Skip to main content
Erschienen in: Sports Medicine 4/2006

01.04.2006 | Current Opinion

Lactic Acid and Exercise Performance

Culprit or Friend?

verfasst von: Simeon P. Cairns

Erschienen in: Sports Medicine | Ausgabe 4/2006

Einloggen, um Zugang zu erhalten

Abstract

This article critically discusses whether accumulation of lactic acid, or in reality lactate and/or hydrogen (H+) ions, is a major cause of skeletal muscle fatigue, i.e. decline of muscle force or power output leading to impaired exercise performance. There exists a long history of studies on the effects of increased lactate/H+ concentrations in muscle or plasma on contractile performance of skeletal muscle. Evidence suggesting that lactate/H+ is a culprit has been based on correlation-type studies, which reveal close temporal relationships between intramuscular lactate or H+ accumulation and the decline of force during fatiguing stimulation in frog, rodent or human muscle. In addition, an induced acidosis can impair muscle contractility in non-fatigued humans or in isolated muscle preparations, and several mechanisms to explain such effects have been provided. However, a number of recent high-profile papers have seriously challenged the ‘lactic acid hypothesis’. In the 1990s, these findings mainly involved diminished negative effects of an induced acidosis in skinned or intact muscle fibres, at higher more physiological experimental temperatures. In the early 2000s, it was conclusively shown that lactate has little detrimental effect on mechanically skinned fibres activated by artificial stimulation. Perhaps more remarkably, there are now several reports of protective effects of lactate exposure or induced acidosis on potassium-depressed muscle contractions in isolated rodent muscles. In addition, sodium-lactate exposure can attenuate severe fatigue in rat muscle stimulated in situ, and sodium lactate ingestion can increase time to exhaustion during sprinting in humans. Taken together, these latest findings have led to the idea that lactate/ H+ is ergogenic during exercise.
It should not be taken as fact that lactic acid is the deviant that impairs exercise performance. Experiments on isolated muscle suggest that acidosis has little detrimental effect or may even improve muscle performance during high-intensity exercise. In contrast, induced acidosis can exacerbate fatigue during whole-body dynamic exercise and alkalosis can improve exercise performance in events lasting 1–10 minutes. To reconcile the findings from isolated muscle fibres through to whole-body exercise, it is hypothesised that a severe plasma acidosis in humans might impair exercise performance by causing a reduced CNS drive to muscle.
Literatur
1.
Zurück zum Zitat Cady EB, Jones DA, Lynn J, et al. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 1989; 418: 311–325PubMed Cady EB, Jones DA, Lynn J, et al. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 1989; 418: 311–325PubMed
2.
Zurück zum Zitat Cairns SP, Buller SJ, Loiselle DS, et al. Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. Am J Physiol 2003; 285: C1529–C1536 Cairns SP, Buller SJ, Loiselle DS, et al. Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. Am J Physiol 2003; 285: C1529–C1536
3.
Zurück zum Zitat Cairns SP, Hing WA, Slack JR, et al. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol 1998; 84: 1395–1406PubMed Cairns SP, Hing WA, Slack JR, et al. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol 1998; 84: 1395–1406PubMed
4.
Zurück zum Zitat Cairns SP, Ruzhynsky V, Renaud JM. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am J Physiol 2004; 287: C762–C770CrossRef Cairns SP, Ruzhynsky V, Renaud JM. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am J Physiol 2004; 287: C762–C770CrossRef
6.
7.
Zurück zum Zitat Lindinger MI, McKelvie RS, Heigenhauser GJ. K+ and Lac-distribution in humans during and after high-intensity exercise: role in fatigue attenuation. J Appl Physiol 1995; 78: 765–777PubMed Lindinger MI, McKelvie RS, Heigenhauser GJ. K+ and Lac-distribution in humans during and after high-intensity exercise: role in fatigue attenuation. J Appl Physiol 1995; 78: 765–777PubMed
8.
Zurück zum Zitat Cairns SP, Knicker AJ, Thompson MW, et al. Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 2005; 33 (1): 9–16PubMed Cairns SP, Knicker AJ, Thompson MW, et al. Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 2005; 33 (1): 9–16PubMed
9.
Zurück zum Zitat Allen DG, Westerblad H, Lännergren J. The role of intracellular acidosis in muscle fatigue. Adv Exp Med Biol 1995; 384: 57–68PubMed Allen DG, Westerblad H, Lännergren J. The role of intracellular acidosis in muscle fatigue. Adv Exp Med Biol 1995; 384: 57–68PubMed
10.
Zurück zum Zitat Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004; 558: 5–30PubMedCrossRef Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004; 558: 5–30PubMedCrossRef
11.
Zurück zum Zitat Heigenhauser GJF, Jones NL. Bicarbonate loading. In: Lamb DR, Williams MH, editors. Vol. 4. Perspectives in exercise science and sports medicine. Carmel (MI): Cooper Publishing Group, 1991: 183–207 Heigenhauser GJF, Jones NL. Bicarbonate loading. In: Lamb DR, Williams MH, editors. Vol. 4. Perspectives in exercise science and sports medicine. Carmel (MI): Cooper Publishing Group, 1991: 183–207
12.
Zurück zum Zitat Sahlin K. Muscle fatigue and lactic acid accumulation. Acta Physiol Scand Suppl 1986; 556: 83–91PubMed Sahlin K. Muscle fatigue and lactic acid accumulation. Acta Physiol Scand Suppl 1986; 556: 83–91PubMed
13.
Zurück zum Zitat Fletcher WM, Hopkins G. Lactic acid in amphibian muscle. J Physiol 1907; 35: 247–309PubMed Fletcher WM, Hopkins G. Lactic acid in amphibian muscle. J Physiol 1907; 35: 247–309PubMed
14.
Zurück zum Zitat Hill AV, Kupalov P. Anaerobic and aerobic activity in isolated muscle. Proc R Soc Lond B 1929; 105: 313–322CrossRef Hill AV, Kupalov P. Anaerobic and aerobic activity in isolated muscle. Proc R Soc Lond B 1929; 105: 313–322CrossRef
15.
Zurück zum Zitat Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 1923; 16: 135–171CrossRef Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 1923; 16: 135–171CrossRef
16.
Zurück zum Zitat Bassett DR. Scientific contributions of A.V. Hill: exercise physiology pioneer. J Appl Physiol 2002; 93: 1567–1582PubMed Bassett DR. Scientific contributions of A.V. Hill: exercise physiology pioneer. J Appl Physiol 2002; 93: 1567–1582PubMed
17.
Zurück zum Zitat Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced acidosis. Am J Physiol 2004; 287: R502–R516 Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced acidosis. Am J Physiol 2004; 287: R502–R516
18.
Zurück zum Zitat Robergs RA, Ghiasvand F, Parker D. Lingering construct of lactic acidosis. Am J Physiol 2005; 289: R904–R910 Robergs RA, Ghiasvand F, Parker D. Lingering construct of lactic acidosis. Am J Physiol 2005; 289: R904–R910
19.
Zurück zum Zitat Lindinger MI, Kowalchuk JM, Heigenhauser GJF. Applying physiochemical principles to skeletal muscle acid-base status. Am J Physiol 2005; 289: R891–R894 Lindinger MI, Kowalchuk JM, Heigenhauser GJF. Applying physiochemical principles to skeletal muscle acid-base status. Am J Physiol 2005; 289: R891–R894
20.
Zurück zum Zitat Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 1978; 274: 861–866PubMedCrossRef Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 1978; 274: 861–866PubMedCrossRef
21.
Zurück zum Zitat Hermansen L, Osnes JB. Blood and muscle pH after maximal exercise in man. J Appl Physiol 1972; 32: 304–308PubMed Hermansen L, Osnes JB. Blood and muscle pH after maximal exercise in man. J Appl Physiol 1972; 32: 304–308PubMed
22.
Zurück zum Zitat Sahlin K, Alvestrand A, Brandt R, et al. Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 1978; 45: 474–480PubMed Sahlin K, Alvestrand A, Brandt R, et al. Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 1978; 45: 474–480PubMed
23.
Zurück zum Zitat Sahlin K, Harris RC, Nylind B, et al. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch 1976; 367: 143–149PubMedCrossRef Sahlin K, Harris RC, Nylind B, et al. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch 1976; 367: 143–149PubMedCrossRef
24.
Zurück zum Zitat Brooks GA. Lactate doesn’t necessarily cause fatigue: why are we surprised? J Physiol 2001; 536: 1PubMedCrossRef Brooks GA. Lactate doesn’t necessarily cause fatigue: why are we surprised? J Physiol 2001; 536: 1PubMedCrossRef
25.
Zurück zum Zitat Lydiard A, Gilmour G. Running with Lydiard. Auckland: Hod-der & Stroughton, 1983 Lydiard A, Gilmour G. Running with Lydiard. Auckland: Hod-der & Stroughton, 1983
26.
Zurück zum Zitat Spriet LL, Söderlund K, Bergström M, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J Appl Physiol 1987; 62: 616–621PubMed Spriet LL, Söderlund K, Bergström M, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J Appl Physiol 1987; 62: 616–621PubMed
27.
Zurück zum Zitat Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev 1997; 77: 321–358PubMed Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev 1997; 77: 321–358PubMed
28.
Zurück zum Zitat Cairns SP, Westerblad H, Allen DG. Changes in myoplasmic pH and calcium concentration during exposure to lactate in isolated rat ventricular myocytes. J Physiol 1993; 464: 561–574PubMed Cairns SP, Westerblad H, Allen DG. Changes in myoplasmic pH and calcium concentration during exposure to lactate in isolated rat ventricular myocytes. J Physiol 1993; 464: 561–574PubMed
29.
Zurück zum Zitat Donaldson SKB, Hermansen L. Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflügers Arch 1978; 376: 55–65PubMedCrossRef Donaldson SKB, Hermansen L. Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflügers Arch 1978; 376: 55–65PubMedCrossRef
30.
Zurück zum Zitat Leitch SP, Paterson DJ. Interactive effects of K+, acidosis, and catecholamines on isolated rabbit heart: implications for exercise. J Appl Physiol 1994; 77: 1164–1171PubMed Leitch SP, Paterson DJ. Interactive effects of K+, acidosis, and catecholamines on isolated rabbit heart: implications for exercise. J Appl Physiol 1994; 77: 1164–1171PubMed
31.
Zurück zum Zitat Paterson DJ. Antiarrhythmic mechanisms during exercise. J Appl Physiol 1996; 80: 1853–1862PubMed Paterson DJ. Antiarrhythmic mechanisms during exercise. J Appl Physiol 1996; 80: 1853–1862PubMed
32.
Zurück zum Zitat Fitts RH, Holloszy JO. Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol 1976; 231: 430–433PubMed Fitts RH, Holloszy JO. Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol 1976; 231: 430–433PubMed
33.
Zurück zum Zitat Troup JP, Metzger JM, Fitts RH. Effect of high-intensity exercise training on functional capacity of limb skeletal muscle. J Appl Physiol 1986; 60: 1743–1751PubMed Troup JP, Metzger JM, Fitts RH. Effect of high-intensity exercise training on functional capacity of limb skeletal muscle. J Appl Physiol 1986; 60: 1743–1751PubMed
34.
Zurück zum Zitat Spriet LL, Söderlund K, Bergström M, et al. Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol 1987; 62: 611–615PubMedCrossRef Spriet LL, Söderlund K, Bergström M, et al. Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol 1987; 62: 611–615PubMedCrossRef
35.
Zurück zum Zitat Adams GR, Fisher MJ, Meyer RA. Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle. Am J Physiol 1991; 260: C805–C812PubMed Adams GR, Fisher MJ, Meyer RA. Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle. Am J Physiol 1991; 260: C805–C812PubMed
36.
Zurück zum Zitat Meyer RA, Adams GR, Fisher MJ, et al. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle. Can J Physiol Pharmacol 1991; 69: 305–310PubMedCrossRef Meyer RA, Adams GR, Fisher MJ, et al. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle. Can J Physiol Pharmacol 1991; 69: 305–310PubMedCrossRef
37.
Zurück zum Zitat Renaud JM. The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens. J Physiol 1989; 416: 31–47PubMed Renaud JM. The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens. J Physiol 1989; 416: 31–47PubMed
38.
Zurück zum Zitat Westerblad H, Allen DG. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol 1992; 449: 49–71PubMed Westerblad H, Allen DG. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol 1992; 449: 49–71PubMed
39.
Zurück zum Zitat Chase PB, Kushmerick MJ. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53: 935–946PubMedCrossRef Chase PB, Kushmerick MJ. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53: 935–946PubMedCrossRef
40.
Zurück zum Zitat Dutka TL, Lamb GD. Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibers. Am J Physiol 2000; 278: C517–C525 Dutka TL, Lamb GD. Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibers. Am J Physiol 2000; 278: C517–C525
41.
Zurück zum Zitat Posterino GS, Fryer MW. Effects of high myoplasmic L-lactate concentration on E-C coupling in mammalian skeletal muscle. J Appl Physiol 2000; 89: 517–528PubMed Posterino GS, Fryer MW. Effects of high myoplasmic L-lactate concentration on E-C coupling in mammalian skeletal muscle. J Appl Physiol 2000; 89: 517–528PubMed
42.
Zurück zum Zitat Favero TG, Zable AC, Bowman MB, et al. Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H]ryanodine binding. J Appl Physiol 1995; 78: 1665–1672PubMed Favero TG, Zable AC, Bowman MB, et al. Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H]ryanodine binding. J Appl Physiol 1995; 78: 1665–1672PubMed
43.
Zurück zum Zitat Booth J, McKenna MJ, Ruell PA, et al. Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. J Appl Physiol 1997; 83: 511–521PubMed Booth J, McKenna MJ, Ruell PA, et al. Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. J Appl Physiol 1997; 83: 511–521PubMed
44.
Zurück zum Zitat Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 2002; 34: 614–621PubMedCrossRef Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 2002; 34: 614–621PubMedCrossRef
45.
Zurück zum Zitat Bogdanis GC, Nevill ME, Lakomy HKA, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163: 261–272PubMedCrossRef Bogdanis GC, Nevill ME, Lakomy HKA, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163: 261–272PubMedCrossRef
46.
Zurück zum Zitat Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–2382PubMed Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–2382PubMed
47.
Zurück zum Zitat Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 2003; 554 (Pt 3): 857–870PubMedCrossRef Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 2003; 554 (Pt 3): 857–870PubMedCrossRef
48.
Zurück zum Zitat Achten E, Van Cauteren M, Willem R, et al. 31P-NMR spectroscopy and the metabolic properties of different muscle fibers. J Appl Physiol 1990; 68: 644–649PubMed Achten E, Van Cauteren M, Willem R, et al. 31P-NMR spectroscopy and the metabolic properties of different muscle fibers. J Appl Physiol 1990; 68: 644–649PubMed
49.
Zurück zum Zitat Mannion AF, Jakeman PM, Willan PLT. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 1995; 80: 89–101PubMed Mannion AF, Jakeman PM, Willan PLT. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 1995; 80: 89–101PubMed
50.
Zurück zum Zitat DeGroot M, Massie BM, Boska M, et al. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16: 91–98PubMedCrossRef DeGroot M, Massie BM, Boska M, et al. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16: 91–98PubMedCrossRef
51.
Zurück zum Zitat Chasiotis D, Hultman E, Sahlin K. Acidotic depression of cyclic AMP accumulation and phosphorylase b to a transformation in skeletal muscle of man. J Physiol 1982; 335: 197–204 Chasiotis D, Hultman E, Sahlin K. Acidotic depression of cyclic AMP accumulation and phosphorylase b to a transformation in skeletal muscle of man. J Physiol 1982; 335: 197–204
52.
Zurück zum Zitat Costill DL, Barnett A, Sharp R, et al. Leg muscle pH following sprint running. Med Sci Sports Exerc 1983; 15: 325–329PubMedCrossRef Costill DL, Barnett A, Sharp R, et al. Leg muscle pH following sprint running. Med Sci Sports Exerc 1983; 15: 325–329PubMedCrossRef
53.
Zurück zum Zitat Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol 1985; 63: 403–416PubMedCrossRef Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol 1985; 63: 403–416PubMedCrossRef
54.
Zurück zum Zitat Westerblad H, Lännergren J. The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiol Scand 1988; 133: 83–89PubMedCrossRef Westerblad H, Lännergren J. The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiol Scand 1988; 133: 83–89PubMedCrossRef
55.
Zurück zum Zitat Bruton JD, Lännergren J, Westerblad H. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. J Appl Physiol 1998; 85: 478–483PubMed Bruton JD, Lännergren J, Westerblad H. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. J Appl Physiol 1998; 85: 478–483PubMed
56.
Zurück zum Zitat Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 1998; 512: 831–840PubMedCrossRef Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 1998; 512: 831–840PubMedCrossRef
57.
Zurück zum Zitat Nielsen HB, Bredmose PP, Strømstad M, et al. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol 2002; 93: 724–731PubMed Nielsen HB, Bredmose PP, Strømstad M, et al. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol 2002; 93: 724–731PubMed
58.
Zurück zum Zitat Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol 2001; 537: 993–998PubMedCrossRef Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol 2001; 537: 993–998PubMedCrossRef
59.
Zurück zum Zitat Spriet LL, Matsos CG, Peters SJ, et al. Effects of acidosis on rat metabolism and performance during heavy exercise. Am J Physiol 1985; 248: C337–C347PubMed Spriet LL, Matsos CG, Peters SJ, et al. Effects of acidosis on rat metabolism and performance during heavy exercise. Am J Physiol 1985; 248: C337–C347PubMed
60.
Zurück zum Zitat Cooke R, Franks K, Luciani GB, et al. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 1988; 395: 77–97PubMed Cooke R, Franks K, Luciani GB, et al. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 1988; 395: 77–97PubMed
61.
Zurück zum Zitat Nosek TM, Fender KY, Godt RE. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 1987; 236: 191–193PubMedCrossRef Nosek TM, Fender KY, Godt RE. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 1987; 236: 191–193PubMedCrossRef
62.
Zurück zum Zitat Lamb GD, Stephenson DG. Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 1994; 478: 331–339PubMed Lamb GD, Stephenson DG. Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 1994; 478: 331–339PubMed
63.
Zurück zum Zitat Hultman E, Del Canale S, Sjoholm H. Effect of induced metabolic acidosis on intracellular pH, buffer capacity and contraction force of human skeletal muscle. Clin Sci 1985; 69: 505–510PubMed Hultman E, Del Canale S, Sjoholm H. Effect of induced metabolic acidosis on intracellular pH, buffer capacity and contraction force of human skeletal muscle. Clin Sci 1985; 69: 505–510PubMed
64.
Zurück zum Zitat Kowalchuk JM, Heigenhauser GJF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 1984; 57: 1558–1563PubMed Kowalchuk JM, Heigenhauser GJF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 1984; 57: 1558–1563PubMed
65.
Zurück zum Zitat Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1981; 61: 331–338PubMed Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1981; 61: 331–338PubMed
66.
Zurück zum Zitat McCartney N, Heigenhauser GJF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol 1983; 55: 225–229PubMed McCartney N, Heigenhauser GJF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol 1983; 55: 225–229PubMed
67.
Zurück zum Zitat Balog EM, Fitts RH. Effects of depolarization and low intracellular pH on charge movement currents of frog skeletal muscle fibers. J Appl Physiol 2001; 90: 228–234PubMed Balog EM, Fitts RH. Effects of depolarization and low intracellular pH on charge movement currents of frog skeletal muscle fibers. J Appl Physiol 2001; 90: 228–234PubMed
68.
Zurück zum Zitat Rousseau E, Pinkos E. pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Arch 1990; 415: 645–647PubMedCrossRef Rousseau E, Pinkos E. pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Arch 1990; 415: 645–647PubMedCrossRef
69.
Zurück zum Zitat Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 241: 4110–4114PubMed Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 241: 4110–4114PubMed
70.
Zurück zum Zitat Bangsbo J, Madsen K, Kiens B, et al. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 1996; 495: 587–596PubMed Bangsbo J, Madsen K, Kiens B, et al. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 1996; 495: 587–596PubMed
71.
Zurück zum Zitat Linderman J, Fahey TD. Sodium bicarbonate ingestion and exercise performance: an update. Sports Med 1991; 11: 71–77PubMedCrossRef Linderman J, Fahey TD. Sodium bicarbonate ingestion and exercise performance: an update. Sports Med 1991; 11: 71–77PubMedCrossRef
72.
Zurück zum Zitat Pate E, Bhimani M, Franks-Skiba K, et al. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 1995; 486: 689–694PubMed Pate E, Bhimani M, Franks-Skiba K, et al. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 1995; 486: 689–694PubMed
73.
Zurück zum Zitat Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol 1996; 271: C878–C886PubMed Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol 1996; 271: C878–C886PubMed
74.
Zurück zum Zitat Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 1997; 500: 193–204PubMed Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 1997; 500: 193–204PubMed
75.
Zurück zum Zitat Davies NW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990; 343: 375–377PubMedCrossRef Davies NW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990; 343: 375–377PubMedCrossRef
76.
Zurück zum Zitat Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21PubMed Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21PubMed
77.
Zurück zum Zitat Sprague P, Mann RV. The effects of muscular fatigue on the kinetics of sprint running. Res Q Exerc Sport 1983; 54: 60–66 Sprague P, Mann RV. The effects of muscular fatigue on the kinetics of sprint running. Res Q Exerc Sport 1983; 54: 60–66
78.
Zurück zum Zitat Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett 1998; 257: 109–112PubMedCrossRef Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett 1998; 257: 109–112PubMedCrossRef
79.
Zurück zum Zitat Van Montfoort MCE, Van Dieren L, Hopkins WG, et al. Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc 2004; 36: 1239–1243PubMedCrossRef Van Montfoort MCE, Van Dieren L, Hopkins WG, et al. Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc 2004; 36: 1239–1243PubMedCrossRef
80.
Zurück zum Zitat Karelis AD, Marcil M, Péronnet F, et al. Effect of lactate infusion on M-wave characteristics and force in the rat plantaris muscle during repeated stimulation in situ. J Appl Physiol 2004; 96: 2133–2138PubMedCrossRef Karelis AD, Marcil M, Péronnet F, et al. Effect of lactate infusion on M-wave characteristics and force in the rat plantaris muscle during repeated stimulation in situ. J Appl Physiol 2004; 96: 2133–2138PubMedCrossRef
81.
Zurück zum Zitat Sahlin K, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem J 1987; 245: 551–556PubMed Sahlin K, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem J 1987; 245: 551–556PubMed
82.
Zurück zum Zitat Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391–401PubMed Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391–401PubMed
83.
Zurück zum Zitat Renaud JM, Light P. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens: implication for fatigue in vivo. Can J Physiol Pharmacol 1992; 70: 1236–1246PubMedCrossRef Renaud JM, Light P. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens: implication for fatigue in vivo. Can J Physiol Pharmacol 1992; 70: 1236–1246PubMedCrossRef
84.
Zurück zum Zitat Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 2001; 536 (Pt 1): 161–166PubMedCrossRef Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 2001; 536 (Pt 1): 161–166PubMedCrossRef
85.
Zurück zum Zitat Kristiensen M, Albertsen J, Rentsch M, et al. Lactate and force production in skeletal muscle. J Physiol 2005; 562 (Pt 2): 521–526CrossRef Kristiensen M, Albertsen J, Rentsch M, et al. Lactate and force production in skeletal muscle. J Physiol 2005; 562 (Pt 2): 521–526CrossRef
86.
Zurück zum Zitat Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and fh-agonist. J Physiol 2003; 551: 277–286PubMedCrossRef Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and fh-agonist. J Physiol 2003; 551: 277–286PubMedCrossRef
87.
Zurück zum Zitat Pedersen TH, De Paoli F, Nielsen OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 2005; 125: 237–246PubMedCrossRef Pedersen TH, De Paoli F, Nielsen OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 2005; 125: 237–246PubMedCrossRef
88.
Zurück zum Zitat Pedersen TH, Nielsen OB, Lamb GD, et al. Intracellular acidosis enhances the excitability of working muscle. Science 2004; 305: 1144–1147PubMedCrossRef Pedersen TH, Nielsen OB, Lamb GD, et al. Intracellular acidosis enhances the excitability of working muscle. Science 2004; 305: 1144–1147PubMedCrossRef
89.
Zurück zum Zitat van Emst M, Klarenbeek S, Schot A, et al. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle. J Physiol 2004; 561: 169–181PubMedCrossRef van Emst M, Klarenbeek S, Schot A, et al. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle. J Physiol 2004; 561: 169–181PubMedCrossRef
90.
Zurück zum Zitat Allen DG, Westerblad H. Lactic acid — the latest performance-enhancing drug. Science 2004; 305: 1112–1113PubMedCrossRef Allen DG, Westerblad H. Lactic acid — the latest performance-enhancing drug. Science 2004; 305: 1112–1113PubMedCrossRef
91.
Zurück zum Zitat Raymer GH, Marsh GD, Kowalchuk JM, et al. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 2004; 96: 2050–2056PubMedCrossRef Raymer GH, Marsh GD, Kowalchuk JM, et al. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 2004; 96: 2050–2056PubMedCrossRef
92.
Zurück zum Zitat Verbitsky O, Mizrahi J, Levin M, et al. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 1997; 83: 333–337PubMed Verbitsky O, Mizrahi J, Levin M, et al. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 1997; 83: 333–337PubMed
93.
Zurück zum Zitat Spriet LL, Lindinger MI, Heigenhauser GJF, et al. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol 1986; 251: R833–R839PubMed Spriet LL, Lindinger MI, Heigenhauser GJF, et al. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol 1986; 251: R833–R839PubMed
94.
Zurück zum Zitat Swank A, Robertson RJ. Effect of induced alkalosis on perception of exertion during intermittent exercise. J Appl Physiol 1989; 67: 1862–1867PubMed Swank A, Robertson RJ. Effect of induced alkalosis on perception of exertion during intermittent exercise. J Appl Physiol 1989; 67: 1862–1867PubMed
95.
Zurück zum Zitat Dousset E, Steinberg JG, Balon N, et al. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve 2001; 24: 364–371PubMedCrossRef Dousset E, Steinberg JG, Balon N, et al. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve 2001; 24: 364–371PubMedCrossRef
96.
Zurück zum Zitat Garner SH, Sutton JR, Burse RL, et al. Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. J Appl Physiol 1990; 68: 1167–1172PubMed Garner SH, Sutton JR, Burse RL, et al. Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. J Appl Physiol 1990; 68: 1167–1172PubMed
Metadaten
Titel
Lactic Acid and Exercise Performance
Culprit or Friend?
verfasst von
Simeon P. Cairns
Publikationsdatum
01.04.2006
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 4/2006
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200636040-00001

Weitere Artikel der Ausgabe 4/2006

Sports Medicine 4/2006 Zur Ausgabe

Current Opinion

Vegetarian Diets

Review Article

Oxidative Stress

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.