Skip to main content
Erschienen in: Drugs 15/2006

01.10.2006 | Review Article

Familial Dyslipidaemias

An Overview of Genetics, Pathophysiology and Management

verfasst von: Sahar B. Hachem, Professor Arshag D. Mooradian

Erschienen in: Drugs | Ausgabe 15/2006

Einloggen, um Zugang zu erhalten

Abstract

Plasma lipid disorders can occur either as a primary event or secondary to an underlying disease or use of medications. Familial dyslipidaemias are traditionally classified according to the electrophoretic profile of lipoproteins. In more recent texts, this phenotypic classification has been replaced with an aetiological classification. Familial dyslipidaemias are generally grouped into disorders leading to hypercholesterolaemia, hypertriglyceridaemia, a combination of hypercholesterolaemia and hypertriglyceridaemia, or abnormal high-density lipoprotein-cholesterol (HDL-C) levels.
The management of these disorders requires an understanding of plasma lipid and lipoprotein metabolism. Lipid transport and metabolism involves three general pathways: (i) the exogenous pathway, whereby chylomicrons are synthesised by the small intestine, and dietary triglycerides (TGs) and cholesterol are transported to various cells of the body; (ii) the endogenous pathway, whereby very low-density lipoprotein-cholesterol (VLDL-C) and TGs are synthesised by the liver for transport to various tissues; and (iii) the reverse cholesterol transport, whereby HDL cholesteryl ester is exchanged for TGs in low-density lipoptrotein (LDL) and VLDL particles through cholesteryl ester transfer protein in a series of steps to remove cholesterol from the peripheral tissues for delivery to the liver and steroidogenic organs.
The plasma lipid profile can provide a framework to guide the selection of appropriate diet and drug treatment. Many patients with hyperlipoproteinaemia can be treated effectively with diet. However, dietary regimens are often insufficient to bring lipoprotein levels to within acceptable limits.
In this article, we review lipid transport and metabolism, discuss the more common lipid disorders and suggest some management guidelines. The choice of a particular agent depends on the baseline lipid profile achieved after 6–12 weeks of intense lifestyle changes and possible use of dietry supplements such as stanols and plant sterols. If the predominant lipid abnormality is hypertriglyceridaemia, omega-3 fatty acids, a fibric acid derivative (fibrate) or nicotinic acid would be considered as the first choice of therapy. In subsequent follow-up, when LDL-C is >130 mg/dL (3.36 mmol/L) then an HMG-CoA reductase inhibitor (statin) should be added as a combination therapy. If the serum TG levels are <500 mg/dL (2.26 mmol/L) and the LDL-C values are over 130 mg/dL (3.36 mmol/L) then a statin would be the first drug of choice. The statin dose can be titrated up to achieve the therapeutic goal or, alternatively, ezetimibe can be added. A bile acid binding agent is an option if the serum TG levels do not exceed 200 mg/dL (5.65 mmol/L), otherwise a fibrate or nicotinic acid should be considered. The decision to treat a particular person has to be individualised.
Literatur
1.
Zurück zum Zitat Mahley RW. Biochemistry and physiology of lipid and lipoprotein metabolism. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1503–13 Mahley RW. Biochemistry and physiology of lipid and lipoprotein metabolism. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1503–13
2.
Zurück zum Zitat Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2705–16 Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2705–16
3.
Zurück zum Zitat Donahoo WT, Kosmiski LA. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am 1998; 27: 677–97PubMedCrossRef Donahoo WT, Kosmiski LA. Drugs causing dyslipoproteinemia. Endocrinol Metab Clin North Am 1998; 27: 677–97PubMedCrossRef
4.
Zurück zum Zitat Staels B. Regulation of lipid and lipoprotein metabolism by retinoids. J Am Acad Dermatol 2001; 45: S158–67PubMedCrossRef Staels B. Regulation of lipid and lipoprotein metabolism by retinoids. J Am Acad Dermatol 2001; 45: S158–67PubMedCrossRef
5.
Zurück zum Zitat Grover SA, Coupai L. Impact of dyslipidemia associated with Highly Active Antiretroviral Therapy (HAART) on cardiovascular risk and life expectancy. Am J Cardiol 2005; 95: 586–91PubMedCrossRef Grover SA, Coupai L. Impact of dyslipidemia associated with Highly Active Antiretroviral Therapy (HAART) on cardiovascular risk and life expectancy. Am J Cardiol 2005; 95: 586–91PubMedCrossRef
7.
Zurück zum Zitat Pearce EN. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr Cardiol Rep 2004; 6: 451–6PubMedCrossRef Pearce EN. Hypothyroidism and dyslipidemia: modern concepts and approaches. Curr Cardiol Rep 2004; 6: 451–6PubMedCrossRef
9.
Zurück zum Zitat Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am 1994; 78: 117–41PubMed Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am 1994; 78: 117–41PubMed
10.
Zurück zum Zitat Koppers LE, Palumbo PJ. Lipid disturbances in endocrine disorders. Med Clin North Am 1972; 56: 1013–20PubMed Koppers LE, Palumbo PJ. Lipid disturbances in endocrine disorders. Med Clin North Am 1972; 56: 1013–20PubMed
11.
Zurück zum Zitat Steinberg D, Pearson TA, Kuller LH. Alcohol and atherosclerosis. Ann Intern Med 1991; 114: 967–76PubMed Steinberg D, Pearson TA, Kuller LH. Alcohol and atherosclerosis. Ann Intern Med 1991; 114: 967–76PubMed
12.
Zurück zum Zitat Joven J, Villabona C, Vilella E, et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 1990; 323: 579–84PubMedCrossRef Joven J, Villabona C, Vilella E, et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 1990; 323: 579–84PubMedCrossRef
13.
Zurück zum Zitat Crippin JS, Lindor KD, Jorgensen RA, et al. Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk? Hepatology 1992; 15: 858–62PubMedCrossRef Crippin JS, Lindor KD, Jorgensen RA, et al. Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk? Hepatology 1992; 15: 858–62PubMedCrossRef
14.
Zurück zum Zitat Santamarina-Fojo S, Dugi KA. Structure, function and role of lipoprotein lipase in lipoprotein metabolism. Curr Opin Lipidol 1994; 5: 117–25PubMedCrossRef Santamarina-Fojo S, Dugi KA. Structure, function and role of lipoprotein lipase in lipoprotein metabolism. Curr Opin Lipidol 1994; 5: 117–25PubMedCrossRef
15.
Zurück zum Zitat Mahley RW, Hussain MM. Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 1991; 2: 170–6CrossRef Mahley RW, Hussain MM. Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 1991; 2: 170–6CrossRef
16.
Zurück zum Zitat Mahley RW, Ji Z-S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40: 1–16PubMed Mahley RW, Ji Z-S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40: 1–16PubMed
17.
Zurück zum Zitat Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 2001; 12: 151–7PubMedCrossRef Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 2001; 12: 151–7PubMedCrossRef
18.
Zurück zum Zitat Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47PubMedCrossRef Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47PubMedCrossRef
19.
Zurück zum Zitat Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 1998; 5: R193–203PubMedCrossRef Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 1998; 5: R193–203PubMedCrossRef
20.
Zurück zum Zitat Mooradian AD, Haas MJ, Wong NCW. The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I Levels. Endocr Rev 2006; 27: 2–16PubMedCrossRef Mooradian AD, Haas MJ, Wong NCW. The effect of select nutrients on serum high-density lipoprotein cholesterol and apolipoprotein A-I Levels. Endocr Rev 2006; 27: 2–16PubMedCrossRef
21.
Zurück zum Zitat Williams DL, Connelly MA, Temel RE, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10: 329–39PubMedCrossRef Williams DL, Connelly MA, Temel RE, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10: 329–39PubMedCrossRef
22.
Zurück zum Zitat Tall AR. An overview of reverse cholesterol transport. Eur Heart J 1998; 19 Suppl. A: A31–5PubMed Tall AR. An overview of reverse cholesterol transport. Eur Heart J 1998; 19 Suppl. A: A31–5PubMed
23.
Zurück zum Zitat Fielding CJ. Reverse cholesterol transport. Curr Opin Lipidol 1991; 2: 376–8CrossRef Fielding CJ. Reverse cholesterol transport. Curr Opin Lipidol 1991; 2: 376–8CrossRef
24.
Zurück zum Zitat Tall AR, Jiang X-C, Luo Y, et al. 1999 George Lyman Duff Memorial Lecture: lipid transfer proteins, HDL metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20: 1185–8PubMedCrossRef Tall AR, Jiang X-C, Luo Y, et al. 1999 George Lyman Duff Memorial Lecture: lipid transfer proteins, HDL metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 2000; 20: 1185–8PubMedCrossRef
27.
Zurück zum Zitat Marais AD, Firth JC. Homozygous familial hypercholesterolemia and its management. Semin Vasc Med 2004; 4: 43–50PubMedCrossRef Marais AD, Firth JC. Homozygous familial hypercholesterolemia and its management. Semin Vasc Med 2004; 4: 43–50PubMedCrossRef
28.
Zurück zum Zitat Marks D. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003; 168: 1–14PubMedCrossRef Marks D. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003; 168: 1–14PubMedCrossRef
29.
Zurück zum Zitat Van Aalst-Cohen ES, Jansen AC. Clinical, diagnostic, and therapeutic aspects of familial hypercholesterolemia. Semin Vasc Med 2004; 4: 31–41PubMedCrossRef Van Aalst-Cohen ES, Jansen AC. Clinical, diagnostic, and therapeutic aspects of familial hypercholesterolemia. Semin Vasc Med 2004; 4: 31–41PubMedCrossRef
30.
Zurück zum Zitat Tonstad S, Knudtzon J. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediat 1996; 129: 42–9PubMedCrossRef Tonstad S, Knudtzon J. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediat 1996; 129: 42–9PubMedCrossRef
32.
Zurück zum Zitat Crooke RM, Graham MJ, Lemonidis KM, et al. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res 2005; 46: 872–84PubMedCrossRef Crooke RM, Graham MJ, Lemonidis KM, et al. An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res 2005; 46: 872–84PubMedCrossRef
33.
Zurück zum Zitat Fouchier SW, Defesche JC. Familial defective apoprotein B versus familial hypercholesterolemia: an assessment of risk. Semin Vasc Med 2004; 4: 259–64PubMedCrossRef Fouchier SW, Defesche JC. Familial defective apoprotein B versus familial hypercholesterolemia: an assessment of risk. Semin Vasc Med 2004; 4: 259–64PubMedCrossRef
34.
Zurück zum Zitat Pisciotta L, Oliva CP, Pes GM, et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis 2006; 188: 398–405PubMedCrossRef Pisciotta L, Oliva CP, Pes GM, et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis 2006; 188: 398–405PubMedCrossRef
35.
Zurück zum Zitat Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154–6PubMedCrossRef Abifadel M, Varret M, Rabes JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154–6PubMedCrossRef
36.
Zurück zum Zitat Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK 9. Arterioscler Thromb Vasc Biol 2004; 24: 1448–53PubMedCrossRef Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK 9. Arterioscler Thromb Vasc Biol 2004; 24: 1448–53PubMedCrossRef
37.
Zurück zum Zitat Allard D, Amsellem S, Abifadel M, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat 2005; 26: 497PubMedCrossRef Allard D, Amsellem S, Abifadel M, et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat 2005; 26: 497PubMedCrossRef
38.
Zurück zum Zitat Scharffer EJ. Lipoprotein disorders. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1513–31 Scharffer EJ. Lipoprotein disorders. In Becker KL, editor. Principles and practice of endocrinology and metabolism, 3rd ed. Philadelphia (PA): JB Lippincott, 2001: 1513–31
39.
Zurück zum Zitat Young SG, Hubl ST, Smith RS, et al. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31): a unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins. J Clin Invest 1990; 85: 933–42PubMedCrossRef Young SG, Hubl ST, Smith RS, et al. Familial hypobetalipoproteinemia caused by a mutation in the apolipoprotein B gene that results in a truncated species of apolipoprotein B (B-31): a unique mutation that helps to define the portion of the apolipoprotein B molecule required for the formation of buoyant, triglyceride-rich lipoproteins. J Clin Invest 1990; 85: 933–42PubMedCrossRef
40.
Zurück zum Zitat Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006; 26: 1094–100PubMedCrossRef Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006; 26: 1094–100PubMedCrossRef
41.
Zurück zum Zitat Qi L, Liu S, Rifai N, et al. Associations of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride and HDL cholesterol levels in women with type 2 diabetes. Atherosclerosis 2006 Jun 15. Epub ahead of print Qi L, Liu S, Rifai N, et al. Associations of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride and HDL cholesterol levels in women with type 2 diabetes. Atherosclerosis 2006 Jun 15. Epub ahead of print
42.
Zurück zum Zitat Mar R, Pajukanta P, Allayee H, et al. Association of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 2004; 94: 993–9PubMedCrossRef Mar R, Pajukanta P, Allayee H, et al. Association of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 2004; 94: 993–9PubMedCrossRef
43.
Zurück zum Zitat Brunzell JD, Albers JJ. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 1983; 24: 147–55PubMed Brunzell JD, Albers JJ. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 1983; 24: 147–55PubMed
44.
Zurück zum Zitat Siafakas CG, Brown MR, Miller TL. Neonatal pancreatitis associated with familial lipoprotein lipase deficiency. J Pediatr Gastroenterol Nutr 1999; 29: 95–8PubMedCrossRef Siafakas CG, Brown MR, Miller TL. Neonatal pancreatitis associated with familial lipoprotein lipase deficiency. J Pediatr Gastroenterol Nutr 1999; 29: 95–8PubMedCrossRef
45.
Zurück zum Zitat Benlian P, De Gennes JL, Foubert L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996; 335: 848–54PubMedCrossRef Benlian P, De Gennes JL, Foubert L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996; 335: 848–54PubMedCrossRef
46.
Zurück zum Zitat Fojo SS, Brewer HB. Hypertriglyceridaemia due to genetic defects in lipoprotein lipase and apolipoprotein C-II. J Intern Med 1992; 231: 669–77PubMedCrossRef Fojo SS, Brewer HB. Hypertriglyceridaemia due to genetic defects in lipoprotein lipase and apolipoprotein C-II. J Intern Med 1992; 231: 669–77PubMedCrossRef
47.
Zurück zum Zitat Gabelli C, Bilato C, Santamarina-Fojo S. Heterozygous apolipoprotein CII deficiency: lipoprotein and apoprotein phenotype and Rsal restriction enzyme polymorphism in the apo CII-Padova kindred. Eur J Clin Invest 1993; 23: 522–8PubMedCrossRef Gabelli C, Bilato C, Santamarina-Fojo S. Heterozygous apolipoprotein CII deficiency: lipoprotein and apoprotein phenotype and Rsal restriction enzyme polymorphism in the apo CII-Padova kindred. Eur J Clin Invest 1993; 23: 522–8PubMedCrossRef
48.
Zurück zum Zitat Catapano AL, Mills GL, Roma P. Plasma lipids lipoproteins and apoproteins in a case of apo CII deficiency. Clin Chim Acta 1983; 130: 317–32PubMedCrossRef Catapano AL, Mills GL, Roma P. Plasma lipids lipoproteins and apoproteins in a case of apo CII deficiency. Clin Chim Acta 1983; 130: 317–32PubMedCrossRef
49.
Zurück zum Zitat Shachter NS, Hayek T, Leff T, et al. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest 1994; 93: 1683–90PubMedCrossRef Shachter NS, Hayek T, Leff T, et al. Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice. J Clin Invest 1994; 93: 1683–90PubMedCrossRef
50.
Zurück zum Zitat Coon H, Xin Y. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum Genet 2005; 117: 444–51PubMedCrossRef Coon H, Xin Y. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum Genet 2005; 117: 444–51PubMedCrossRef
51.
Zurück zum Zitat Venkatesan S, Cullen P. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb 1993; 13: 1110–8PubMedCrossRef Venkatesan S, Cullen P. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb 1993; 13: 1110–8PubMedCrossRef
52.
Zurück zum Zitat Aguilar Salinas CA, Zamora M. Familial combined hyperlipidemia: controversial aspects of its diagnosis and pathogenesis. Semin Vasc Med 2004; 4: 203–9PubMedCrossRef Aguilar Salinas CA, Zamora M. Familial combined hyperlipidemia: controversial aspects of its diagnosis and pathogenesis. Semin Vasc Med 2004; 4: 203–9PubMedCrossRef
53.
Zurück zum Zitat Veerkamp MJ, de Graaf J. Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study. Circulation 2004; 109: 2980–5PubMedCrossRef Veerkamp MJ, de Graaf J. Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study. Circulation 2004; 109: 2980–5PubMedCrossRef
54.
Zurück zum Zitat Georgieva AM, Van Greevenbroek MMJ. Subclasses of low-density lipoprotein and very low density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype. Arterioscler Thromb Vasc Biol 2004; 24: 744–9PubMedCrossRef Georgieva AM, Van Greevenbroek MMJ. Subclasses of low-density lipoprotein and very low density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype. Arterioscler Thromb Vasc Biol 2004; 24: 744–9PubMedCrossRef
55.
Zurück zum Zitat Smelt AH, de Beer F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Semin Vasc Med 2004; 4: 249–57PubMedCrossRef Smelt AH, de Beer F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Semin Vasc Med 2004; 4: 249–57PubMedCrossRef
56.
Zurück zum Zitat Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2835–62 Mahley RW, Rall SC Jr. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and abnormal lipoprotein metabolism. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2835–62
57.
Zurück zum Zitat Feussner G, Ziegler R. Expression of type III hyperlipoproteinaemia in a subject with secondary hypothyroidism bearing the apolipoprotein E2/2 phenotype. J Intern Med 1991; 230: 183–6PubMedCrossRef Feussner G, Ziegler R. Expression of type III hyperlipoproteinaemia in a subject with secondary hypothyroidism bearing the apolipoprotein E2/2 phenotype. J Intern Med 1991; 230: 183–6PubMedCrossRef
58.
Zurück zum Zitat Ruel IL, Couture P, Cohn JS, et al. Evidence that hepatic lipase in humans is not associated with proatherogenic changes in HDL composition and metabolism. J Lipid Res 2004; 45: 1528–37PubMedCrossRef Ruel IL, Couture P, Cohn JS, et al. Evidence that hepatic lipase in humans is not associated with proatherogenic changes in HDL composition and metabolism. J Lipid Res 2004; 45: 1528–37PubMedCrossRef
59.
Zurück zum Zitat Tilly-Kiesi M, Schaefer EJ, Knudsen P, et al. Lipoprotein metabolism in subjects with hepatic lipase deficiency. Metabolism 2004; 53: 520–5PubMedCrossRef Tilly-Kiesi M, Schaefer EJ, Knudsen P, et al. Lipoprotein metabolism in subjects with hepatic lipase deficiency. Metabolism 2004; 53: 520–5PubMedCrossRef
60.
Zurück zum Zitat Third JL, Montag J, Flynn M, et al. Primary and familial hypoalphalipo-proteinemia. Metabolism 1984; 33: 136–46PubMedCrossRef Third JL, Montag J, Flynn M, et al. Primary and familial hypoalphalipo-proteinemia. Metabolism 1984; 33: 136–46PubMedCrossRef
61.
Zurück zum Zitat Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869–72PubMedCrossRef Cohen JC, Kiss RS, Pertsemlidis A, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869–72PubMedCrossRef
62.
Zurück zum Zitat Knopp RH, Walden CE, Wahl PW, et al. Oral contraceptive and postmenopausal estrogen effects on lipoprotein triglyceride and cholesterol in an adult female population: relationships to estrogen and progestin potency. J Clin Endocrinol Metab 1981; 53: 1123–32PubMedCrossRef Knopp RH, Walden CE, Wahl PW, et al. Oral contraceptive and postmenopausal estrogen effects on lipoprotein triglyceride and cholesterol in an adult female population: relationships to estrogen and progestin potency. J Clin Endocrinol Metab 1981; 53: 1123–32PubMedCrossRef
63.
Zurück zum Zitat Schaefer EJ. Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 1984; 4: 303–22PubMedCrossRef Schaefer EJ. Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 1984; 4: 303–22PubMedCrossRef
64.
Zurück zum Zitat Franceschini G, Sirtori CR, Capurso A, et al. A-I Milano apoprotein: decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980; 66: 892–900PubMedCrossRef Franceschini G, Sirtori CR, Capurso A, et al. A-I Milano apoprotein: decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest 1980; 66: 892–900PubMedCrossRef
65.
Zurück zum Zitat Santamarina-Fojo S, Hoeg JM, Assmann G, et al. Lecithin cholesterol acyltransferase deficiency and fish eye disease. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2817–2833 Santamarina-Fojo S, Hoeg JM, Assmann G, et al. Lecithin cholesterol acyltransferase deficiency and fish eye disease. In Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease, vol. 2, 8th ed. New York: McGraw-Hill, 2001: 2817–2833
66.
Zurück zum Zitat Funke H, von Eckardstein A, Pritchard PH, et al. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity of this disease. J Clin Invest 1993; 91: 677–83 Funke H, von Eckardstein A, Pritchard PH, et al. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity of this disease. J Clin Invest 1993; 91: 677–83
67.
Zurück zum Zitat Klein H-G, Lohse P, Pritchard PH, et al. Two different allelic mutations in the lecithin-cholesterol acyltransferase gene associated with the fish eye syndrome: lecithin-cholesterol acyltransferase (Thr123 → Ile) and lecithin-cholesterol acyltransferase (Thr347 → Met). J Clin Invest 1992; 89: 499–506PubMedCrossRef Klein H-G, Lohse P, Pritchard PH, et al. Two different allelic mutations in the lecithin-cholesterol acyltransferase gene associated with the fish eye syndrome: lecithin-cholesterol acyltransferase (Thr123 → Ile) and lecithin-cholesterol acyltransferase (Thr347 → Met). J Clin Invest 1992; 89: 499–506PubMedCrossRef
68.
Zurück zum Zitat Bodzioch M, Orsó E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51PubMedCrossRef Bodzioch M, Orsó E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51PubMedCrossRef
69.
Zurück zum Zitat Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 1994; 107: 85–98PubMedCrossRef Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 1994; 107: 85–98PubMedCrossRef
70.
Zurück zum Zitat Yamashita S, Maruyama T. Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 2000; 152: 271–85PubMedCrossRef Yamashita S, Maruyama T. Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 2000; 152: 271–85PubMedCrossRef
71.
Zurück zum Zitat Nagano M, Yamashita S. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb 2004; 11: 110–21PubMedCrossRef Nagano M, Yamashita S. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb 2004; 11: 110–21PubMedCrossRef
72.
Zurück zum Zitat Inazu A, Brown ML. Increased high density lipoprotein levels caused by a common cholesteryl ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–8PubMedCrossRef Inazu A, Brown ML. Increased high density lipoprotein levels caused by a common cholesteryl ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–8PubMedCrossRef
73.
Zurück zum Zitat Zhong S, Sharp DS. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97: 2917–23PubMedCrossRef Zhong S, Sharp DS. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97: 2917–23PubMedCrossRef
74.
Zurück zum Zitat Hirano K, Yamashita S. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Arterioscler Thromb Vas Biol 1997; 17: 1053–9CrossRef Hirano K, Yamashita S. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Arterioscler Thromb Vas Biol 1997; 17: 1053–9CrossRef
75.
Zurück zum Zitat Miyazaki A, Sakuma S. Intravenous injection of rabbit apoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995; 15: 1882–8PubMedCrossRef Miyazaki A, Sakuma S. Intravenous injection of rabbit apoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler Thromb Vasc Biol 1995; 15: 1882–8PubMedCrossRef
76.
Zurück zum Zitat Paszty C, Maeda N. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994; 94: 899–903PubMedCrossRef Paszty C, Maeda N. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994; 94: 899–903PubMedCrossRef
77.
Zurück zum Zitat Liu A, Lawn R, Verstuyft J. Human apoprotein A-I prevents atherosclerosis associated with apoprotein (a) in transgenic mice. J Lipid Res 1994; 35: 2263–7PubMed Liu A, Lawn R, Verstuyft J. Human apoprotein A-I prevents atherosclerosis associated with apoprotein (a) in transgenic mice. J Lipid Res 1994; 35: 2263–7PubMed
78.
Zurück zum Zitat De Geest B. Stengel D. Effect of overexpression of human apo A-I in C57BL/6 and C57BL/6 apo E-deficient mice on 2 lipoprotein-associated enzymes, platelet-activating factor acetylhydrolase and paraoxonase: comparison of adenovirus-mediated human apo A-I gene transfer and human apo A-I transgenesis. Arterioscler Thromb Vasc Biol 2000; 20: E68–75PubMedCrossRef De Geest B. Stengel D. Effect of overexpression of human apo A-I in C57BL/6 and C57BL/6 apo E-deficient mice on 2 lipoprotein-associated enzymes, platelet-activating factor acetylhydrolase and paraoxonase: comparison of adenovirus-mediated human apo A-I gene transfer and human apo A-I transgenesis. Arterioscler Thromb Vasc Biol 2000; 20: E68–75PubMedCrossRef
79.
Zurück zum Zitat Rader D, Schaefer J. Increased production of apoprotein A-I associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-I, and lipoprotein A-I in a patient with familial hyperalphalipoproteinemia. Metabolism 1993; 42: 1429–34PubMedCrossRef Rader D, Schaefer J. Increased production of apoprotein A-I associated with elevated plasma levels of high-density lipoproteins, apolipoprotein A-I, and lipoprotein A-I in a patient with familial hyperalphalipoproteinemia. Metabolism 1993; 42: 1429–34PubMedCrossRef
80.
Zurück zum Zitat Gurewich V, Mittleman M. Lipoprotein(a) in coronary heart disease: is it a risk factor after all? JAMA 1994; 271: 1025–6PubMedCrossRef Gurewich V, Mittleman M. Lipoprotein(a) in coronary heart disease: is it a risk factor after all? JAMA 1994; 271: 1025–6PubMedCrossRef
81.
Zurück zum Zitat Stone NJ. Focus on lifestyle change and the metabolic syndrome. Clin Endocrinol Metab 2004; 33: 493–508CrossRef Stone NJ. Focus on lifestyle change and the metabolic syndrome. Clin Endocrinol Metab 2004; 33: 493–508CrossRef
82.
Zurück zum Zitat Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97CrossRef Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97CrossRef
83.
Zurück zum Zitat Bantle JP, Wylie-Rosett J, Albright AA, et al. Nutrition recommendations and interventions for diabetes — 2006: a position statement of the American Diabetes Association. Diabetes Care 2006; 29: 2140–57PubMedCrossRef Bantle JP, Wylie-Rosett J, Albright AA, et al. Nutrition recommendations and interventions for diabetes — 2006: a position statement of the American Diabetes Association. Diabetes Care 2006; 29: 2140–57PubMedCrossRef
85.
86.
Zurück zum Zitat Bays HE. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADvicor Versus Other Cholesterol-modulating Agents Trial Evaluation [ADVOCATE]). Am J Cardio 2003; 91: 667–72CrossRef Bays HE. Comparison of once-daily, niacin extended-release/lovastatin with standard doses of atorvastatin and simvastatin (the ADvicor Versus Other Cholesterol-modulating Agents Trial Evaluation [ADVOCATE]). Am J Cardio 2003; 91: 667–72CrossRef
87.
Zurück zum Zitat Harris WS, Ginsberg HN, Arunakul N, et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk 1997; 4: 385–91PubMedCrossRef Harris WS, Ginsberg HN, Arunakul N, et al. Safety and efficacy of Omacor in severe hypertriglyceridemia. J Cardiovasc Risk 1997; 4: 385–91PubMedCrossRef
88.
Zurück zum Zitat Harris WS. N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65: 1645S–54SPubMed Harris WS. N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65: 1645S–54SPubMed
89.
Zurück zum Zitat Maggie B. Omega-3 fatty acids. Am Fam Physician 2004; 70: 133–40 Maggie B. Omega-3 fatty acids. Am Fam Physician 2004; 70: 133–40
90.
Zurück zum Zitat Kris-Etherton PM, Harris WS. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106: 2747–57PubMedCrossRef Kris-Etherton PM, Harris WS. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002; 106: 2747–57PubMedCrossRef
91.
Zurück zum Zitat Auwerx J, Schoonjans K, Fruchart JC, et al. Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 1996; 124 Suppl. 1: S29–37PubMedCrossRef Auwerx J, Schoonjans K, Fruchart JC, et al. Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 1996; 124 Suppl. 1: S29–37PubMedCrossRef
92.
Zurück zum Zitat Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116: 571–80PubMedCrossRef Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006; 116: 571–80PubMedCrossRef
93.
Zurück zum Zitat Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–48PubMed Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–48PubMed
94.
Zurück zum Zitat Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol Sci 2006; 27: 384–90PubMedCrossRef Offermanns S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol Sci 2006; 27: 384–90PubMedCrossRef
95.
Zurück zum Zitat Tang Y, Zhou L, Gunnet JW, et al. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A. Biochem Biophys Res Commun 2006; 345: 29–37PubMedCrossRef Tang Y, Zhou L, Gunnet JW, et al. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A. Biochem Biophys Res Commun 2006; 345: 29–37PubMedCrossRef
96.
Zurück zum Zitat Knowles HJ, te Poele RH, Workman P, et al. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol 2006; 71: 646–56PubMedCrossRef Knowles HJ, te Poele RH, Workman P, et al. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol 2006; 71: 646–56PubMedCrossRef
97.
Zurück zum Zitat Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl 2001; 3 Suppl. E: E17–23 Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl 2001; 3 Suppl. E: E17–23
98.
Zurück zum Zitat Brousseau ME, Schaefer EJ. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505–15PubMedCrossRef Brousseau ME, Schaefer EJ. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004; 350: 1505–15PubMedCrossRef
99.
Zurück zum Zitat Mooradian AD. Cardiovascular disease in type 2 diabetes mellitus: current management guidelines. Arch Intern Med 2003; 163: 33–40PubMedCrossRef Mooradian AD. Cardiovascular disease in type 2 diabetes mellitus: current management guidelines. Arch Intern Med 2003; 163: 33–40PubMedCrossRef
100.
Zurück zum Zitat Elam MB, Hunninghake DB, Davis KB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease. The ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 2000; 284: 1263–70PubMedCrossRef Elam MB, Hunninghake DB, Davis KB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease. The ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial. JAMA 2000; 284: 1263–70PubMedCrossRef
101.
Zurück zum Zitat Mooradian AD, Chehade JM, Thurman JE. The role of thizolidenediones in the treatment of type 2 diabetes. Treat Endocrinol 2002; 1: 13–20PubMedCrossRef Mooradian AD, Chehade JM, Thurman JE. The role of thizolidenediones in the treatment of type 2 diabetes. Treat Endocrinol 2002; 1: 13–20PubMedCrossRef
Metadaten
Titel
Familial Dyslipidaemias
An Overview of Genetics, Pathophysiology and Management
verfasst von
Sahar B. Hachem
Professor Arshag D. Mooradian
Publikationsdatum
01.10.2006
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 15/2006
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200666150-00005

Weitere Artikel der Ausgabe 15/2006

Drugs 15/2006 Zur Ausgabe