    Article  Google Scholar 

  417. Bito H, Ikeda K. Evaluation of low-flow sevoflurane anesthesia using modified Engstrom Elsa Anesthesia System [in Japanese]. Masui 1994 Aug; 43(8): 1221–5

    CAS  PubMed  Google Scholar 

  418. Sharp JH, Trudell JR, Cohen EN. Volatile metabolites and decomposition products of halothane in man. Anesthesiology 1979; 50: 2–8

    Article  CAS  PubMed  Google Scholar 

  419. Brown B. Sevoflurane: introduction and overview. Anesth Analg 1995 Dec; 81 Suppl. 6S: S1–3

    Article  PubMed  Google Scholar 

  420. Lash LH, Nelson RM, Van Dyke RA, et al. Purification and characterization of human kidney cytosolic cysteine conjugate β-lyase activity. Drug Metab Dispos 1990; 18(1): 50–4

    CAS  PubMed  Google Scholar 

  421. Iyer RA, Anders MW. β-Lyase-dependent biotransformation of the cysteine S-conjugate of the sevoflurane degradation product compound A in human, nonhuman primate and rat renal cytosol and mitochondria [abstract]. Proceedings of the 11th World Congress of Anaesthesiologists, 1996; Apr 11–14, Sydney, Australia. In press

    Google Scholar 

  422. Strazis KP, Fox AW. Malignant hyperthermia: a review of published cases. Anesth Analg 1993 Aug; 77(2): 297–304

    CAS  PubMed  Google Scholar 

  423. McGrath CJ, Rempel WE, Jesson CR, et al. Malignant hyperthermia-triggering liability of selected inhalant anesthetics in swine. Am J Vet Res 1981 Apr; 42: 604–7

    CAS  PubMed  Google Scholar 

  424. Wedel DJ, Iaizzo PA, Milde JH. Desflurane is a trigger of malignant hyperthermia in susceptible swine. Anesthesiology 1991 Mar; 74(3): 508–12

    Article  CAS  PubMed  Google Scholar 

  425. Shulman M, Braverman B, Ivankovich AD, et al. Sevoflurane triggers malignant hyperthermia in swine [letter]. Anesthesiology 1981 Mar; 54(3): 259–60

    Article  CAS  PubMed  Google Scholar 

  426. Matsui K, Fujioka Y, Kikuchi H, et al. Effects of several volatile anesthetics on the Ca2+-related functions of skinned skeletal muscle fibers from the guinea pig. Hiroshima J Med Sci 1991 Mar; 40(3): 9–13

    CAS  PubMed  Google Scholar 

  427. Ducart A, Adnet P, Renaud B, et al. Malignant hyperthermia during sevoflurane administration. Anesth Analg 1995 Mar; 80(3): 609–11

    CAS  PubMed  Google Scholar 

  428. Ochiai R, Toyoda Y, Nishio I, et al. Possible association of malignant hyperthermia with sevoflurane anesthesia. Anesth Analg 1992 Apr; 74(4): 616–8

    Article  CAS  PubMed  Google Scholar 

  429. Otsuka H, Komura Y, Mayumi T, et al. Malignant hyperthermia during sevoflurane anesthesia in a child with central core disease. Anesthesiology 1991 Oct; 75(4): 699–701

    Article  CAS  PubMed  Google Scholar 

  430. Otsuka H, Kemmotsu O. Malignant hyperthermia during sevoflurane anesthesia [letter]. Anesth Analg 1992 Nov; 75(5): 867

    Article  CAS  PubMed  Google Scholar 

  431. Dale O. Drug interactions in anaesthesia: focus on desflurane and sevoflurane. Baillieres Clin Anaesth 1995 Mar; 9(1): 105–17

    Article  Google Scholar 

  432. Dale O, Brown BR. Clinical pharmacokinetics of the inhalational anaesthetics. Clin Pharmacokinet 1987 Mar; 12(3): 145–67

    Article  CAS  PubMed  Google Scholar 

  433. Vanlinthout LEH, de Wolff MH, van Egmond J, et al. The effect of isoflurane and sevoflurane on the potency and the recovery of neuromuscular blockade by vecuronium, pancuronium and atracurium [abstract]. Anesthesiology 1994 Sep; 81(3A) Suppl.: A1113

    Google Scholar 

  434. Kaplan RF, Garcia M, Hannallah RS. Mivacurium-induced neuromuscular blockade during sevoflurane and halothane anaesthesia in children. Can J Anaesth 1995 Jan; 42(1): 16–20

    Article  CAS  PubMed  Google Scholar 

  435. Morita T, Tsukagoshi H, Sugaya T, et al. The effects of sevoflurane are similar to those of isoflurane on the neuromuscular block produced by vecuronium. Br J Anaesth 1994 Apr; 72(4): 465–7

    Article  CAS  PubMed  Google Scholar 

  436. Sarner JB, Cook DR, Motoyama EK, et al. The cumulative dose-response relationship of vecuronium in children during halothane-N2O or sevoflurane-N2O anesthesia [abstract]. Anesth Analg 1993 Feb; 76(2S) Suppl.: S367

    Google Scholar 

  437. Ishii K, Kobayashi T, Kitajima T, et al. Neuromuscular blockade with vecuronium and its reversal with edrophonium during total intravenous anesthesia, neuroleptanalgesia and sevoflurane anesthesia [in Japanese]. Masui 1994 Aug; 43(8): 1196–200

    CAS  PubMed  Google Scholar 

  438. Nishiyama M, Mitani Y. Prolongation and recovery under sevoflurane anesthesia of neuromuscular blocking action of vecuronium [in Japanese]. Masui 1994 Jan; 43(1): 45–9

    CAS  PubMed  Google Scholar 

  439. Itagaki T, Tai K, Katsumata N, et al. A clinical and experimental study on potentiation with sevoflurane of neuromuscular blocking effects of vecuronium and pancuronium [in Japanese]. Masui 1988 Aug; 37(8): 943–54

    CAS  PubMed  Google Scholar 

  440. Tai K, Suzuki H, Itagaki T, et al. Influence of sevoflurane on the neuromuscular blocking effects of vecuronium and pancuronium [in Japanese]. Masui 1987 Feb; 36(2): 227–31

    CAS  PubMed  Google Scholar 

  441. Awata M. Clinical electromechanographic studies on potentiation of the pancuronium-induced neuromuscular blockade by new halogenated inhalation anesthetics. Jpn J Anesth 1987; 36(12): 1930–8

    CAS  Google Scholar 

  442. Nakao Y, Mayumi T, Numazawa R, et al. Comparative effects of sevoflurane, isoflurane and enflurane on neuromuscular blocking effects of pipecuronium in surgical patients [abstract]. Anesth Analg 1993 Feb; 76(2S) Suppl.: S284

    Google Scholar 

  443. Taivainen T, Meretoja OA. The neuromuscular blocking effects of vecuronium during sevoflurane, halothane and balanced anaesthesia in children. Anaesthesia 1995 Dec; 50(12): 1046–9

    Article  CAS  PubMed  Google Scholar 

  444. Saitoh Y, Toyooka H, Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaesthetics and neuroleptanaesthesia. Br J Anaesth 1993 Apr; 70(4): 402–4

    Article  CAS  PubMed  Google Scholar 

  445. Lee C, Tsai S-K, Kwan W-F, et al. Desflurane potentiates atracurium in humans: a comparative study with isoflurane. J Clin Anesth 1992 Nov–Dec; 4: 448–54

    Article  CAS  PubMed  Google Scholar 

  446. Morita T, Tsukagoshi H, Sugaya T, et al. Inadequate antagonism of vecuronium-induced neuromuscular block by neostigmine during sevoflurane or isoflurane anesthesia. Anesth Analg 1995 Jun; 80(6): 1175–80

    CAS  PubMed  Google Scholar 

  447. Katoh T, Suguro Y, Kimura T, et al. Morphine does not affect the awakening concentration of sevoflurane. Can J Anaesth 1993 Sep; 40(9): 825–8

    Article  CAS  PubMed  Google Scholar 

  448. Katoh T, Uchiyama T, Ikeda K. Effect of fentanyl on awakening concentration of sevoflurane. Br J Anaesth 1994 Sep; 73: 322–5

    Article  CAS  PubMed  Google Scholar 

  449. Kobori M, Negishi H, Hosoyamada A. Effects of nicardipine on hemodynamics and skin blood flow — comparison between N2O-sevoflurane and N2O-isoflurane anesthesia [in Japanese]. Masui 1993 Oct; 42(10): 1435–9

    CAS  PubMed  Google Scholar 

  450. Fukusaki M, Tomiyasu S, Tsujita T, et al. Interaction of cardiovascular effect of calcium channel blocking drugs and those of inhalation anesthetics in humans [in Japanese]. Masui 1993 Jun; 42(6): 848–55

    CAS  PubMed  Google Scholar 

  451. Kameue T. The influence of different volatile inhaled anesthetics on the plasma protein binding of lidocaine [in Japanese]. Masui 1991 Mar; 40(3): 421–30

    CAS  PubMed  Google Scholar 

  452. Hashimoto H, Imamura S, Ikeda K, et al. Electrophysiologic interaction between class I antiarrhythmic drugs and volatile anesthetics in depressant effects on ventricular activation in a canine myocardial infarction model. Jpn J Pharmacol 1994 Apr; 64: 235–41

    Article  CAS  PubMed  Google Scholar 

  453. Murakawa T, Kudo T, Kudo M, et al. Plasma catecholamine levels in patients during surgical removal of pheochromo-cytoma under sevoflurane anesthesia [in Japanese]. Masui 1994 Jun; 43(6): 823–9

    CAS  PubMed  Google Scholar 

  454. Tanaka S, Miyabe M, Ohyama I, et al. Sevoflurane with continuous epidural anesthesia for removal of pheochromocytoma [in Japanese]. Masui 1991 Aug; 40(8): 1261–4

    CAS  PubMed  Google Scholar 

  455. Miyata A, Murakawa T, Kudo T, et al. Sevoflurane anesthesia for a removal of recurrent malignant pheochromocytoma [in Japanese]. Masui 1987 Sep; 36(9): 1444–9

    CAS  PubMed  Google Scholar 

  456. Doi M, Ikeda K. Sevoflurane anesthesia with adenosine triphosphate for resection of pheochromocytoma. Anesthesiology 1989 Feb; 70(2): 360–3

    Article  CAS  PubMed  Google Scholar 

  457. Sanuki M, Yuge O, Sato N, et al. Anesthetic management of patients with pheochromocytoma for adrenalectomy using balanced anesthesia with continuous infusion of nicardipine and nitroglycerin [in Japanese]. Masui 1993 Nov; 42(11): 1674–80

    CAS  PubMed  Google Scholar 

  458. Heijke S, Smith G. Quest for the ideal inhalation anaesthetic agent [editorial]. Br J Anaesth 1990 Jan; 64(1): 3–6

    Article  CAS  PubMed  Google Scholar 

  459. Watson NA, Jones RM. Desflurane. Baillieres Clin Anaesth 1993 Dec; 7(4): 873–97

    Article  Google Scholar 

  460. Bosnjak ZJ, Kampine JP. Effects of halothane, enflurane, and isoflurane on the SA node. Anesthesiology 1983; 58: 314–21

    Article  CAS  PubMed  Google Scholar 

  461. Eger EI, Smith NT, Stoelting RK, et al. Cardiovascular effects of halothane in man. Anesthesiology 1970; 32: 396–409

    Article  PubMed  Google Scholar 

  462. Barash PG, Glanz S, Katz JD, et al. Ventricular function in children during halothane anesthesia: an echocardiographic evaluation. Anesthesiology 1978 Aug; 49(2): 79–85

    Article  CAS  PubMed  Google Scholar 

  463. Brown BR, Frink EJ. Whatever happened to sevoflurane? [editorial]. Can J Anaesth 1992 Mar; 39(3): 207–9

    Article  PubMed  Google Scholar 

  464. Bryson HM, Fulton BR, Faulds D. Propofol: an update of its use in anaesthesia and conscious sedation. Drugs 1995 Sep; 50(3): 513–59

    Article  CAS  PubMed  Google Scholar 

  465. Smith I, White PF, Nathanson M, et al. Propofol: an update on its clinical use. Anesthesiology 1994 Oct; 81(4): 1005–43

    Article  CAS  PubMed  Google Scholar 

  466. White PF. Clinical uses of intravenous anesthetic and analgesic infusions. Anesth Analg 1989 Feb; 68(2): 161–71

    Article  CAS  PubMed  Google Scholar 

  467. Smith I, Nathanson MH, White PF. The role of sevoflurane in outpatient anesthesia. Anesth Analg 1995 Dec; 81 Suppl. 6S: S67–72

    Article  CAS  PubMed  Google Scholar 

  468. Saidman L. The role of desflurane in the practice of anesthesia [editorial]. Anesthesiology 1991 Mar; 74(3): 399–401

    Article  CAS  PubMed  Google Scholar 

  469. Eger EI. Economic analysis and pharmaceutical policy: a consideration of the economics of the use of desflurane. Anaesthesia 1995 Oct; 50 Suppl.: 45–8

    Article  PubMed  Google Scholar 

  470. Rovira J. Economic analysis and pharmaceutical policy. Anaesthesia 1995 Oct; 50 Suppl.: 49–51

    Article  PubMed  Google Scholar 

  471. Weiskopf RB, Eger EI. Comparing the costs of inhaled anesthetics. Anesthesiology 1993 Dec; 79(6): 1413–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: A.R. Aitkenhead, Department of Anaesthesia, University Hospital Queen’s Medical Centre, Nottingham, England; H. Bito, Department of Anaesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan; P. Conzen, Institüt für Anaesthesiologie der Ludwig Maximilians Universität, Munich, Germany; T.J. Ebert, Department of Anesthesiology, The Medical College of Wisconsin, and VA Medical Center, Milwaukee, Wisconsin, USA; P.S.A. Glass, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA; N.G. Goudsouzian, Department of Anesthesia, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA; R.M. Grounds, Department of Anaesthesia, St. George’s Hospital Medical School, London, England; E.J. Hartley, Department of Anaesthesia, The Hospital for Sick Children, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada; L. Hodgins, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA; E.D. Kharasch, Department of Anesthesiology, University of Washington, Seattle, Washington, USA; J. Lerman, Department of Anaesthesia, The Hospital for Sick Children, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada; C.A. Lien, Department of Anesthesiology, The New York Hospital-Cornell University Medical Center, New York, New York, USA; G.L. Olsson, Department of Anaesthesia and Intensive Care, The Karolinska Hospital, Stockholm, Sweden; O.A. Meretoja, Department of Anaesthesiology, Children’s Hospital, University of Helsinki, Helsinki, Finland; I.T. Munday, Department of Anaesthetics, Addenbrooke’s Hospital, Cambridge, England; R.S. Parsons, Department of Anaesthetics, Guy’s Hospital, London, England; S. Watanabe, Department of Anaesthesia, Pain Clinic, and Clinical Toxicology, Mito Saiseikai General Hospital, Mito Ibaraki, Japan; M. Yurino, Department of Anesthesiology and Resuscitology, Asahikawa Medical College, Asahikawa City, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.S., Goa, K.L. Sevoflurane. Drugs 51, 658–700 (1996). https://doi.org/10.2165/00003495-199651040-00009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199651040-00009

Keywords

Navigation