Skip to main content
Erschienen in: Drugs 7/2002

01.05.2002 | Review Article

Mechanisms of Fungal Resistance

An Overview

verfasst von: Maher M. Balkis, Steven D. Leidich, Pranab K. Mukherjee, Dr Mahmoud A. Ghannoum

Erschienen in: Drugs | Ausgabe 7/2002

Einloggen, um Zugang zu erhalten

Abstract

The increased use of antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antifungal resistance from different angles. In this article we discuss antifungal susceptibility testing, the mode of action of antifungals and mechanisms of resistance.
Antifungals are grouped into five groups on the basis of their site of action: (i) azoles, which inhibit the synthesis of ergosterol (the main fungal sterol); (ii) polyenes, which bind to fungal membrane sterol, resulting in the formation of aqueous pores through which essential cytoplasmic materials leak out; (iii) allylamines, which block ergosterol biosynthesis, leading to accumulation of squalene (which is toxic to the cells); (iv) candins (inhibitors of the fungal cell wall), which function by inhibiting the synthesis of β 1,3-glucan (the major structural polymer of the cell wall); and (v) flucytosine, which inhibits macromolecular synthesis.
Different mechanisms contribute to the resistance of antifungal agents. These mechanisms include modification of ERG11 gene at the molecular level (gene mutation, conversion and overexpression), over expression of specific drug efflux pumps, alteration in sterol biosynthesis, and reduction in the intracellular concentration of target enzymes. Approaches to prevent and control the emergence of antifungal resistance include prudent use of antifungals, treatment with the appropriate antifungal and conducting surveillance studies to determine the frequency of resistance.
Literatur
1.
Zurück zum Zitat Schooley R. HIV pathogenesis. 49th Annual Montagna Symposium on the Biology of Skin; 2000 Aug 12–16; Showmass Village, Colorado Schooley R. HIV pathogenesis. 49th Annual Montagna Symposium on the Biology of Skin; 2000 Aug 12–16; Showmass Village, Colorado
2.
Zurück zum Zitat Anaissie EJ, Bodey GP. Nosocomial fungal infections: old problems and new challenges. Infect Dis Clin North Am 1989; 3: 867–82PubMed Anaissie EJ, Bodey GP. Nosocomial fungal infections: old problems and new challenges. Infect Dis Clin North Am 1989; 3: 867–82PubMed
3.
Zurück zum Zitat Wey SB, Mori M, Pfaller M, et al. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 1988; 148: 2642–5PubMedCrossRef Wey SB, Mori M, Pfaller M, et al. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 1988; 148: 2642–5PubMedCrossRef
4.
Zurück zum Zitat McNeil MM, Nash LS, Hajjeh RA, et al. Trends in mortality due to invasive mycotic diseases in the united states, 1980–1997. Clin Infect Dis 2001; 33: 641–7PubMedCrossRef McNeil MM, Nash LS, Hajjeh RA, et al. Trends in mortality due to invasive mycotic diseases in the united states, 1980–1997. Clin Infect Dis 2001; 33: 641–7PubMedCrossRef
5.
Zurück zum Zitat Beck-SaguÈ CM, Jarvis WR, National Nosocomial Infections Surveillance System. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. J Infect Dis 1993; 167: 1247–51PubMedCrossRef Beck-SaguÈ CM, Jarvis WR, National Nosocomial Infections Surveillance System. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. J Infect Dis 1993; 167: 1247–51PubMedCrossRef
6.
Zurück zum Zitat Edmond MB, Wallace DK, McClish DK, et al. Nsocomial blood stream infection in United States Hospitals: A three year analysis. Clin Infect Dis 1999; 29: 239–44PubMedCrossRef Edmond MB, Wallace DK, McClish DK, et al. Nsocomial blood stream infection in United States Hospitals: A three year analysis. Clin Infect Dis 1999; 29: 239–44PubMedCrossRef
7.
Zurück zum Zitat Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999; 12: 40–79PubMed Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999; 12: 40–79PubMed
8.
Zurück zum Zitat Ghannoum MA, Rice LB. Antifungal Agents: mode of action, mechanism of resistance and correlation of these mechanism with bacterial resistance. Clinical Microbiol Rev 1999; 12: 501–17 Ghannoum MA, Rice LB. Antifungal Agents: mode of action, mechanism of resistance and correlation of these mechanism with bacterial resistance. Clinical Microbiol Rev 1999; 12: 501–17
9.
Zurück zum Zitat Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 1988; 32: 1–8PubMedCrossRef Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 1988; 32: 1–8PubMedCrossRef
10.
Zurück zum Zitat Rex JH, Pfaller MA, Rinaldi MG, et al. Antifungal susceptibility testing. Clin Microbiol Rev 1993; 6: 367–81PubMed Rex JH, Pfaller MA, Rinaldi MG, et al. Antifungal susceptibility testing. Clin Microbiol Rev 1993; 6: 367–81PubMed
11.
Zurück zum Zitat National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard vol. 17. M27-A. Wayne (PA): NCCLS, 1997: 1–29 National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard vol. 17. M27-A. Wayne (PA): NCCLS, 1997: 1–29
12.
Zurück zum Zitat Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis 1997; 24: 235–47PubMedCrossRef Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis 1997; 24: 235–47PubMedCrossRef
13.
Zurück zum Zitat Ghannoum MA, Rex JH, Galgiani JN. Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol 1996; 34: 489–95PubMed Ghannoum MA, Rex JH, Galgiani JN. Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol 1996; 34: 489–95PubMed
14.
Zurück zum Zitat Powderly WG, Kobayashi GS, Herzig GP, et al. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med 1988; 84: 826–32PubMedCrossRef Powderly WG, Kobayashi GS, Herzig GP, et al. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med 1988; 84: 826–32PubMedCrossRef
15.
Zurück zum Zitat Reference Method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi; proposed standard [M38-P]. Wayne (PA), USA: NCCLS, 1998 Reference Method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi; proposed standard [M38-P]. Wayne (PA), USA: NCCLS, 1998
16.
Zurück zum Zitat Odds FC, Van Gerven F, Espinel-Ingroff A, et al. Evaluation of possible correlations between antifungal susceptibilities of filamentous fungi in vitro and antifungal treatment outcomes in animal infection models. Antimicrob Agents Chemother 1998; 42: 282–8PubMed Odds FC, Van Gerven F, Espinel-Ingroff A, et al. Evaluation of possible correlations between antifungal susceptibilities of filamentous fungi in vitro and antifungal treatment outcomes in animal infection models. Antimicrob Agents Chemother 1998; 42: 282–8PubMed
17.
Zurück zum Zitat Hawser SP, Jessup C, Vitullo J, et al. Utility of 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-amino) carbonyl]-2H-tetrazolium hydroxide(XTT) and minimum effective concentration assays in the determination of antifungal susceptibility of Aspergillus fumigatus to the lipopeptide class of compounds. J Clin Microbiol 2001; 39(7): 2738–41PubMedCrossRef Hawser SP, Jessup C, Vitullo J, et al. Utility of 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-amino) carbonyl]-2H-tetrazolium hydroxide(XTT) and minimum effective concentration assays in the determination of antifungal susceptibility of Aspergillus fumigatus to the lipopeptide class of compounds. J Clin Microbiol 2001; 39(7): 2738–41PubMedCrossRef
18.
Zurück zum Zitat Nozawa Y, Morita T. Molecular mechanisms of antifungal agents associated with membrane ergosterol: dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Vanden Bossche H, editors. In vitro and in vivo evaluation of antifungal agents. Amsterdam: Elsevier Science Publishers, 1986: 111 Nozawa Y, Morita T. Molecular mechanisms of antifungal agents associated with membrane ergosterol: dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Vanden Bossche H, editors. In vitro and in vivo evaluation of antifungal agents. Amsterdam: Elsevier Science Publishers, 1986: 111
19.
Zurück zum Zitat Kelly SL, Lamb DC, Corran AJ, et al. Mode of action and resistance to azole antifungals associated with the formation of 14α-methyl-ergosta-8,24(28)-dien-3β,6α-diol. Biochem Biophys Res Commun 1995; 207: 910–5PubMedCrossRef Kelly SL, Lamb DC, Corran AJ, et al. Mode of action and resistance to azole antifungals associated with the formation of 14α-methyl-ergosta-8,24(28)-dien-3β,6α-diol. Biochem Biophys Res Commun 1995; 207: 910–5PubMedCrossRef
20.
Zurück zum Zitat Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Delta (5,6) desaturation. FEBS Lett 1997; 400: 80–2PubMedCrossRef Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Delta (5,6) desaturation. FEBS Lett 1997; 400: 80–2PubMedCrossRef
21.
Zurück zum Zitat Vanden Bossche H. Ergosterol biosynthesis inhibitors. In: Prasad R, editor. Candida albicans. Berlin, Germany: Springer-Verlag KG, 1991: 239–257CrossRef Vanden Bossche H. Ergosterol biosynthesis inhibitors. In: Prasad R, editor. Candida albicans. Berlin, Germany: Springer-Verlag KG, 1991: 239–257CrossRef
22.
Zurück zum Zitat Hitchcock C, Dickinson K, Brown SB, et al. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14α-sterol demethylase purified from Candida albicans. J Biochem (Tokyo) 1990; 266: 475–80 Hitchcock C, Dickinson K, Brown SB, et al. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14α-sterol demethylase purified from Candida albicans. J Biochem (Tokyo) 1990; 266: 475–80
23.
Zurück zum Zitat Vanden Bossche H, Willemsens G. Effect of the antimycotics, miconazole and ketoconazole on cytochrome P450 in yeast microsomes and rat liver microsomes. Arch Int Physiol Biochim 1982; 90: B218–9 Vanden Bossche H, Willemsens G. Effect of the antimycotics, miconazole and ketoconazole on cytochrome P450 in yeast microsomes and rat liver microsomes. Arch Int Physiol Biochim 1982; 90: B218–9
24.
Zurück zum Zitat Vanden Bossche H, Willemsens G, Cools W, et al. Biochemical effect of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact 1978; 21: 59–78PubMedCrossRef Vanden Bossche H, Willemsens G, Cools W, et al. Biochemical effect of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact 1978; 21: 59–78PubMedCrossRef
25.
Zurück zum Zitat Buttke TM, Chapman SW. Inhibition by ketoconazole of mitogen-induced DNA synthesis and cholesterol biosynthesis in lymphocytes. Antimicrob Agents Chemother 1983; 24(4): 478–85PubMedCrossRef Buttke TM, Chapman SW. Inhibition by ketoconazole of mitogen-induced DNA synthesis and cholesterol biosynthesis in lymphocytes. Antimicrob Agents Chemother 1983; 24(4): 478–85PubMedCrossRef
26.
Zurück zum Zitat Liscum L. Pharmacological inhibition of intracellular transport of low-density lipoprotein-derived cholesterol in Chinese hamster ovary cells. Biochim Biophys Acta 1990; 1045(1): 40–8PubMedCrossRef Liscum L. Pharmacological inhibition of intracellular transport of low-density lipoprotein-derived cholesterol in Chinese hamster ovary cells. Biochim Biophys Acta 1990; 1045(1): 40–8PubMedCrossRef
27.
Zurück zum Zitat Redding SJ, Smith J, Farinacci G, et al. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis 1994; 18: 240–2PubMedCrossRef Redding SJ, Smith J, Farinacci G, et al. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis 1994; 18: 240–2PubMedCrossRef
28.
Zurück zum Zitat White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997a; 41: 1482–7 White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997a; 41: 1482–7
29.
Zurück zum Zitat White TC. The presence of an R467K amino acid substitution and loss of alleleic variation correlate with an azole-resistant lanosterol 14α-demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41: 1488–94PubMed White TC. The presence of an R467K amino acid substitution and loss of alleleic variation correlate with an azole-resistant lanosterol 14α-demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41: 1488–94PubMed
30.
Zurück zum Zitat Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 1997; 149: 141–9PubMedCrossRef Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 1997; 149: 141–9PubMedCrossRef
31.
Zurück zum Zitat White TC, Marr KA, Bowden RA. Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402PubMed White TC, Marr KA, Bowden RA. Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402PubMed
32.
Zurück zum Zitat Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 2000; 44: 63–7PubMedCrossRef Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 2000; 44: 63–7PubMedCrossRef
33.
Zurück zum Zitat Lamb DC, Kelly DE, Schunck WH, et al. The mutation T315A in Candida albicans sterol 14 alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 1997; 272: 5682–8PubMedCrossRef Lamb DC, Kelly DE, Schunck WH, et al. The mutation T315A in Candida albicans sterol 14 alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 1997; 272: 5682–8PubMedCrossRef
34.
Zurück zum Zitat Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP 51 sequence; potential basis for fluconazole resistance. Med Mycol 2001; 39: 299–302PubMed Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP 51 sequence; potential basis for fluconazole resistance. Med Mycol 2001; 39: 299–302PubMed
35.
Zurück zum Zitat Vanden Bossche H, Marichal HP, Odds F, et al. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1992; 36: 2602–10CrossRef Vanden Bossche H, Marichal HP, Odds F, et al. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1992; 36: 2602–10CrossRef
36.
Zurück zum Zitat Geber A, Hitchcock CA, Swartz JE, et al. Deletion of the Candida glabrata ERG3 and ERG 11 Genes: Effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 1995; 39: 2708–17PubMedCrossRef Geber A, Hitchcock CA, Swartz JE, et al. Deletion of the Candida glabrata ERG3 and ERG 11 Genes: Effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 1995; 39: 2708–17PubMedCrossRef
37.
Zurück zum Zitat Venkateswarlu K, Taylor M, Manning NJ, et al. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 41: 748–51PubMed Venkateswarlu K, Taylor M, Manning NJ, et al. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 41: 748–51PubMed
38.
Zurück zum Zitat Parkinson T, Falconer DJ, Hitchcock C. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother 1995; 39: 1696–9PubMedCrossRef Parkinson T, Falconer DJ, Hitchcock C. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother 1995; 39: 1696–9PubMedCrossRef
39.
Zurück zum Zitat Clark FS, Parkinson T, Hitchcock CA, et al. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: Possible role for drug efflux in drug resistance. Antimicrob Agents Chemother 1996; 40: 429–5 Clark FS, Parkinson T, Hitchcock CA, et al. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: Possible role for drug efflux in drug resistance. Antimicrob Agents Chemother 1996; 40: 429–5
40.
Zurück zum Zitat Joseph-Horne T, Hollomon D, Loeffler RS, et al. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother 1995; 39: 1526–9PubMedCrossRef Joseph-Horne T, Hollomon D, Loeffler RS, et al. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother 1995; 39: 1526–9PubMedCrossRef
41.
Zurück zum Zitat Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1977; 41(6): 1364–8 Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1977; 41(6): 1364–8
42.
Zurück zum Zitat Taglicht D, Michaelis S. A complete catalogue of Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 1998; 292: 130–62PubMedCrossRef Taglicht D, Michaelis S. A complete catalogue of Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 1998; 292: 130–62PubMedCrossRef
43.
Zurück zum Zitat Sanglard D, Ischer F, Calabrese D, et al. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999; 43(11): 2753–65PubMed Sanglard D, Ischer F, Calabrese D, et al. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999; 43(11): 2753–65PubMed
44.
Zurück zum Zitat Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2001 Apr; 45(4): 1174–83PubMedCrossRef Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2001 Apr; 45(4): 1174–83PubMedCrossRef
45.
Zurück zum Zitat Sanglard D, Ischer F, Monod M, et al. cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143: 405–16PubMedCrossRef Sanglard D, Ischer F, Monod M, et al. cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143: 405–16PubMedCrossRef
46.
Zurück zum Zitat Niimi M, Cannon R. Multidrug resistance genes in Candida albicans. Jpn J Med Mycol 1997; 38: 297–302CrossRef Niimi M, Cannon R. Multidrug resistance genes in Candida albicans. Jpn J Med Mycol 1997; 38: 297–302CrossRef
47.
Zurück zum Zitat Prasad R, De Wergifosse P, Goffeau A, et al. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 1995; 27: 320–9PubMedCrossRef Prasad R, De Wergifosse P, Goffeau A, et al. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 1995; 27: 320–9PubMedCrossRef
48.
Zurück zum Zitat Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427PubMedCrossRef Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427PubMedCrossRef
49.
Zurück zum Zitat Sanglard D, Kuchler K, Ischer F, et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 1995; 39: 2378–86PubMedCrossRef Sanglard D, Kuchler K, Ischer F, et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 1995; 39: 2378–86PubMedCrossRef
50.
Zurück zum Zitat Albertson GD, Niimi M, Cannon RD, et al. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996; 40: 2835–41PubMed Albertson GD, Niimi M, Cannon RD, et al. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996; 40: 2835–41PubMed
51.
Zurück zum Zitat Alarco AM, Balan I, Talibi D, et al. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 1997; 297: 19304–13CrossRef Alarco AM, Balan I, Talibi D, et al. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 1997; 297: 19304–13CrossRef
52.
Zurück zum Zitat Fling ME, Kopf J, Tamarkin A, et al. Analysis of a Candida albicans gene that encodes a novel mechanism of resistance to benomyl and methotrexate. Mol Gen Genet 1991; 227: 318–29PubMedCrossRef Fling ME, Kopf J, Tamarkin A, et al. Analysis of a Candida albicans gene that encodes a novel mechanism of resistance to benomyl and methotrexate. Mol Gen Genet 1991; 227: 318–29PubMedCrossRef
53.
Zurück zum Zitat Calabrese D, Bille J, Sanglard D. Anovel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 2000; 146: 2743–54PubMed Calabrese D, Bille J, Sanglard D. Anovel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 2000; 146: 2743–54PubMed
54.
Zurück zum Zitat Walsh TJ, Kasai M, Francesconi A, et al. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance. J Med Vet Mycol 1997; 35: 133–7PubMedCrossRef Walsh TJ, Kasai M, Francesconi A, et al. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance. J Med Vet Mycol 1997; 35: 133–7PubMedCrossRef
55.
Zurück zum Zitat Bouchara JP, Zouhair R, Boudouil LS, et al. In vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol 2000; 49(11): 977–84PubMed Bouchara JP, Zouhair R, Boudouil LS, et al. In vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol 2000; 49(11): 977–84PubMed
56.
Zurück zum Zitat Osherov N, Kontoyiannis DP, Romans A, et al. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. Antimicrobial Chemother 2001; 48(1): 75–81CrossRef Osherov N, Kontoyiannis DP, Romans A, et al. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. Antimicrobial Chemother 2001; 48(1): 75–81CrossRef
57.
Zurück zum Zitat Dannaoai E, Persat F, Borel E, et al. Sterol composition of itraconazole-resistant and itraconazole-susceptible isolates of Aspergillus fumigatus. Can J Microbiol 2001; 47(8): 706–10 Dannaoai E, Persat F, Borel E, et al. Sterol composition of itraconazole-resistant and itraconazole-susceptible isolates of Aspergillus fumigatus. Can J Microbiol 2001; 47(8): 706–10
58.
Zurück zum Zitat Manavathu EK, Vazquez JA, Chandrasekar PH. Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agents. Int J Antimicrob Agents 1999; 12(3): 213–9PubMedCrossRef Manavathu EK, Vazquez JA, Chandrasekar PH. Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agents. Int J Antimicrob Agents 1999; 12(3): 213–9PubMedCrossRef
59.
Zurück zum Zitat Sugar AM. The polyene macrolide antifungal drugs. In: Peterson PK, Verhoef J, editors. Antimicrobial Agents Vol. 1. Amsterdam, The Netherlands: Elsevier Science Publishers, 1986: 229–244 Sugar AM. The polyene macrolide antifungal drugs. In: Peterson PK, Verhoef J, editors. Antimicrobial Agents Vol. 1. Amsterdam, The Netherlands: Elsevier Science Publishers, 1986: 229–244
60.
Zurück zum Zitat Holz RW. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 1974; 235: 469–79PubMedCrossRef Holz RW. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 1974; 235: 469–79PubMedCrossRef
61.
Zurück zum Zitat de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawaii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 1974; 339: 57–70PubMedCrossRef de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawaii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 1974; 339: 57–70PubMedCrossRef
62.
Zurück zum Zitat Kerridge D. The plasma membrane of Candida albicans and its role in the action of antifungal drugs. In: Gooday GW, Lloyd D, Trinci APJ, editors. The Eukaryotic Microbial Cell. Cambridge: Cambridge University Press, 1980: 103 Kerridge D. The plasma membrane of Candida albicans and its role in the action of antifungal drugs. In: Gooday GW, Lloyd D, Trinci APJ, editors. The Eukaryotic Microbial Cell. Cambridge: Cambridge University Press, 1980: 103
63.
Zurück zum Zitat Kerridge D. The protoplast membrane and antifungal drugs. In: Peberdy JF, Ferenczy L,editors. Fungal Protoplasts, Applications in Biochemistry and Genetics. New York: Marcel Dekker, 1985: 135 Kerridge D. The protoplast membrane and antifungal drugs. In: Peberdy JF, Ferenczy L,editors. Fungal Protoplasts, Applications in Biochemistry and Genetics. New York: Marcel Dekker, 1985: 135
64.
Zurück zum Zitat Martins MD, Rex JH. Resistance to antifungal agents in the critical care setting: Problems and perspectives. New Horizons 1996; 4: 338–44PubMed Martins MD, Rex JH. Resistance to antifungal agents in the critical care setting: Problems and perspectives. New Horizons 1996; 4: 338–44PubMed
65.
Zurück zum Zitat Hamilton-Miller JMT. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev 1973; 37: 166–96 Hamilton-Miller JMT. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev 1973; 37: 166–96
66.
Zurück zum Zitat Capek A, Simek A. Antimicrobial agents. XII. Relationship between biochemical resistance and microbial degradation of antimycotics. Folia Microbiol (Praha) 1971; 16: 472–5CrossRef Capek A, Simek A. Antimicrobial agents. XII. Relationship between biochemical resistance and microbial degradation of antimycotics. Folia Microbiol (Praha) 1971; 16: 472–5CrossRef
67.
Zurück zum Zitat Dick JD, Merz WG, Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother 1980; 18: 158–63PubMedCrossRef Dick JD, Merz WG, Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother 1980; 18: 158–63PubMedCrossRef
68.
Zurück zum Zitat Kelly SL, Lamb DC, Taylor M, et al. Resistance to amphotericin B associated with defective sterol A8,7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 1994; 122: 39–42PubMedCrossRef Kelly SL, Lamb DC, Taylor M, et al. Resistance to amphotericin B associated with defective sterol A8,7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 1994; 122: 39–42PubMedCrossRef
69.
Zurück zum Zitat Ryder NS. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci 1988; 544: 208–20PubMedCrossRef Ryder NS. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci 1988; 544: 208–20PubMedCrossRef
70.
Zurück zum Zitat Lanyi J, Plachy WZ, Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry 1974; 13: 4914–20PubMedCrossRef Lanyi J, Plachy WZ, Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry 1974; 13: 4914–20PubMedCrossRef
71.
Zurück zum Zitat Ryder N, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother 1997; 8: 275–87 Ryder N, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother 1997; 8: 275–87
72.
Zurück zum Zitat Sanglard D, Ischer F, Monod M, et al. Susceptibility of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 1996; 40: 2300–5PubMed Sanglard D, Ischer F, Monod M, et al. Susceptibility of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 1996; 40: 2300–5PubMed
73.
Zurück zum Zitat Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993; 6: 1–21PubMed Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993; 6: 1–21PubMed
74.
Zurück zum Zitat Cassone A, Mason R, Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 1981; 19: 97–110PubMedCrossRef Cassone A, Mason R, Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 1981; 19: 97–110PubMedCrossRef
75.
Zurück zum Zitat Tkacz JS. Glucan biosynthesis in fungi and its inhibition. In: Sutcliffe J, Georgopapadakou NH, editors. Emerging Targets in Antibacterial and Antifungal Chemotherapy. New York: Chapman & Hall, 1996: 495–523 Tkacz JS. Glucan biosynthesis in fungi and its inhibition. In: Sutcliffe J, Georgopapadakou NH, editors. Emerging Targets in Antibacterial and Antifungal Chemotherapy. New York: Chapman & Hall, 1996: 495–523
76.
Zurück zum Zitat Walsh TJ, Lee JW, Kelley P, et al. The antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3 β-glucan synthase inhibitor, during continuous and intermittent intravenous infusions of cilofungin in treatment of experimental disseminated candidiasis. Antimicrob Agents Chemother 1991; 35: 1321–8PubMedCrossRef Walsh TJ, Lee JW, Kelley P, et al. The antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3 β-glucan synthase inhibitor, during continuous and intermittent intravenous infusions of cilofungin in treatment of experimental disseminated candidiasis. Antimicrob Agents Chemother 1991; 35: 1321–8PubMedCrossRef
77.
Zurück zum Zitat Benz F, Knusel F, Nuesch J, et al. Echinocandin B. Ein neuartiges polypeptide antibiotikum aus aspergillus nidulans var. achinulatus: isolierung und bausteine [in Dutch]. Helv Chim Acta 1974; 57: 2459–77CrossRef Benz F, Knusel F, Nuesch J, et al. Echinocandin B. Ein neuartiges polypeptide antibiotikum aus aspergillus nidulans var. achinulatus: isolierung und bausteine [in Dutch]. Helv Chim Acta 1974; 57: 2459–77CrossRef
78.
Zurück zum Zitat Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 1994; 48: 471–97PubMedCrossRef Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 1994; 48: 471–97PubMedCrossRef
79.
Zurück zum Zitat Kurtz MB. New antifungal drug targets: a vision for the future. Amer Soc Microbiol News 1997; 64: 31–9 Kurtz MB. New antifungal drug targets: a vision for the future. Amer Soc Microbiol News 1997; 64: 31–9
80.
Zurück zum Zitat Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997; 35: 79–86PubMedCrossRef Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997; 35: 79–86PubMedCrossRef
81.
Zurück zum Zitat Douglas CM, Marrinan JA, Li W, et al. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-β-D-glucan synthase. J Bacteriol 1994; 176: 5686–96PubMed Douglas CM, Marrinan JA, Li W, et al. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-β-D-glucan synthase. J Bacteriol 1994; 176: 5686–96PubMed
82.
Zurück zum Zitat Douglas CM, Foor F, Marrinan JA, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A 1994; 91: 12907–11PubMedCrossRef Douglas CM, Foor F, Marrinan JA, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A 1994; 91: 12907–11PubMedCrossRef
83.
Zurück zum Zitat Feldmesser M, Yvonne K, Mednick A, et al. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 2000; 182: 1791–5PubMedCrossRef Feldmesser M, Yvonne K, Mednick A, et al. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 2000; 182: 1791–5PubMedCrossRef
84.
Zurück zum Zitat Vanden Bossche H, Warnock DW, Dupont B, et al. Mechanisms and clinical impact of drug resistance. J Med Vet Mycol 1994; 32: 189–202CrossRef Vanden Bossche H, Warnock DW, Dupont B, et al. Mechanisms and clinical impact of drug resistance. J Med Vet Mycol 1994; 32: 189–202CrossRef
85.
Zurück zum Zitat Vanden Bossche H, Willemsens G, Marichal P. Anti-Candida drugs-the biochemical basis for their activity. Crit Rev Microbiol 1987; 15: 57–72CrossRef Vanden Bossche H, Willemsens G, Marichal P. Anti-Candida drugs-the biochemical basis for their activity. Crit Rev Microbiol 1987; 15: 57–72CrossRef
86.
Zurück zum Zitat Diasio R, Bennett J, Myers C. Mode of action of 5-fluorocytosine. Biochem Pharmacol 1978; 27: 703–7PubMedCrossRef Diasio R, Bennett J, Myers C. Mode of action of 5-fluorocytosine. Biochem Pharmacol 1978; 27: 703–7PubMedCrossRef
87.
Zurück zum Zitat Polak A and Scholer H. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemioterapia 1975; 21: 113–30CrossRef Polak A and Scholer H. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemioterapia 1975; 21: 113–30CrossRef
88.
Zurück zum Zitat Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol 1987; 15: 45–56PubMedCrossRef Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol 1987; 15: 45–56PubMedCrossRef
89.
Zurück zum Zitat Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science 1994; 264: 371–3PubMedCrossRef Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science 1994; 264: 371–3PubMedCrossRef
90.
Zurück zum Zitat Gale EF, Johnson AM, Kerridge D, et al. Factors affecting the changes in amphotericin B sensitivity of Candida albicans during growth. J Gen Microbiol 1975; 87: 20–36PubMedCrossRef Gale EF, Johnson AM, Kerridge D, et al. Factors affecting the changes in amphotericin B sensitivity of Candida albicans during growth. J Gen Microbiol 1975; 87: 20–36PubMedCrossRef
91.
Zurück zum Zitat Fothergill WA, Sutton DA, Rinaldi MG. An in vitro head-to-head comparison of Schering 5692, amphotericin B, fluconazole, and itraconazole against a spectrum of filamentous fungi [abstract no. F89]. Proceedings of the 36th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans, Louisiana: American Society for Microbiology, 115 Fothergill WA, Sutton DA, Rinaldi MG. An in vitro head-to-head comparison of Schering 5692, amphotericin B, fluconazole, and itraconazole against a spectrum of filamentous fungi [abstract no. F89]. Proceedings of the 36th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans, Louisiana: American Society for Microbiology, 115
92.
Zurück zum Zitat Kaplan JE, Hanson D, Dworkin MS, et al. Epidemiology of human immunodeficiency virus: associated opportunistic infections in the United States in the era of highly active anti-retroviral therapy. Clin Infect Dis 2000; 30: s5–s14PubMedCrossRef Kaplan JE, Hanson D, Dworkin MS, et al. Epidemiology of human immunodeficiency virus: associated opportunistic infections in the United States in the era of highly active anti-retroviral therapy. Clin Infect Dis 2000; 30: s5–s14PubMedCrossRef
93.
Zurück zum Zitat Autran B, Carcelain G, Li TS, et al. Positive effect of combined antiretroviral therapy on CD4 T-cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–6PubMedCrossRef Autran B, Carcelain G, Li TS, et al. Positive effect of combined antiretroviral therapy on CD4 T-cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–6PubMedCrossRef
94.
Zurück zum Zitat Angel JB, Kumar A, Parato K, et al. Improvement in cell-mediated immune functions during potent anti-human immunodeficiency virus therapy with ritonavir plus saquivir. J Infect Dis 1998; 177: 898–904PubMedCrossRef Angel JB, Kumar A, Parato K, et al. Improvement in cell-mediated immune functions during potent anti-human immunodeficiency virus therapy with ritonavir plus saquivir. J Infect Dis 1998; 177: 898–904PubMedCrossRef
95.
Zurück zum Zitat Duswald KH, Penk A, Pittrow L. High-dose therapy with fluconazole > or =800mg day-1. Mycoses 1997; 40: 267–77PubMedCrossRef Duswald KH, Penk A, Pittrow L. High-dose therapy with fluconazole > or =800mg day-1. Mycoses 1997; 40: 267–77PubMedCrossRef
96.
Zurück zum Zitat Drlica K. A strategy for fighting antibiotic resistance: Administering drugs to force pathogens into attaining two or more mutations to grow could restrict development of resistance. ASM News 2001; 67: 27–33 Drlica K. A strategy for fighting antibiotic resistance: Administering drugs to force pathogens into attaining two or more mutations to grow could restrict development of resistance. ASM News 2001; 67: 27–33
97.
Zurück zum Zitat Neely MN, Ghannoum MA. The exciting future of antifungal therapy. Eur J Clin Microbiol Infect Dis 2000; 19: 897–914PubMedCrossRef Neely MN, Ghannoum MA. The exciting future of antifungal therapy. Eur J Clin Microbiol Infect Dis 2000; 19: 897–914PubMedCrossRef
98.
Zurück zum Zitat Hossain MA, Ghannoum MA. New investigational antifungal agents for treating invasive fungal infections. Expert Opin Investig Drugs 2000; 9: 1797–813PubMedCrossRef Hossain MA, Ghannoum MA. New investigational antifungal agents for treating invasive fungal infections. Expert Opin Investig Drugs 2000; 9: 1797–813PubMedCrossRef
99.
Zurück zum Zitat Chamberland S, Blais J, Cotter DP, et al. Impact of MC-510,027, a fungal efflux pump inhibitor, on the susceptibility of clinical isolates of Candida spp. to antifungal agents [abstract no. 1270]. Proceedings of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sept 26–29; San Francisco Chamberland S, Blais J, Cotter DP, et al. Impact of MC-510,027, a fungal efflux pump inhibitor, on the susceptibility of clinical isolates of Candida spp. to antifungal agents [abstract no. 1270]. Proceedings of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sept 26–29; San Francisco
101.
Zurück zum Zitat Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992; 257: 1050–5PubMedCrossRef Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992; 257: 1050–5PubMedCrossRef
102.
Zurück zum Zitat Shlaes DM, Gerding DN, John Jr JF, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis 1997; 25: 584–99PubMedCrossRef Shlaes DM, Gerding DN, John Jr JF, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis 1997; 25: 584–99PubMedCrossRef
Metadaten
Titel
Mechanisms of Fungal Resistance
An Overview
verfasst von
Maher M. Balkis
Steven D. Leidich
Pranab K. Mukherjee
Dr Mahmoud A. Ghannoum
Publikationsdatum
01.05.2002
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 7/2002
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200262070-00004

Weitere Artikel der Ausgabe 7/2002

Drugs 7/2002 Zur Ausgabe

Adis Drug Evaluation

Ceftriaxone

Adis Drug Evaluation

Esomeprazole