Skip to main content
Erschienen in: Drugs 10/2002

01.07.2002 | Review Article

Metabolic and Additional Vascular Effects of Thiazolidinediones

verfasst von: Dr Fabrice M. A. C Martens, Frank L. J. Visseren, Jacinthe Lemay, Eelco J. P. de Koning, Ton J. Rabelink

Erschienen in: Drugs | Ausgabe 10/2002

Einloggen, um Zugang zu erhalten

Abstract

Several cardiovascular risk factors (dyslipidaemia, hypertension, glucose intolerance, hypercoagulability, obesity, hyperinsulinaemia and low-grade inflammation) cluster in the insulin resistance syndrome. Treatment of these individual risk factors reduces cardiovascular complications. However, targeting the underlying pathophysiological mechanisms of the insulin resistance syndrome is a more rational treatment strategy to further improve cardiovascular outcome.
Our understanding of the so-called cardiovascular dysmetabolic syndrome has been improved by the discovery of nuclear peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the nuclear receptor superfamily. As transcription factors, PPARs regulate the expression of numerous genes and affect glycaemic control, lipid metabolism, vascular tone and inflammation. Activation of the subtype PPAR-γ improves insulin sensitivity. Expression of PPAR-γ is present in several cell types involved in the process of atherosclerosis. Thus, modulation of PPAR-γ activity is an interesting therapeutic approach to reduce cardiovascular events.
Thiazolidinediones are PPAR-γ agonists and constitute a new class of pharmacological agents for the treatment of type 2 (non-insulin-dependent) diabetes mellitus. Two such compounds are currently available for clinical use: rosiglitazone and pioglitazone. Thiazolidinediones improve insulin sensitivity and glycaemic control in patients with type 2 diabetes. In addition, improvement in endothelial function, a decrease in inflammatory conditions, a decrease in plasma levels of free fatty acids and lower blood pressure have been observed, which may have important beneficial effects on the vasculature.
Several questions remain to be answered about PPAR-γ agonists, particularly with respect to the role of PPAR-γ in vascular pathophysiology. More needs to be known about the adverse effects of thiazolidinediones, such as hepatotoxicity, increased low-density lipoprotein cholesterol levels and increased oedema. The paradox of adipocyte differentiation with weight gain concurring with the insulin-sensitising effect of thiazolidinediones is not completely understood. The decrease in blood pressure induced by thiazolidinedione treatment seems incompatible with an increase in the plasma volume, and the discrepancy between the stimulation of the expression of CD36 and the antiatherogenic effects of the thiazolidinediones also needs further explanation. Long-term clinical trials of thiazolidinediones with cardiovascular endpoints are currently in progress.
In conclusion, studying the effects of thiazolidinediones may shed more light on the mechanisms involved in the insulin resistance syndrome. Furthermore, thiazolidinediones could have specific, direct effects on processes involved in the development of vascular abnormalities.
Literatur
1.
Zurück zum Zitat Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–607PubMedCrossRef Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–607PubMedCrossRef
2.
Zurück zum Zitat Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105(1A): S77–82CrossRef Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105(1A): S77–82CrossRef
3.
Zurück zum Zitat Meigs JB. Invited commentary: insulin resistance syndrome?. Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000; 152(10): 908–11PubMedCrossRef Meigs JB. Invited commentary: insulin resistance syndrome?. Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000; 152(10): 908–11PubMedCrossRef
4.
Zurück zum Zitat Mudaliar S, Henry R. New Oral Therapies For Type 2 Diabetes Mellitus: The Glitazones or Insulin Sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef Mudaliar S, Henry R. New Oral Therapies For Type 2 Diabetes Mellitus: The Glitazones or Insulin Sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef
5.
Zurück zum Zitat Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitis: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134): 823–8PubMedCrossRef Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitis: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134): 823–8PubMedCrossRef
6.
Zurück zum Zitat Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet 1999; 354(9173): 141–8PubMedCrossRef Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet 1999; 354(9173): 141–8PubMedCrossRef
7.
Zurück zum Zitat Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 335–63PubMedCrossRef Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 335–63PubMedCrossRef
8.
Zurück zum Zitat Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50PubMedCrossRef Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50PubMedCrossRef
9.
Zurück zum Zitat Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef
10.
Zurück zum Zitat Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527–50PubMedCrossRef Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527–50PubMedCrossRef
11.
Zurück zum Zitat Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49(10): 497–505PubMedCrossRef Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49(10): 497–505PubMedCrossRef
12.
Zurück zum Zitat Loviscach M, Rehman N, Carter L, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000; 43(3): 304–11PubMedCrossRef Loviscach M, Rehman N, Carter L, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000; 43(3): 304–11PubMedCrossRef
13.
Zurück zum Zitat Marx N, Libby P, Plutzky J. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8(4): 203–10PubMedCrossRef Marx N, Libby P, Plutzky J. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8(4): 203–10PubMedCrossRef
14.
Zurück zum Zitat Elangbam CS, Tyler RD, Lightfoot RM. Peroxisome proliferator-activated receptors in atherosclerosis and inflammation-an update. Toxicol Pathol 2001; 29(2): 224–31PubMedCrossRef Elangbam CS, Tyler RD, Lightfoot RM. Peroxisome proliferator-activated receptors in atherosclerosis and inflammation-an update. Toxicol Pathol 2001; 29(2): 224–31PubMedCrossRef
15.
Zurück zum Zitat Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000; 43(9): 1165–9PubMedCrossRef Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000; 43(9): 1165–9PubMedCrossRef
16.
Zurück zum Zitat Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPARgamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7(1): 41–7PubMedCrossRef Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPARgamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7(1): 41–7PubMedCrossRef
17.
Zurück zum Zitat Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83(5): 803–12PubMedCrossRef Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83(5): 803–12PubMedCrossRef
18.
Zurück zum Zitat Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 507–14PubMedCrossRef Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 507–14PubMedCrossRef
19.
Zurück zum Zitat Chaiken RL, Eckert-Norton M, Pasmantier R, et al. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995; 38(11): 1307–12PubMedCrossRef Chaiken RL, Eckert-Norton M, Pasmantier R, et al. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995; 38(11): 1307–12PubMedCrossRef
20.
Zurück zum Zitat Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193–203PubMedCrossRef Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193–203PubMedCrossRef
21.
Zurück zum Zitat Sironi AM, Vichi S, Gastaldelli A, et al. Effects of troglitazone on insulin action and cardiovascular risk factors in patients with non-insulin-dependent diabetes. Clin Pharmacol Ther 1997; 62(2): 194–202PubMedCrossRef Sironi AM, Vichi S, Gastaldelli A, et al. Effects of troglitazone on insulin action and cardiovascular risk factors in patients with non-insulin-dependent diabetes. Clin Pharmacol Ther 1997; 62(2): 194–202PubMedCrossRef
22.
Zurück zum Zitat Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176–85PubMed Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176–85PubMed
23.
Zurück zum Zitat Raman P, Judd RL. Role of glucose and insulin in thiazolidinedione-induced alterations in hepatic gluconeogenesis. Eur J Pharmacol 2000; 409(1): 19–29PubMedCrossRef Raman P, Judd RL. Role of glucose and insulin in thiazolidinedione-induced alterations in hepatic gluconeogenesis. Eur J Pharmacol 2000; 409(1): 19–29PubMedCrossRef
24.
Zurück zum Zitat Zierath JR, Ryder JW, Doebber T, et al. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 1998; 139(12): 5034–41PubMedCrossRef Zierath JR, Ryder JW, Doebber T, et al. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 1998; 139(12): 5034–41PubMedCrossRef
25.
Zurück zum Zitat Preininger K, Stingl H, Englisch R, et al. Acute troglitazone action in isolated perfused rat liver. Br J Pharmacol 1999; 126(1): 372–8PubMedCrossRef Preininger K, Stingl H, Englisch R, et al. Acute troglitazone action in isolated perfused rat liver. Br J Pharmacol 1999; 126(1): 372–8PubMedCrossRef
26.
Zurück zum Zitat Tanaka T, Itoh H, Doi K, et al. Down regulation of peroxisome proliferator-activated receptorgamma expression by inflammatory cytokines and its reversal by thiazolidinediones. Diabetologia 1999; 42(6): 702–10PubMedCrossRef Tanaka T, Itoh H, Doi K, et al. Down regulation of peroxisome proliferator-activated receptorgamma expression by inflammatory cytokines and its reversal by thiazolidinediones. Diabetologia 1999; 42(6): 702–10PubMedCrossRef
27.
Zurück zum Zitat Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46(9): 1393–9PubMedCrossRef Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46(9): 1393–9PubMedCrossRef
28.
Zurück zum Zitat Hallakou S, Foufelle F, Doare L, et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocyte differentiation. Diabetologia 1998; 41(8): 963–8PubMedCrossRef Hallakou S, Foufelle F, Doare L, et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocyte differentiation. Diabetologia 1998; 41(8): 963–8PubMedCrossRef
29.
Zurück zum Zitat Matsuhisa M, Shi ZQ, Wan C, et al. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997; 46(2): 224–31PubMedCrossRef Matsuhisa M, Shi ZQ, Wan C, et al. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997; 46(2): 224–31PubMedCrossRef
30.
Zurück zum Zitat Szalkowski D, White-Carrington S, Berger J, et al. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136(4): 1474–81PubMedCrossRef Szalkowski D, White-Carrington S, Berger J, et al. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136(4): 1474–81PubMedCrossRef
31.
Zurück zum Zitat Shimaya A, Kurosaki E, Shioduka K, et al. YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes. Horm Metab Res 1998; 30(9): 543–8PubMedCrossRef Shimaya A, Kurosaki E, Shioduka K, et al. YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes. Horm Metab Res 1998; 30(9): 543–8PubMedCrossRef
32.
Zurück zum Zitat Arakawa K, Ishihara T, Aoto M, et al. Actions of novel anti-diabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol 1998; 125(3): 429–36PubMedCrossRef Arakawa K, Ishihara T, Aoto M, et al. Actions of novel anti-diabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol 1998; 125(3): 429–36PubMedCrossRef
33.
Zurück zum Zitat Lee MK, Miles PD, Khoursheed M, et al. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994; 43(12): 1435–9PubMedCrossRef Lee MK, Miles PD, Khoursheed M, et al. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994; 43(12): 1435–9PubMedCrossRef
34.
Zurück zum Zitat Miles PD, Romeo OM, Higo K, et al. TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 1997; 46(11): 1678–83PubMedCrossRef Miles PD, Romeo OM, Higo K, et al. TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 1997; 46(11): 1678–83PubMedCrossRef
35.
Zurück zum Zitat Miles PD, Higo K, Romeo OM, et al. Troglitazone prevents hyperglycemia-induced but not glucosamine-induced insulin resistance. Diabetes 1998; 47(3): 395–400PubMedCrossRef Miles PD, Higo K, Romeo OM, et al. Troglitazone prevents hyperglycemia-induced but not glucosamine-induced insulin resistance. Diabetes 1998; 47(3): 395–400PubMedCrossRef
36.
Zurück zum Zitat Kraegen EW, James DE, Jenkins AB, et al. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 1989; 38(11): 1089–93PubMedCrossRef Kraegen EW, James DE, Jenkins AB, et al. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 1989; 38(11): 1089–93PubMedCrossRef
37.
Zurück zum Zitat Prigeon RL, Kahn SE, Porte Jr D. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83(3): 819–23PubMedCrossRef Prigeon RL, Kahn SE, Porte Jr D. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83(3): 819–23PubMedCrossRef
38.
Zurück zum Zitat Fonseca VA, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 1998; 83(9): 3169–76PubMedCrossRef Fonseca VA, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 1998; 83(9): 3169–76PubMedCrossRef
40.
Zurück zum Zitat Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338(13): 867–72PubMedCrossRef Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338(13): 867–72PubMedCrossRef
41.
Zurück zum Zitat Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with Type 2 diabetes mellitus. Diabetes Med 2000; 17(4): 287–94CrossRef Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with Type 2 diabetes mellitus. Diabetes Med 2000; 17(4): 287–94CrossRef
42.
Zurück zum Zitat Wolffenbuttel BH, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabetes Med 2000; 17(1): 40–7CrossRef Wolffenbuttel BH, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabetes Med 2000; 17(1): 40–7CrossRef
43.
Zurück zum Zitat Wolffenbuttel BH, Sels JP, Huijberts MS. Rosiglitazone. Expert Opin Pharmacother 2001; 2(3): 467–78PubMedCrossRef Wolffenbuttel BH, Sels JP, Huijberts MS. Rosiglitazone. Expert Opin Pharmacother 2001; 2(3): 467–78PubMedCrossRef
44.
Zurück zum Zitat Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22(12): 1395–409PubMedCrossRef Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22(12): 1395–409PubMedCrossRef
45.
Zurück zum Zitat Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000; 23(11): 1605–11PubMedCrossRef Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000; 23(11): 1605–11PubMedCrossRef
46.
Zurück zum Zitat Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93PubMedCrossRef Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93PubMedCrossRef
47.
Zurück zum Zitat Berkowitz K, Peters R, Kjos SL, et al. Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996; 45(11): 1572–9PubMedCrossRef Berkowitz K, Peters R, Kjos SL, et al. Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996; 45(11): 1572–9PubMedCrossRef
48.
Zurück zum Zitat Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994; 135(2): 798–800PubMedCrossRef Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994; 135(2): 798–800PubMedCrossRef
49.
Zurück zum Zitat Sandouk T, Reda D, Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 1993; 133(1): 352–9PubMedCrossRef Sandouk T, Reda D, Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 1993; 133(1): 352–9PubMedCrossRef
50.
Zurück zum Zitat Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416–22PubMedCrossRef Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416–22PubMedCrossRef
51.
Zurück zum Zitat Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000; 105(3): 287–92PubMedCrossRef Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000; 105(3): 287–92PubMedCrossRef
52.
Zurück zum Zitat Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001; 27(1): 1–9PubMedCrossRef Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001; 27(1): 1–9PubMedCrossRef
53.
Zurück zum Zitat Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–56PubMedCrossRef Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–56PubMedCrossRef
54.
Zurück zum Zitat Takamura T, Nohara E, Nagai Y, et al. Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 2001; 422(1–3): 23–9PubMedCrossRef Takamura T, Nohara E, Nagai Y, et al. Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 2001; 422(1–3): 23–9PubMedCrossRef
55.
Zurück zum Zitat Torti FM, Torti S V, Larrick JW, et al. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108(3): 1105–13PubMedCrossRef Torti FM, Torti S V, Larrick JW, et al. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108(3): 1105–13PubMedCrossRef
56.
Zurück zum Zitat Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134(1): 264–70PubMedCrossRef Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134(1): 264–70PubMedCrossRef
57.
Zurück zum Zitat Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61PubMedCrossRef Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61PubMedCrossRef
58.
Zurück zum Zitat Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49(6): 883–8PubMedCrossRef Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49(6): 883–8PubMedCrossRef
59.
Zurück zum Zitat Niesler CU, Urso B, Prins JB, et al. IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes. J Endocrinol 2000; 167(1): 165–74PubMedCrossRef Niesler CU, Urso B, Prins JB, et al. IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes. J Endocrinol 2000; 167(1): 165–74PubMedCrossRef
60.
Zurück zum Zitat Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12PubMedCrossRef Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12PubMedCrossRef
61.
Zurück zum Zitat Sreenan S, Keck S, Fuller T, et al. Effects of troglitazone on substrate storage and utilization in insulin-resistant rats. Am J Physiol 1999; 276 (6 Pt 1): E1119–29PubMed Sreenan S, Keck S, Fuller T, et al. Effects of troglitazone on substrate storage and utilization in insulin-resistant rats. Am J Physiol 1999; 276 (6 Pt 1): E1119–29PubMed
62.
Zurück zum Zitat Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–50PubMedCrossRef Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–50PubMedCrossRef
63.
Zurück zum Zitat Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283(13): 1695–702PubMedCrossRef Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283(13): 1695–702PubMedCrossRef
64.
Zurück zum Zitat Rebrin K, Steil GM, Getty L, et al. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44(9): 1038–45PubMedCrossRef Rebrin K, Steil GM, Getty L, et al. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44(9): 1038–45PubMedCrossRef
65.
Zurück zum Zitat Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 2001; 50(3): 660–6PubMedCrossRef Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 2001; 50(3): 660–6PubMedCrossRef
66.
Zurück zum Zitat Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14(4): 263–83PubMedCrossRef Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14(4): 263–83PubMedCrossRef
67.
Zurück zum Zitat Martin G, Schoonjans K, Staels B, et al. PPARgamma activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 1998; 137: S75–80PubMedCrossRef Martin G, Schoonjans K, Staels B, et al. PPARgamma activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 1998; 137: S75–80PubMedCrossRef
68.
Zurück zum Zitat Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52PubMedCrossRef Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52PubMedCrossRef
69.
Zurück zum Zitat Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999; 21(1): 76–83PubMedCrossRef Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999; 21(1): 76–83PubMedCrossRef
70.
Zurück zum Zitat Miyaoka K, Kuwasako T, Hirano K, et al. CD36 deficiency associated with insulin resistance. Lancet 2001; 357(9257): 686–7PubMedCrossRef Miyaoka K, Kuwasako T, Hirano K, et al. CD36 deficiency associated with insulin resistance. Lancet 2001; 357(9257): 686–7PubMedCrossRef
71.
Zurück zum Zitat Wolfrum C, Borrmann CM, Borchers T, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors al. Proc Natl Acad Sci U S A 2001; 98(5): 2323–8PubMedCrossRef Wolfrum C, Borrmann CM, Borchers T, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors al. Proc Natl Acad Sci U S A 2001; 98(5): 2323–8PubMedCrossRef
72.
Zurück zum Zitat Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83(10): 933–43PubMedCrossRef Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83(10): 933–43PubMedCrossRef
73.
Zurück zum Zitat Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous PPARgamma deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245–54PubMedCrossRef Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous PPARgamma deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245–54PubMedCrossRef
74.
Zurück zum Zitat Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9PubMedCrossRef Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9PubMedCrossRef
75.
Zurück zum Zitat Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272(2): 971–6PubMedCrossRef Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272(2): 971–6PubMedCrossRef
76.
Zurück zum Zitat Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651): 610–4PubMedCrossRef Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651): 610–4PubMedCrossRef
77.
Zurück zum Zitat Zhang B, Berger J, Hu E, et al. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996; 10(11): 1457–66PubMedCrossRef Zhang B, Berger J, Hu E, et al. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996; 10(11): 1457–66PubMedCrossRef
78.
Zurück zum Zitat Feinstein R, Kanety H, Papa MZ, et al. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993; 268(35): 26055–8PubMed Feinstein R, Kanety H, Papa MZ, et al. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993; 268(35): 26055–8PubMed
79.
Zurück zum Zitat Fukuzawa M, Satoh J, Qiang X, et al. Inhibition of tumor necrosis factor-alpha with anti-diabetic agents. Diabetes Res Clin Pract 1999; 43(3): 147–54PubMedCrossRef Fukuzawa M, Satoh J, Qiang X, et al. Inhibition of tumor necrosis factor-alpha with anti-diabetic agents. Diabetes Res Clin Pract 1999; 43(3): 147–54PubMedCrossRef
80.
Zurück zum Zitat Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863–9PubMedCrossRef Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863–9PubMedCrossRef
81.
Zurück zum Zitat Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes 2001; 50(5): 1083–92PubMedCrossRef Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes 2001; 50(5): 1083–92PubMedCrossRef
82.
Zurück zum Zitat De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98(4): 1004–9PubMedCrossRef De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98(4): 1004–9PubMedCrossRef
83.
Zurück zum Zitat Clarkson P, Celermajer DS, Donald AE, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 1996; 28(3): 573–9PubMedCrossRef Clarkson P, Celermajer DS, Donald AE, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 1996; 28(3): 573–9PubMedCrossRef
84.
Zurück zum Zitat Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001; 73(4): 673–86PubMed Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001; 73(4): 673–86PubMed
85.
86.
Zurück zum Zitat Standl E, Schnell O. A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 2000; 43(12): 1455–69PubMedCrossRef Standl E, Schnell O. A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 2000; 43(12): 1455–69PubMedCrossRef
87.
Zurück zum Zitat Fujishima S, Ohya Y, Nakamura Y, et al. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens 1998; 11(9): 1134–7PubMedCrossRef Fujishima S, Ohya Y, Nakamura Y, et al. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens 1998; 11(9): 1134–7PubMedCrossRef
88.
Zurück zum Zitat Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36(3): 430–5PubMedCrossRef Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36(3): 430–5PubMedCrossRef
89.
Zurück zum Zitat Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28(6): 1024–31PubMedCrossRef Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28(6): 1024–31PubMedCrossRef
90.
Zurück zum Zitat Inoguchi T, Li P, Yu HY, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49(11): 1939–45PubMedCrossRef Inoguchi T, Li P, Yu HY, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49(11): 1939–45PubMedCrossRef
91.
Zurück zum Zitat Kotchen TA, Zhang HY, Reddy S, et al. Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol 1996; 270 (3 Pt 2): R660–6PubMed Kotchen TA, Zhang HY, Reddy S, et al. Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol 1996; 270 (3 Pt 2): R660–6PubMed
92.
Zurück zum Zitat Zhang F, Sowers JR, Ram JL, et al. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension 1994; 24(2): 170–5PubMedCrossRef Zhang F, Sowers JR, Ram JL, et al. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension 1994; 24(2): 170–5PubMedCrossRef
93.
Zurück zum Zitat Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995; 96(1): 354–60PubMedCrossRef Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995; 96(1): 354–60PubMedCrossRef
94.
Zurück zum Zitat Hattori Y, Hattori S, Kasai K. Troglitazone upregulates nitric oxide synthesis in vascular smooth muscle cells. Hypertension 1999; 33(4): 943–8PubMedCrossRef Hattori Y, Hattori S, Kasai K. Troglitazone upregulates nitric oxide synthesis in vascular smooth muscle cells. Hypertension 1999; 33(4): 943–8PubMedCrossRef
95.
Zurück zum Zitat Yoshizumi M, Perrella MA, Burnett Jr JC, et al. Tumour necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73(1): 205–9PubMedCrossRef Yoshizumi M, Perrella MA, Burnett Jr JC, et al. Tumour necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73(1): 205–9PubMedCrossRef
96.
Zurück zum Zitat Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation. Am J Physiol 1994; 266 (6 Pt 2): H2535–41PubMed Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation. Am J Physiol 1994; 266 (6 Pt 2): H2535–41PubMed
97.
Zurück zum Zitat Nakamura M, Yoshida H, Arakawa N, et al. Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 2000; 36(4): 487–92PubMedCrossRef Nakamura M, Yoshida H, Arakawa N, et al. Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 2000; 36(4): 487–92PubMedCrossRef
98.
Zurück zum Zitat Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103(13): 1813–8PubMedCrossRef Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103(13): 1813–8PubMedCrossRef
100.
Zurück zum Zitat Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a dis- ease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40(11): 1286–92PubMedCrossRef Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a dis- ease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40(11): 1286–92PubMedCrossRef
101.
Zurück zum Zitat Margaglione M, Cappucci G, Colaizzo D, et al. C-reactive protein in offspring is associated with the occurrence of myocardial infarction in first-degree relatives. Arterioscler Thromb Vasc Biol 2000; 20(1): 198–203PubMedCrossRef Margaglione M, Cappucci G, Colaizzo D, et al. C-reactive protein in offspring is associated with the occurrence of myocardial infarction in first-degree relatives. Arterioscler Thromb Vasc Biol 2000; 20(1): 198–203PubMedCrossRef
102.
Zurück zum Zitat Fichtischerer S, Rosenberger G, Walter DH, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000; 102(9): 1000–6CrossRef Fichtischerer S, Rosenberger G, Walter DH, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000; 102(9): 1000–6CrossRef
103.
Zurück zum Zitat Neve BP, Corseaux D, Chinetti G, et al. PPARalpha Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation 2001; 103(2): 207–12PubMedCrossRef Neve BP, Corseaux D, Chinetti G, et al. PPARalpha Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation 2001; 103(2): 207–12PubMedCrossRef
104.
Zurück zum Zitat Marx N, Mackman N, Schonbeck U, et al. PPARalpha Activators Inhibit Tissue Factor Expression and Activity in Human Monocytes. Circulation 2001; 103(2): 213–9PubMedCrossRef Marx N, Mackman N, Schonbeck U, et al. PPARalpha Activators Inhibit Tissue Factor Expression and Activity in Human Monocytes. Circulation 2001; 103(2): 213–9PubMedCrossRef
105.
Zurück zum Zitat Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101(3): 235–8PubMedCrossRef Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101(3): 235–8PubMedCrossRef
106.
Zurück zum Zitat Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef
107.
Zurück zum Zitat Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104PubMedCrossRef Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104PubMedCrossRef
108.
Zurück zum Zitat Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6PubMedCrossRef Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6PubMedCrossRef
109.
Zurück zum Zitat Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93(2): 229–40PubMedCrossRef Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93(2): 229–40PubMedCrossRef
110.
Zurück zum Zitat Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001; 7(1): 48–52PubMedCrossRef Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001; 7(1): 48–52PubMedCrossRef
111.
Zurück zum Zitat Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23PubMedCrossRef Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23PubMedCrossRef
112.
Zurück zum Zitat Thieringer R, Fenyk-Melody JE, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 2000; 164(2): 1046–54PubMed Thieringer R, Fenyk-Melody JE, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 2000; 164(2): 1046–54PubMed
113.
Zurück zum Zitat Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend orfoe? Curr Opin Lipidol 2001; 12(5): 519–27PubMedCrossRef Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend orfoe? Curr Opin Lipidol 2001; 12(5): 519–27PubMedCrossRef
114.
Zurück zum Zitat Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523–31PubMedCrossRef Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523–31PubMedCrossRef
115.
Zurück zum Zitat Abumrad N, Harmon C, Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 1998; 39(12): 2309–18PubMed Abumrad N, Harmon C, Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 1998; 39(12): 2309–18PubMed
116.
Zurück zum Zitat Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–56PubMedCrossRef Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–56PubMedCrossRef
117.
Zurück zum Zitat Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPARgamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7(1): 53–8PubMedCrossRef Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPARgamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7(1): 53–8PubMedCrossRef
118.
Zurück zum Zitat Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 2001; 12(5): 511–8PubMedCrossRef Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 2001; 12(5): 511–8PubMedCrossRef
119.
Zurück zum Zitat Aitman TJ. CD36, insulin resistance, and coronary heart disease. Lancet 2001; 357(9257): 651–2PubMedCrossRef Aitman TJ. CD36, insulin resistance, and coronary heart disease. Lancet 2001; 357(9257): 651–2PubMedCrossRef
120.
Zurück zum Zitat Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000; 87(7): 596–602PubMedCrossRef Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000; 87(7): 596–602PubMedCrossRef
121.
Zurück zum Zitat Ginsberg HN, Huang LS. The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 2000; 7(5): 325–31PubMed Ginsberg HN, Huang LS. The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 2000; 7(5): 325–31PubMed
122.
Zurück zum Zitat Kraegen EW, Cooney GJ, Ye J, et al. Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp Clin Endocrinol Diabetes 2001; 109(4): S516–26PubMedCrossRef Kraegen EW, Cooney GJ, Ye J, et al. Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp Clin Endocrinol Diabetes 2001; 109(4): S516–26PubMedCrossRef
123.
Zurück zum Zitat Fontbonne A, Eschwege E, Cambien F, et al. Hyper-triglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes: results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32(5): 300–4PubMedCrossRef Fontbonne A, Eschwege E, Cambien F, et al. Hyper-triglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes: results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32(5): 300–4PubMedCrossRef
124.
Zurück zum Zitat Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88 (4 Pt 1): 1421–30PubMedCrossRef Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88 (4 Pt 1): 1421–30PubMedCrossRef
125.
Zurück zum Zitat Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350 Suppl. 1: SI20–3PubMed Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350 Suppl. 1: SI20–3PubMed
126.
Zurück zum Zitat Yamasaki Y, Kawamori R, Wasada T, et al. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. AD-4833 Glucose Clamp Study Group, Japan. Tohoku J Exp Med 1997; 183(3): 173–83PubMedCrossRef Yamasaki Y, Kawamori R, Wasada T, et al. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. AD-4833 Glucose Clamp Study Group, Japan. Tohoku J Exp Med 1997; 183(3): 173–83PubMedCrossRef
127.
Zurück zum Zitat Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12(5): 413–23PubMedCrossRef Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12(5): 413–23PubMedCrossRef
128.
Zurück zum Zitat Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9PubMed Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9PubMed
129.
Zurück zum Zitat Auwerx J, Schoonjans K, Fruchart JC, et al. Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 1996; 3(2): 81–9PubMed Auwerx J, Schoonjans K, Fruchart JC, et al. Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 1996; 3(2): 81–9PubMed
130.
Zurück zum Zitat Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32PubMedCrossRef Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32PubMedCrossRef
131.
Zurück zum Zitat Boyle PJ, King AB, Olansky L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24(3): 378–96PubMedCrossRef Boyle PJ, King AB, Olansky L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24(3): 378–96PubMedCrossRef
132.
Zurück zum Zitat Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25(4): 708–11PubMedCrossRef Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25(4): 708–11PubMedCrossRef
133.
Zurück zum Zitat Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21(5): 796–9PubMedCrossRef Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21(5): 796–9PubMedCrossRef
134.
Zurück zum Zitat Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129(2): 162–3PubMed Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129(2): 162–3PubMed
135.
Zurück zum Zitat Cominacini L, Young MM, Capriati A, et al. Troglitazone increases the resistance of low density lipoprotein to oxidation in healthy volunteers. Diabetologia 1997; 40(10): 1211–8PubMedCrossRef Cominacini L, Young MM, Capriati A, et al. Troglitazone increases the resistance of low density lipoprotein to oxidation in healthy volunteers. Diabetologia 1997; 40(10): 1211–8PubMedCrossRef
136.
Zurück zum Zitat Cominacini L, Garbin U, Fratta PA, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47(1): 130–3PubMedCrossRef Cominacini L, Garbin U, Fratta PA, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47(1): 130–3PubMedCrossRef
137.
Zurück zum Zitat Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef
138.
Zurück zum Zitat Mimura K, Umeda F, Hiramatsu S, et al. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabetes Med 1994; 11(7): 685–91CrossRef Mimura K, Umeda F, Hiramatsu S, et al. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabetes Med 1994; 11(7): 685–91CrossRef
139.
Zurück zum Zitat Colca JR, Dailey CF, Palazuk BJ, et al. Pioglitazone hydrochloride inhibits cholesterol absorption and lowers plasma cholesterol concentrations in cholesterol-fed rats. Diabetes 1991; 40(12): 1669–74PubMedCrossRef Colca JR, Dailey CF, Palazuk BJ, et al. Pioglitazone hydrochloride inhibits cholesterol absorption and lowers plasma cholesterol concentrations in cholesterol-fed rats. Diabetes 1991; 40(12): 1669–74PubMedCrossRef
140.
Zurück zum Zitat Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20PubMedCrossRef Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20PubMedCrossRef
141.
Zurück zum Zitat Sung BH, Izzo JL, Dandona P, et al. Vasodilatory effects of troglitazone improve blood pressure at rest and during mental stress in type 2 diabetes mellitus. Hypertension 1999; 34(1): 83–8PubMedCrossRef Sung BH, Izzo JL, Dandona P, et al. Vasodilatory effects of troglitazone improve blood pressure at rest and during mental stress in type 2 diabetes mellitus. Hypertension 1999; 34(1): 83–8PubMedCrossRef
142.
Zurück zum Zitat Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997; 46(3): 433–9PubMedCrossRef Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997; 46(3): 433–9PubMedCrossRef
143.
Zurück zum Zitat Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41(5): 569–76PubMedCrossRef Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41(5): 569–76PubMedCrossRef
144.
Zurück zum Zitat Kaufman LN, Peterson MM, DeGrange LM. Pioglitazone attenuates diet-induced hypertension in rats. Metabolism 1995; 44(9): 1105–9PubMedCrossRef Kaufman LN, Peterson MM, DeGrange LM. Pioglitazone attenuates diet-induced hypertension in rats. Metabolism 1995; 44(9): 1105–9PubMedCrossRef
145.
Zurück zum Zitat Grinsell JW, Lardinois CK, Swislocki A, et al. Pioglitazone attenuates basal and postprandial insulin concentrations and blood pressure in the spontaneously hypertensive rat. Am J Hypertens 2000; 13 (4 Pt 1): 370–5PubMedCrossRef Grinsell JW, Lardinois CK, Swislocki A, et al. Pioglitazone attenuates basal and postprandial insulin concentrations and blood pressure in the spontaneously hypertensive rat. Am J Hypertens 2000; 13 (4 Pt 1): 370–5PubMedCrossRef
146.
Zurück zum Zitat Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48(7): 1448–53PubMedCrossRef Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48(7): 1448–53PubMedCrossRef
147.
Zurück zum Zitat Zhang HY, Reddy SR, Kotchen TA. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24(1): 106–10PubMedCrossRef Zhang HY, Reddy SR, Kotchen TA. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24(1): 106–10PubMedCrossRef
148.
Zurück zum Zitat Pershadsingh HA, Szollosi J, Benson S, et al. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993; 21 (6 Pt 2): 1020–3PubMedCrossRef Pershadsingh HA, Szollosi J, Benson S, et al. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993; 21 (6 Pt 2): 1020–3PubMedCrossRef
149.
Zurück zum Zitat Knock GA, Mishra SK, Aaronson PI. Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur J Pharmacol 1999; 368(1): 103–9PubMedCrossRef Knock GA, Mishra SK, Aaronson PI. Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur J Pharmacol 1999; 368(1): 103–9PubMedCrossRef
150.
Zurück zum Zitat Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98(8): 1897–905PubMedCrossRef Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98(8): 1897–905PubMedCrossRef
151.
Zurück zum Zitat Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83(5): 1818–20PubMedCrossRef Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83(5): 1818–20PubMedCrossRef
152.
Zurück zum Zitat Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36(5): 1529–35PubMedCrossRef Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36(5): 1529–35PubMedCrossRef
153.
Zurück zum Zitat Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6PubMedCrossRef Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6PubMedCrossRef
154.
Zurück zum Zitat Igarashi M, Takeda Y, Ishibashi N, et al. Pioglitazone reduces smooth muscle cell density of rat carotid arterial intima induced by balloon catheterization. Horm Metab Res 1997; 29(9): 444–9PubMedCrossRef Igarashi M, Takeda Y, Ishibashi N, et al. Pioglitazone reduces smooth muscle cell density of rat carotid arterial intima induced by balloon catheterization. Horm Metab Res 1997; 29(9): 444–9PubMedCrossRef
155.
Zurück zum Zitat Yoshimoto T, Naruse M, Shizume H, et al. Vasculo-protective effects of insulin sensitizing agent pioglitazone in neointimal thickening and hypertensive vascular hypertrophy. Atherosclerosis 1999; 145(2): 333–40PubMedCrossRef Yoshimoto T, Naruse M, Shizume H, et al. Vasculo-protective effects of insulin sensitizing agent pioglitazone in neointimal thickening and hypertensive vascular hypertrophy. Atherosclerosis 1999; 145(2): 333–40PubMedCrossRef
156.
Zurück zum Zitat Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5): 798–806PubMedCrossRef Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5): 798–806PubMedCrossRef
157.
Zurück zum Zitat Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 1996; 93(10): 1809–17PubMedCrossRef Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 1996; 93(10): 1809–17PubMedCrossRef
158.
Zurück zum Zitat Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabet Complications 1998; 12(4): 181–6CrossRef Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabet Complications 1998; 12(4): 181–6CrossRef
159.
Zurück zum Zitat Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun 1999; 258(2): 431–5PubMedCrossRef Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun 1999; 258(2): 431–5PubMedCrossRef
160.
Zurück zum Zitat Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med 1998; 338(13): 861–6PubMedCrossRef Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med 1998; 338(13): 861–6PubMedCrossRef
161.
Zurück zum Zitat Pickavance L, Widdowson PS, King P, et al. The development of overt diabetes in young Zucker Diabetic Fatty (ZDF) rats and the effects of chronic MCC-555 treatment. Br J Pharmacol 1998; 125(4): 767–70PubMedCrossRef Pickavance L, Widdowson PS, King P, et al. The development of overt diabetes in young Zucker Diabetic Fatty (ZDF) rats and the effects of chronic MCC-555 treatment. Br J Pharmacol 1998; 125(4): 767–70PubMedCrossRef
162.
Zurück zum Zitat Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 1996; 137(11): 4706–12PubMedCrossRef Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 1996; 137(11): 4706–12PubMedCrossRef
163.
Zurück zum Zitat Akazawa S, Sun F, Ito M, et al. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 2000; 23(8): 1067–71PubMedCrossRef Akazawa S, Sun F, Ito M, et al. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 2000; 23(8): 1067–71PubMedCrossRef
164.
Zurück zum Zitat Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22(6): 908–12PubMedCrossRef Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22(6): 908–12PubMedCrossRef
165.
Zurück zum Zitat Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288–93PubMedCrossRef Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288–93PubMedCrossRef
166.
Zurück zum Zitat Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9PubMedCrossRef Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9PubMedCrossRef
167.
Zurück zum Zitat Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132(2): 118–21PubMed Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132(2): 118–21PubMed
168.
Zurück zum Zitat Al Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132(2): 121–4 Al Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132(2): 121–4
169.
Zurück zum Zitat Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815–21PubMedCrossRef Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815–21PubMedCrossRef
Metadaten
Titel
Metabolic and Additional Vascular Effects of Thiazolidinediones
verfasst von
Dr Fabrice M. A. C Martens
Frank L. J. Visseren
Jacinthe Lemay
Eelco J. P. de Koning
Ton J. Rabelink
Publikationsdatum
01.07.2002
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 10/2002
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200262100-00004

Weitere Artikel der Ausgabe 10/2002

Drugs 10/2002 Zur Ausgabe

Adis Drug Evaluation

Rizatriptan

Adis Drug Evaluation

Esomeprazole