Skip to main content
Log in

Combination Antimicrobial Therapy for Bacterial Infections

Guidelines for the Clinician

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Therapy with antimicrobial combinations has been used as long as antimicrobials have been available. Combinations of antibiotics are often used to take advantage of different mechanisms of action and/or toxicity profiles. Well established indications for combination antimicrobial therapy include: (a) empirical treatment of life-threatening infections; (b) treatment of polymicrobial infections; (c) prevention of the emergence of bacterial resistance; and (d) for synergism. Disadvantages of combination therapy include: (a) increased expense; (b) increased risk of adverse effects; (c) antagonism; and (d) superinfection.

Combination antimicrobial therapy should be considered for the treatment of serious Gram-negative infections caused by Enterobacter cloacae, Pseudomonas aeruginosa and Serratia marcescens, and certain Gram-positive infections caused by Enterococcus spp. and Staphylococcus spp. Selection of agents should be dependent upon local susceptibility patterns, clinical experience, site of infection, potential toxicities and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moellering RC. Principles of antiinfective therapy. In: Mandell GL, Douglas RG, Bennett GE, editors. Principals and practice of infectious diseases. 3rd ed. New York: Churchill Livingstone, 1990: 206–18

    Google Scholar 

  2. Freifeld AG. The antimicrobial armamentarium. In: Pizzo PA, guest editor. Infectious complications in the immunocompromised host I: Hematology/Oncology Clinics of North America. Philadelphia: WB Saunders, 1993: 813–39

    Google Scholar 

  3. Chastre J, Fagon JY, Trouillet JL. Diagnosis and treatment of nosocomial pneumonia in patients in intensive care units. Clin Infect Dis 1995; 21 Suppl. 3: S226–37

    Article  PubMed  Google Scholar 

  4. Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457–69

    CAS  PubMed  Google Scholar 

  5. McCracken GH, Sande MA, Lentnek A, et al. Evaluation of new anti-infective drugs for the treatment of acute bacterial meningitis. Clin Infect Dis 1992; 15 Suppl. 1: S182–88

    Article  PubMed  Google Scholar 

  6. Scheid WM, Sande MA. Endocarditis and intravascular infections. In: Mandell GL, Douglas RG, Bennett GE, editors. Principals and practice of infectious diseases. 3rd ed. New York: Churchill Livingstone, 1990: 670–706

    Google Scholar 

  7. Moellering RC, Kunz LJ, Poitras JW, et al. Microbiologic basis for the rational use of antibiotics. South Med J 1977; 70 Suppl.: 8–15

    Article  PubMed  Google Scholar 

  8. Abramowicz M. The choice of antibacterial drugs. Med Let 1992; 34: 49–56

    Google Scholar 

  9. Schimpff SC. Therapy of infection in patients with granulocytopenia. Med Clin North Am 1978; 61: 1101–08

    Google Scholar 

  10. De Jongh CA, Joshi JH, Newman KA, et al. Antibiotic synergism and response in gram-negative bacteremia in granulocytopenic cancer patients. Am J Med 1986; 80: 96–100

    Article  PubMed  Google Scholar 

  11. Sapico FL, Witte JL, Canawati HN, et al. The infected foot of the diabetic patient: quantitative microbiology and analysis of clinical features. Rev Infect Dis 1984; 6 Suppl. 1: S171–6

    Article  PubMed  Google Scholar 

  12. Brismar B, Malmborg AS, Tunevall G, et al. Piperacillin-tazobactam versus imipenem-cilastin for treatment of intraabdominal infections. Antimicrob Agents Chemother 1992; 36: 2766–73

    Article  CAS  PubMed  Google Scholar 

  13. Lorian V. Antibiotics in laboratory medicine. Laboratory methods used to assess the activity of antimicrobial combinations. 3rd ed. Baltimore: Williams & Wilkins, 1991: 434–44

    Google Scholar 

  14. Norden CW. Problems in determination of antibiotic synergism in vitro. Rev Infect Dis 1982; 4: 276–81

    Article  CAS  PubMed  Google Scholar 

  15. Rand KH, Houcj HJ, Brown P, et al. Reproducibility of the microdilution checkerboard method for antibiotic synergy. Antimicrob Agents Chemother 1993; 37: 613–5

    Article  CAS  PubMed  Google Scholar 

  16. Cappelletty DM, Rybak MJ. A comparison of methodologies for synergism testing against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40: 677–83

    CAS  PubMed  Google Scholar 

  17. Cremieux AC, Carbon C. Pharmacokinetic and pharmacodynamic requirements for antibiotic therapy of experimental endocarditis. Antimicrob Agents Chemother 1992; 36: 2069–74

    Article  CAS  PubMed  Google Scholar 

  18. Moellering Jr RC, Wennersten C, Weinberg AN. Synergy of penicillin and gentamicin against Enterococci. J Infect Dis 1971; 124 Suppl. 124: S207–9

    Article  CAS  PubMed  Google Scholar 

  19. Moellering Jr RC, Korzeniowski OM, Sande MA, et al. Species-specific resistance to antimicrobial synergism in Streptococcus faecium and Streptococcus faecalis. J Infect Dis 1979; 140: 203–8

    Article  CAS  PubMed  Google Scholar 

  20. Moellering Jr RC, Weinberg AN. Studies on antibiotic synergism against enterococci: II. Effect of various antibiotics on the uptake of 14C-labeled streptomycin by enterococci. J Clin Invest 1971; 50: 2580–4

    Article  CAS  PubMed  Google Scholar 

  21. Sande MA, Scheid WM. Combination antibiotic therapy of bacterial endocarditis. Ann Intern Med 1980; 92: 390–5

    CAS  PubMed  Google Scholar 

  22. Chandrasekar PH, Crane LR, Bailey EJ. Comparison of the activity of antibiotic combinations in vitro with clinical outcome and resistance emergence in serious infection by Pseudomonas aeruginosa in non-neutropenic patients. J Antimicrob Chemother 1987; 19: 321–9

    Article  CAS  PubMed  Google Scholar 

  23. Kapusnik JE, Hackbarth CJ, Chambers HF, et al. Single, large daily dosing of tobramycin for treating experimental pseudomonas pneumonia. J Infect Dis 1988; 158: 7–12

    Article  CAS  PubMed  Google Scholar 

  24. Hilf M, Yu VL, Sharp J, et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989; 87: 540–6

    Article  CAS  PubMed  Google Scholar 

  25. Pizzo PA, Hathorn JW, Hiemenz J, et al. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. N Engl J Med 1986; 15: 552–8

    Article  Google Scholar 

  26. EORTC International Antimicrobial Therapy Cooperative Group. Efficacy and toxicity of single-daily doses of amikacin and ceftriaxone vs. multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulo-cytopenia. Ann Intern Med 1993; 119: 584–93

    Google Scholar 

  27. Ehrhardt AF, Sanders CC. β-Lactam resistance amongst Enterobacter species. J Antimicrob Chemother 1993; 32 Suppl. B: 1–11

    CAS  PubMed  Google Scholar 

  28. Kaatz GW, Seo SM, Barriere SL, et al. Ciprofloxacin and rifampin, alone and in combination for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 1989; 33: 1184–7

    Article  CAS  PubMed  Google Scholar 

  29. Kang SL, Rybak MJ, McGrath BJ, et al. Pharmacodynamics of levofloxacin, ofloxacin, ciprofloxacin, alone and in combination with rifampin against methicillin-resistant Staphylococcus aureus in an in vitro infection model. Antimicrob Agents Chemother 1994; 38: 2702–9

    Article  CAS  PubMed  Google Scholar 

  30. Bushby SRM. Trimethoprim-sulfamethoxazole: in vitro micro-biologic aspects. J Infect Dis 1973; 128: S442–62

    Article  CAS  Google Scholar 

  31. Hitchings GT. the biochemical basis for the antimicrobial activity of septrin. In: Bernstein LS, Salter AJ, editors. Trimethoprim-sulfamethoxazole in bacterial infections. Edinburgh and London: Churchill Livingstone, 1973: 7–16

    Google Scholar 

  32. Neu HC, editor. Beta-lactamase inhibition: therapeutic advances. Am J Med 1985; 79 Suppl. 5B: 1–196

    Google Scholar 

  33. Leigh DA, Phillips I, Wise R. Timentin-ticarcillin plus acid: a laboratory and clinical perspective. J Antimicrob Chemother 1986; 17 Suppl. C: 1–244

    Google Scholar 

  34. Kuck NA, Jacobus NV, Petersen, et al. Comparative in vitro and in vivo activities of piperacillin combined with the β-lactamase inhibitors tazobactam, clavulanic acid, and sulbactam. Antimicrob Agents Chemother 1989; 33: 1964–9

    Article  CAS  PubMed  Google Scholar 

  35. Goto S, Miyazaki S, Kaneko Y. The in-vitro activity of RP 59500 against gram-positive cocci. J Antimicrob Chemother 1992; 30 Suppl. A: 25–8

    CAS  PubMed  Google Scholar 

  36. Craig WA, Gudmundsson S. Postantibiotic effect. In: Lorian V, editor. Antibiotics in laboratory medicine. 3rd ed. Baltimore: Williams and Wilkins, 1991: 403–31

    Google Scholar 

  37. Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3: 28–37

    Article  CAS  PubMed  Google Scholar 

  38. Odenholt-Tornqvist I. Studies on the postantibiotic effect and the postantibiotic sub-MIC effect of meropenem. J Antimicrob Chemother 1993; 31: 881–92

    Article  CAS  PubMed  Google Scholar 

  39. Vogelman B, Gudmundsson S, Turnidge J, et al. In vivo postantibiotic effect in a thigh infection in neutropenic mice. J Infect Dis 1988; 157: 287–98

    Article  CAS  PubMed  Google Scholar 

  40. Isaksson B, Hanberger H, Mailer R. Synergistic post-antibiotic effect of amikacin and β-lactam antibiotics in Enterococcus faecalis. J Antimicrob Chemother 1991; 27 Suppl. C: 9–14

    CAS  PubMed  Google Scholar 

  41. Leggett JE, Ebert S, Fantin B, et al. Comparative dose-effect relations at several dosing intervals for beta-lactams, aminoglycosides and quinolone antibiotics against gram-negative bacilli in a murine thigh infection and pneumonitis models. Scand J Infect Dis 1991; 74 Suppl.: 179–84

    Google Scholar 

  42. Sanders CC, Sanders Jr E. Microbial resistance to newer generation β-lactam antibiotics: clinical and laboratory implications. J Infect Dis 1985; 151: 399–406

    Article  CAS  PubMed  Google Scholar 

  43. Vu H, Nikaido H. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase—constitutive Enterobacter clo-acae strain to extended spectrum β-lactams. Antimicrob Agents Chemother 1985; 27: 393–8

    Article  CAS  PubMed  Google Scholar 

  44. Miller MA, Finan M, Yousuf M. In vitro antagonism by N-formimidoyl thienamycin and cefoxitin of second and third generation cephalosporins in Aeromonas hydrophilia and Serratia marcescens. J Antimicrob Chemother 1983; 11: 311–8

    Article  CAS  PubMed  Google Scholar 

  45. Calderwood SB, Gardella A, Philippon AM, et al. Effects of azlocillin in combination with clavulanic acid, sulbactam, and N-formimidoyl thienamycin against β-lactamase—producing, carbenecillin-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1982; 22: 266–71

    Article  CAS  PubMed  Google Scholar 

  46. Gutmann L, Williamson R, Kitzis M, et al. Synergism and antagonism in double beta-lactam combinations. Am J Med 1986; 80 Suppl. 5C: 21–9

    CAS  PubMed  Google Scholar 

  47. Winston DJ, Barnes DC, Ho WG, et al. Moxalactam plus piperacillin versus moxalactam plus amikacin in febrile granulocytopenic patients. Am J Med 1984; 77: 442–50

    Article  CAS  PubMed  Google Scholar 

  48. Moellering RC, Eliopoulos GM, Allan JD. Beta-lactam aminoglycoside combinations interactions and their mechanisms. Am J Med 1986; 80 Suppl. 5C: 30–4

    PubMed  Google Scholar 

  49. Pickering LK, Rutherford I. Effect of concentration and time upon the inactivation of tobramycin, gentamicin, netilmicin and amikacin by azlocillin, carbenecillin, mecillinam, mezlocillin and piperacillin. J Pharmacol Exp Ther 1981; 217: 345–9

    CAS  PubMed  Google Scholar 

  50. Rybak MJ, Albrecht, Boike SC, et al. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990; 25: 679–87

    Article  CAS  PubMed  Google Scholar 

  51. Goetz MB, Sayers J. Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination. J Antimicrob Chemother 1993; 32: 325–34

    Article  CAS  PubMed  Google Scholar 

  52. Tillotson JR, Finland M. Bacterial colonization and clinical superinfection of the respiratory tract complicating antibiotic treatment of pneumonia. J Infect Dis 1969; 119: 597–624

    Article  CAS  PubMed  Google Scholar 

  53. McGowan JE. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev Infect Dis 1983; 5: 1033–48

    Article  PubMed  Google Scholar 

  54. Wey SB, Mori M, Pfaller MA, et al. Risk factors for hospital-acquired candidemia. Arch Intern Med 1989; 149: 2349–53

    Article  CAS  PubMed  Google Scholar 

  55. Beck-Sague CM, Jarvis WR, National Nosocomial Infection Surveillance System. Secular trends in the epidemiology of nosocomial fungal infections in the United States. J Infect Dis 1993; 167: 1247–51

    Article  CAS  PubMed  Google Scholar 

  56. Foran RM, Brett JL, Wulf PH. Evaluating the cost impact of intravenous antibiotic dosing frequencies. DICP 1991; 25: 546–51

    CAS  PubMed  Google Scholar 

  57. Eisenberg JM, Koffer H, Glick H, et al. What is the cost of nephrotoxicity? Ann Intern Med 1987; 107: 900–9

    CAS  PubMed  Google Scholar 

  58. Bertino JS, Rodvold K, Destache CJ. Cost considerations in therapeutic drug monitoring of aminoglycosides. Clin Pharmacokinet 1994; 26: 71–81

    Article  PubMed  Google Scholar 

  59. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med 1991; 91: Suppl. 3B: 72S–5S

    Article  CAS  PubMed  Google Scholar 

  60. Kovorik JA, Yu VL. Antimicrobial therapy for Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35: 2167–72

    Article  Google Scholar 

  61. Bodey GP, Bolivar R, Fainstein V, et al. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 1983; 5: 279–312

    Article  CAS  PubMed  Google Scholar 

  62. Kielfofner M, Atmar RL, Hamill RJ, et al. Life-threatening Pseudomonas infections in patients with human immunodeficiency virus infection. Clin Infect Dis 1992; 14: 403–11

    Article  Google Scholar 

  63. Bodey GP, Jadeja L, Etling L. Pseudomonas bacteremia: Retrospective analysis of 410 episodes. Arch Intern Med 1985; 145: 1621–9

    Article  CAS  PubMed  Google Scholar 

  64. Rains CP, Bryson HM, Peters DH. Ceftazidime: an update of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1995; 49: 577–617

    Article  CAS  PubMed  Google Scholar 

  65. Armstrong D, Young LS, Meyer RD, et al. Infectious complications in neoplastic disease. Med Clin North Am 1971; 55: 729

    CAS  PubMed  Google Scholar 

  66. Sanders JW, Powe NR, Moore RD. Ceftazidime monotherapy for empiric treatment of febrile neutropenic patients: a metaanalysis. J Infect Dis 1991 Nov; 164: 907–16

    Article  CAS  PubMed  Google Scholar 

  67. Johnson MP, Ramphal R. Beta-lactamase resistant Enterobacter bacteremia in febrile neutropenic patients receiving monotherapy. J Infect Dis 1990 Oct; 162: 981–3

    Article  CAS  PubMed  Google Scholar 

  68. Fink MP, Snydman DR, Niederman MS, et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. Antimicrob Agents Chemother 1994; 38: 547–57

    Article  CAS  PubMed  Google Scholar 

  69. EORTC International Antimicrobial Therapy Cooperative Group. Ceftazidime combined with short or long course of amikacin for empirical therapy of gram-negative bacteremia in cancer patients with granulocytopenia. N Engl J Med 1987; 317: 1692–8

    Article  Google Scholar 

  70. Nicolau DP, Nightingale CH, Banevicius MA, et al. Serum bactericidal activity of ceftazidime: continuous infusion versus intermittent injections. Antimicrob Agents Chemother 1996; 40: 61–4

    CAS  PubMed  Google Scholar 

  71. Cappelletty DM, Kang SL, Palmer SM, et al. Pharmacodynamics of ceftazidime administered as continuous infusion or in-termittent bolus alone and in combination with single-daily dose amikacin against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother 1995; 39: 1797–801

    Article  CAS  PubMed  Google Scholar 

  72. Benko AS, Cappelletty DM, Kruse JA, et al. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infection. Antimicrob Agents Chemother 1996; 40: 691–5

    CAS  PubMed  Google Scholar 

  73. Dudley MN, Blaser J, Gilbert D, et al. Combination therapy with ciprofloxacin plus azlocillin against Pseudomonas aeruginosa: effect of simultaneous versus staggered administration in an in vitro model of infection. J Infect Dis 1991; 164: 499–506

    Article  CAS  PubMed  Google Scholar 

  74. Brouqui P, Rousseau MC, Stein A, et al. Treatment of Pseudomonas aeruginosa-infected orthopedic prostheses with ceftazidime-ciprofloxacin antibiotic combination. Antimicrob Agents Chemother 1995; 39: 2423–5

    Article  CAS  PubMed  Google Scholar 

  75. Rybak MJ, Boike SC, Levine DP, et al. Clinical use and toxicity of high-dose tobramycin in patients with pseudomonal endocarditis. J Antimicrob Chemother 1986; 17: 115–20

    Article  CAS  PubMed  Google Scholar 

  76. Fong IW, Tomkins KB. Review of Pseudomonas aeruginosa meningitis with special emphasis on treatment with ceftazidime. Rev Infect Dis 1985; 7: 604–12

    Article  CAS  PubMed  Google Scholar 

  77. Chow JW, Fine MJ, Shales DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 1991; 115: 585–90

    CAS  PubMed  Google Scholar 

  78. Urban C, Go E, Mariano N, et al. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J Infect Dis 1993; 167: 448–51

    Article  CAS  PubMed  Google Scholar 

  79. Mulligan ME, Murray-Leisure K, Ribner BS, et al. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med 1993; 94: 313–25

    Article  CAS  PubMed  Google Scholar 

  80. Abrams B, Sklaver A, Hoffman T, et al. Single or combination therapy of staphylococcal endocarditis in intravenous drug abusers. Ann Intern Med 1979; 90: 789–91

    CAS  PubMed  Google Scholar 

  81. Koreniowski O, Sande MA, National Collaborative Endocarditis Study Group. Combination antimicrobial therapy for Staphylococcus aureus endocarditis in patients addicted to parenteral drugs and in nonaddicts. Ann Intern Med 1982; 97: 496–503

    Google Scholar 

  82. Chambers HF, Miller RT, Newmann MD. Right-sided staphy-lococcus endocarditis in intravenous drug abusers: two-week combination therapy. Ann Intern Med 1988; 109: 619–24

    CAS  PubMed  Google Scholar 

  83. Bayer AS. Infective endocarditis. Clin Infect Dis 1993; 17: 313–22

    Article  CAS  PubMed  Google Scholar 

  84. Chin NX, Neu HC. Combination of ofloxacin and other antimicrobial agents. J Chemother 1990; 2: 343–7

    CAS  PubMed  Google Scholar 

  85. Kaatz GW, Seo SM, Barriere SL, et al. Ciprofloxacin and rifampin, alone and in combination for therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother 1989; 33: 1184–7

    Article  CAS  PubMed  Google Scholar 

  86. Kang SL, Rybak MJ. Pharmacodynamics of RP 59500 alone and in combination with vancomycin against Staphylococcus aureus in an in vitro-infected fibrin clot model. Antimicrob Agents Chemother 1995; 39: 1505–11

    Article  CAS  PubMed  Google Scholar 

  87. Dworkin RJ, Sande MA, Lee BL, et al. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug abusers with ciprofloxacin and rifampin. Lancet 1989; II: 1071–3

    Article  Google Scholar 

  88. Faville RJ, Zaske DE, Kaplan EL, et al. Staphylococcus aureus endocarditis. JAMA 1978; 240: 1963–5

    Article  PubMed  Google Scholar 

  89. Levine DP, Fromm BS, Reddy BR. Slow response to vancomy-cin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med 1991; 115: 674–80

    CAS  PubMed  Google Scholar 

  90. Matsumoto JY, Wilson WR, Wright AJ, et al. Synergy of penicillin and decreasing concentrations of aminoglycosides against enterococci from patients with infective endocarditis. Antimicrob Agents Chemother 1980; 18: 944–7

    Article  CAS  PubMed  Google Scholar 

  91. Carrizosa J, Levison ME. Minimal concentrations of aminoglycoside that can synergize with penicillin in enterococcal endocarditis. Antimicrob Agents Chemother 1987; 31: 405–9

    Google Scholar 

  92. Thauvin C, Eliopoulos GM, Willey S, et al. Continuous-infusion ampicillin therapy of enterococcal endocarditis in rats. Antimicrob Agents Chemother 1987; 31: 139–43

    Article  CAS  PubMed  Google Scholar 

  93. Hindes RG, Willey SH, Eliopoulos GM, et al. Treatment of experimental endocarditis caused by a beta-lactamase producing strain of Enterococcus faecalis with high-level resistance to gentamicin. Antimicrob Agents Chemother 1989; 33: 1019–22

    Article  CAS  PubMed  Google Scholar 

  94. Moellering Jr RC. Emergence of enterococcus as a significant pathogen. Clin Infect Dis 1992; 14: 1173–8

    Article  PubMed  Google Scholar 

  95. Murray BE. The life and times of the enterococcus. Clin Microbiol Rev 1990; 3: 46–65

    CAS  PubMed  Google Scholar 

  96. Centers for Disease Control and Prevention. Nosocomial enterococci resistant to vancomycin — United States, 1989–93. MMWR Morb Mortal Wkly Rep 1993; 42: 597–9

    Google Scholar 

  97. Arthur M, Molinas C, Bugg TDH, et al. Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob Agents Chem-other 1992; 36: 867–9

    Article  CAS  Google Scholar 

  98. Arthur M, Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 1993; 37: 1564–71

    Article  Google Scholar 

  99. Williamson RC, Al-Obeid S, Shlaes JH, et al. Inducible resistance to vancomycin in Enterococcus faecium D366. J Infect Dis 1989; 159: 1095–104

    Article  CAS  PubMed  Google Scholar 

  100. Handwerger S, Perlman DC, Altarac D, et al. Concomitant high-level vancomycin and penicillin resistance in clinical isolates of enterococci. Clin Infect Dis 1992; 14: 655–61

    Article  CAS  PubMed  Google Scholar 

  101. Caron F, Carbon C, Gutman L. Triple-combination penicillin-vancomycin-gentamicin for experimental endocarditis caused by a moderately penicillin- and highly glycopeptide-resistant isolate of Enterococcus faecium. J Infect Dis 1991; 164: 888–93

    Article  CAS  PubMed  Google Scholar 

  102. Caron F, Pestel M, Kitzis MD, et al. Comparison of different β-lactam-glycopeptide-gentamicin combinations for an experimental endocarditis caused by a highly β-lactam-resistant and highly glycopeptide-resistant isolate of Enterococcus faecium. J Infect Dis 1995; 171: 106–12

    Article  CAS  PubMed  Google Scholar 

  103. Leclercq R, Bingen E, Su QH, et al. Effects of combinations of beta-lactams, daptomycin, gentamicin, and glycopeptides against glycopeptide-resistant enterococci. Antimicrob Agents Chemother 1991; 35: 92–8

    Article  CAS  PubMed  Google Scholar 

  104. Sahm DF, Koburov GT. In vitro activities of quinolones against enterococci resistant to penicillin-aminoglycosides synergy. Antimicrob Agents Chemother 1989; 33: 71–7

    Article  CAS  PubMed  Google Scholar 

  105. Landman D, Mobarakai NK, Quale JM. Novel antibiotic regimens against Enterococcus faecium resistant to ampicillin, vancomycin, and gentamicin. Antimicrob Agents Chemother 1993; 376: 1904–8

    Article  Google Scholar 

  106. French P, Ventuti E, Fraimow HS. In vitro activity of novobiocin against multiresistant strains of Enterococcus faecium. Antimicrob Agents Chemother 1993; 37: 2736–9

    Article  CAS  PubMed  Google Scholar 

  107. Chia JKS, Nakata MM, Park SS, et al. Use of bacitracin therapy for infection due to vancomycin-resistant Enterococcus faecium. Clin Infect Dis 1995; 21: 1520

    Article  CAS  PubMed  Google Scholar 

  108. Chant C, Rybak MJ. Quinupristin/dalfopristin (RP 59500): a new streptogramin antibiotic. Ann Pharmacother 1995; 29: 1022–7

    CAS  PubMed  Google Scholar 

  109. Cerwinka S, Bompart F, Kreter B, et al. Emergency use and accelerated development of Synercid (RP 59500) for treating vancomycin resistant Enterococcus faecium (VREF) infections [abstract]. Presented at the Bacterial Multidrug Resistance Meeting: overcoming the multidrug resistance challenge; 1995 Jan: Bethesda (MD)

    Google Scholar 

  110. Nicolau DP, Marangos MN, Nightingale CH, et al. Efficacy of vancomycin and teicoplanin alone and in combination with streptomycin in experimental low-level vancomycin-resistant VanB-type Enterococcus faecalis endocarditis. Antimicrob Agents Chemother 1996; 40: 55–60

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybak, M.J., McGrath, B.J. Combination Antimicrobial Therapy for Bacterial Infections. Drugs 52, 390–405 (1996). https://doi.org/10.2165/00003495-199652030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199652030-00005

Keywords

Navigation