Skip to main content
Erschienen in: Sports Medicine 8/2006

01.08.2006 | Leading Article

Biomechanical Analysis of Tibial Torque and Knee Flexion Angle

Implications for Understanding Knee Injury

verfasst von: Carlin Senter, Dr Sharon L. Hame

Erschienen in: Sports Medicine | Ausgabe 8/2006

Einloggen, um Zugang zu erhalten

Abstract

Knee injuries are common in sports activities. Understanding the mechanisms of injury allows for better treatment of these injuries and for the development of effective prevention programmes. Tibial torque and knee flexion angle have been associated with several mechanisms of injury in the knee. This article focuses on the injury to the anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL) and the meniscus of the knee as they relate to knee flexion angle and tibial torque. Hyperflexion and hyperextension with the application of tibial torque have both been implicated in the mechanism of ACL injury. A combination of anterior tibial force and internal tibial torque near full extension puts the ACL at high risk for injury. Hyperflexion also increases ACL force; however, in this position, internal and external tibial torque only minimally increase ACL force. Several successful prevention programmes have been based on these biomechanical factors. Injury to the PCL typically occurs in a flexed or hyperflexed knee position. The effects of application of a tibial torque, both internally and externally, remains controversial. Biomechanical studies have shown an increase in PCL force with knee flexion and the application of internal tibial torque, while others have shown that PCL-deficient knees have greater external tibial rotation. The meniscus must endure greater compressive loads at higher flexion angles of the knee and, as a result, are more prone to injury in these positions. In addition, ACL deficiency puts the meniscus at greater risk for injury. Reducing the forces on the ACL, PCL and meniscus during athletic activity through training, the use of appropriate equipment and safe surfaces will help to reduce injury to these structures.
Literatur
1.
Zurück zum Zitat Calmbach WL. Evaluation of patients presenting with knee pain, part I: history, physical examination, radiographs, and laboratory tests. Am Fam Physician 2003; 68 (5): 907–912PubMed Calmbach WL. Evaluation of patients presenting with knee pain, part I: history, physical examination, radiographs, and laboratory tests. Am Fam Physician 2003; 68 (5): 907–912PubMed
2.
Zurück zum Zitat Mody EA, Greene JM. Disorders of the knee. In: Noble J, editor. Textbook of primary care medicine. 3rd ed. St Louis (MO): Mosby, 2001: 1329–1343 Mody EA, Greene JM. Disorders of the knee. In: Noble J, editor. Textbook of primary care medicine. 3rd ed. St Louis (MO): Mosby, 2001: 1329–1343
3.
Zurück zum Zitat Shoemaker SC, Markolf KL, Dorey FJ, et al. Tibial torque generation in a flexed weight-bearing stance. Clin Orthop 1988; 228: 164–170PubMed Shoemaker SC, Markolf KL, Dorey FJ, et al. Tibial torque generation in a flexed weight-bearing stance. Clin Orthop 1988; 228: 164–170PubMed
4.
Zurück zum Zitat Reider B, Mroczek KJ, D’Agata SD. Factors predisposing to knee injury. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1652 Reider B, Mroczek KJ, D’Agata SD. Factors predisposing to knee injury. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1652
5.
Zurück zum Zitat Boden BP, Dean GS, Feagin JA, et al. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000; 23 (6): 573–578PubMed Boden BP, Dean GS, Feagin JA, et al. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000; 23 (6): 573–578PubMed
6.
Zurück zum Zitat D’Amato MJ, Bach Jr BR. Anterior cruciate ligament reconstruction in the adult. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 2016–2017 D’Amato MJ, Bach Jr BR. Anterior cruciate ligament reconstruction in the adult. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 2016–2017
7.
Zurück zum Zitat Ettlinger CF. A method to help reduce the risk of serious knee sprains incurred in alpine skiing. Am J Sports Med 1995; 23 (5): 531–537PubMedCrossRef Ettlinger CF. A method to help reduce the risk of serious knee sprains incurred in alpine skiing. Am J Sports Med 1995; 23 (5): 531–537PubMedCrossRef
8.
Zurück zum Zitat Miller III RH. Knee injuries. In: Canale ST, editor. Campbell’s operative orthopaedics. 10th ed. St Louis (MO): Mosby, 2003: 2253–2255 Miller III RH. Knee injuries. In: Canale ST, editor. Campbell’s operative orthopaedics. 10th ed. St Louis (MO): Mosby, 2003: 2253–2255
9.
Zurück zum Zitat Azangwe G, Mathias KJ, Marshall D. The effect of torsion on the appearance of the rupture surface of the ACL of rabbits. Knee 2002; 9 (1): 31–39PubMedCrossRef Azangwe G, Mathias KJ, Marshall D. The effect of torsion on the appearance of the rupture surface of the ACL of rabbits. Knee 2002; 9 (1): 31–39PubMedCrossRef
10.
Zurück zum Zitat Bonci CM, Koeler DM, Lowe LL. Functional training progressions for the prevention of anterior cruciate ligament injuries in female athletes. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 418 Bonci CM, Koeler DM, Lowe LL. Functional training progressions for the prevention of anterior cruciate ligament injuries in female athletes. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 418
11.
Zurück zum Zitat Lambson RB, Bamhill BS, Higgins RW. Football cleat design and its effect on anterior cruciate ligament injuries: a three-year prospective study. Am J Sports Med 1996; 24: 155–159PubMedCrossRef Lambson RB, Bamhill BS, Higgins RW. Football cleat design and its effect on anterior cruciate ligament injuries: a three-year prospective study. Am J Sports Med 1996; 24: 155–159PubMedCrossRef
12.
Zurück zum Zitat Torg JS, Stilwell G, Rogers K. The effect of ambient temperature on the shoe-surface interface release coefficient. Am J Sports Med 1996; 24 (1): 79–82PubMedCrossRef Torg JS, Stilwell G, Rogers K. The effect of ambient temperature on the shoe-surface interface release coefficient. Am J Sports Med 1996; 24 (1): 79–82PubMedCrossRef
13.
Zurück zum Zitat Deibert MC. Skiing injuries in children, adolescents, and adults. J Bone Joint Surg Am 1998; 80 (1): 25–32PubMedCrossRef Deibert MC. Skiing injuries in children, adolescents, and adults. J Bone Joint Surg Am 1998; 80 (1): 25–32PubMedCrossRef
14.
Zurück zum Zitat Hame SL. Injury to the anterior cruciate ligament during alpine skiing: a biomechanical analysis of tibial torque and knee flexion angle. Am J Sports Med 2002; 30 (4): 537–540PubMed Hame SL. Injury to the anterior cruciate ligament during alpine skiing: a biomechanical analysis of tibial torque and knee flexion angle. Am J Sports Med 2002; 30 (4): 537–540PubMed
15.
Zurück zum Zitat Markolf KL, Gorek JF, Kabo JM, et al. Direct measurement of resultant forces in the anterior cruciate ligament: an in vitro study performed with a new experimental technique. J Bone Joint Surg Am 1990; 72 (4): 557–567PubMed Markolf KL, Gorek JF, Kabo JM, et al. Direct measurement of resultant forces in the anterior cruciate ligament: an in vitro study performed with a new experimental technique. J Bone Joint Surg Am 1990; 72 (4): 557–567PubMed
16.
Zurück zum Zitat Li G, Defrate LE, Gill TJ. In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 2005; 23 (4): 340–344PubMedCrossRef Li G, Defrate LE, Gill TJ. In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 2005; 23 (4): 340–344PubMedCrossRef
17.
Zurück zum Zitat Li G, Papannagari R, Most E, et al. Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 2005; 23 (3): 536–541PubMedCrossRef Li G, Papannagari R, Most E, et al. Anterior tibial post impingement in a posterior stabilized total knee arthroplasty. J Orthop Res 2005; 23 (3): 536–541PubMedCrossRef
18.
Zurück zum Zitat Markolf KL, Burchfield DM, Shapiro MM, et al. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 1995; 13 (6): 930–935PubMedCrossRef Markolf KL, Burchfield DM, Shapiro MM, et al. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 1995; 13 (6): 930–935PubMedCrossRef
19.
Zurück zum Zitat Andersen HN, Dyhre-Poulsen P. The anterior cmciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 1997; 5 (3): 145–149PubMedCrossRef Andersen HN, Dyhre-Poulsen P. The anterior cmciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 1997; 5 (3): 145–149PubMedCrossRef
20.
Zurück zum Zitat Geyer M. A new mechanism of injury of the anterior cruciate ligament. Unfallchirurg 1991; 94 (2): 69–72PubMed Geyer M. A new mechanism of injury of the anterior cruciate ligament. Unfallchirurg 1991; 94 (2): 69–72PubMed
21.
Zurück zum Zitat McConkey JP. Anterior cruciate ligament rupture in skiing: a new mechanism of injury. Am J Sports Med 1986; 14 (2): 160–164PubMedCrossRef McConkey JP. Anterior cruciate ligament rupture in skiing: a new mechanism of injury. Am J Sports Med 1986; 14 (2): 160–164PubMedCrossRef
22.
Zurück zum Zitat DeMorat G, Weinhold P, Blackburn T, et al. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 2004; 32 (2): 477–483PubMedCrossRef DeMorat G, Weinhold P, Blackburn T, et al. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 2004; 32 (2): 477–483PubMedCrossRef
23.
Zurück zum Zitat Li G, Rudy TW, Sakane M, et al. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 1999; 32 (4): 395–400PubMedCrossRef Li G, Rudy TW, Sakane M, et al. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 1999; 32 (4): 395–400PubMedCrossRef
24.
Zurück zum Zitat Torg JS, Quendenfeld TC, Landau S. The shoe surface interface and its relationship to football knee injuries. Am J Sports Med 1974; 21: 261–269CrossRef Torg JS, Quendenfeld TC, Landau S. The shoe surface interface and its relationship to football knee injuries. Am J Sports Med 1974; 21: 261–269CrossRef
25.
Zurück zum Zitat Bonstingl RW, Morehouse CA, Niebel BW. Torques developed by different types of shoes on various playing surfaces. Med Sci Sports 1975; 7 (2): 127–131PubMed Bonstingl RW, Morehouse CA, Niebel BW. Torques developed by different types of shoes on various playing surfaces. Med Sci Sports 1975; 7 (2): 127–131PubMed
26.
Zurück zum Zitat Andreasson G, Lindenberger U, Renstrom P, et al. Torque developed at simulated sliding between sport shoes and an artificial turf. Am J Sports Med 1986; 14 (3): 225–230PubMedCrossRef Andreasson G, Lindenberger U, Renstrom P, et al. Torque developed at simulated sliding between sport shoes and an artificial turf. Am J Sports Med 1986; 14 (3): 225–230PubMedCrossRef
27.
Zurück zum Zitat Li G, Most E, DeFrate LE, et al. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. J Biomech 2004; 37 (5): 779–783PubMedCrossRef Li G, Most E, DeFrate LE, et al. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. J Biomech 2004; 37 (5): 779–783PubMedCrossRef
28.
Zurück zum Zitat Li G, Zayontz S, DeFrate LE, et al. Kinematics of the knee at high flexion angles: an in vitro investigation. J Orthop Res 2004; 22 (1): 90–95PubMedCrossRef Li G, Zayontz S, DeFrate LE, et al. Kinematics of the knee at high flexion angles: an in vitro investigation. J Orthop Res 2004; 22 (1): 90–95PubMedCrossRef
29.
Zurück zum Zitat Li G, Zayontz S, Most E, et al. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 2004; 22 (2): 293–297PubMedCrossRef Li G, Zayontz S, Most E, et al. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 2004; 22 (2): 293–297PubMedCrossRef
30.
Zurück zum Zitat Markolf KL, Slauterbeck JL, Armstrong KL, et al. Effects of combined knee loadings on posterior cruciate ligament force generation. J Orthop Res 1996; 14 (4): 633–638PubMedCrossRef Markolf KL, Slauterbeck JL, Armstrong KL, et al. Effects of combined knee loadings on posterior cruciate ligament force generation. J Orthop Res 1996; 14 (4): 633–638PubMedCrossRef
31.
Zurück zum Zitat Li G, Gill T J, DeFrate LE et al. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads: an in vitro experimental study. J Orthop Res 2002; 20 (4): 887–892PubMedCrossRef Li G, Gill T J, DeFrate LE et al. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads: an in vitro experimental study. J Orthop Res 2002; 20 (4): 887–892PubMedCrossRef
32.
Zurück zum Zitat Nagura T, Dyrby CO, Alexander EJ, et al. Mechanical loads at the knee joint during deep flexion. J Orthop Res 2002; 20 (4): 881–886PubMedCrossRef Nagura T, Dyrby CO, Alexander EJ, et al. Mechanical loads at the knee joint during deep flexion. J Orthop Res 2002; 20 (4): 881–886PubMedCrossRef
33.
Zurück zum Zitat Buckwalter JA, Mow VC. Basic science and injury of articular cartilage, menisci, and bone. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 87–95 Buckwalter JA, Mow VC. Basic science and injury of articular cartilage, menisci, and bone. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 87–95
34.
Zurück zum Zitat Urquhart MW, O’Leary JA, Giffin JR, et al. Meniscal injuries in the adult. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1667–1676 Urquhart MW, O’Leary JA, Giffin JR, et al. Meniscal injuries in the adult. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1667–1676
35.
Zurück zum Zitat Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop 1975; 109: 184–192PubMedCrossRef Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop 1975; 109: 184–192PubMedCrossRef
36.
Zurück zum Zitat Johnson RJ, Coughlin KM. Knee, meniscal biomechanics. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1577–1594 Johnson RJ, Coughlin KM. Knee, meniscal biomechanics. In: DeLee JC, Drez DD, editors. DeLee and Drez’s orthopaedic sports medicine principles and practice. 2nd ed. Philadelphia (PA): Elsevier Science, 2003: 1577–1594
37.
Zurück zum Zitat Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee: the contributions of supporting structures. J Bone Joint Surg Am 1976; 58: 583–594PubMed Markolf KL, Mensch JS, Amstutz HC. Stiffness and laxity of the knee: the contributions of supporting structures. J Bone Joint Surg Am 1976; 58: 583–594PubMed
38.
Zurück zum Zitat Krause WR, Pope MH, Johnson RJ, et al. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am 1976; 58: 599–604PubMed Krause WR, Pope MH, Johnson RJ, et al. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am 1976; 58: 599–604PubMed
39.
Zurück zum Zitat Papageorgiou CD, Gil JE, Kanamori A, et al. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001; 29 (2): 226–231PubMed Papageorgiou CD, Gil JE, Kanamori A, et al. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001; 29 (2): 226–231PubMed
40.
Zurück zum Zitat Moglo KE, Shirazi-Adl A. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee 2003; 10 (3): 265–276PubMedCrossRef Moglo KE, Shirazi-Adl A. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee 2003; 10 (3): 265–276PubMedCrossRef
41.
Zurück zum Zitat von Eisenhart-Rothe R, Bringmann C, Reiser M, et al. Femorotibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency: a potential cause of secondary meniscal tears. J Orthop Res 2004; 22 (2): 275–282CrossRef von Eisenhart-Rothe R, Bringmann C, Reiser M, et al. Femorotibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency: a potential cause of secondary meniscal tears. J Orthop Res 2004; 22 (2): 275–282CrossRef
42.
Zurück zum Zitat Cerulli G, Benoit DL, Caraffa A, et al. Proprioceptive training and prevention of anterior cruciate ligament injuries in soccer. J Orthop Sports Phys Ther 2001; 31 (11): 655–660PubMed Cerulli G, Benoit DL, Caraffa A, et al. Proprioceptive training and prevention of anterior cruciate ligament injuries in soccer. J Orthop Sports Phys Ther 2001; 31 (11): 655–660PubMed
43.
Zurück zum Zitat Hewett TE, Lindenfeld TN, Riccobene JV, et al. The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. Am J Sports Med 1999; 27 (6): 699–706PubMed Hewett TE, Lindenfeld TN, Riccobene JV, et al. The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. Am J Sports Med 1999; 27 (6): 699–706PubMed
44.
Zurück zum Zitat Silvers HJ, Mandelbaum BR. Preseason conditioning to prevent soccer injuries in young women. Clin J Sport Med 2001; 11 (3): 206PubMedCrossRef Silvers HJ, Mandelbaum BR. Preseason conditioning to prevent soccer injuries in young women. Clin J Sport Med 2001; 11 (3): 206PubMedCrossRef
45.
Zurück zum Zitat Natri A, Beynnon BD, Ettlinger CF. Alpine ski bindings and injuries: current findings. Sports Med 1999; 28: 35–48PubMedCrossRef Natri A, Beynnon BD, Ettlinger CF. Alpine ski bindings and injuries: current findings. Sports Med 1999; 28: 35–48PubMedCrossRef
46.
Zurück zum Zitat Heidt RS, Dormer SG, Cawley PW. Differences in friction and torsional resistance in athletic shoe-turf surface interfaces. Am J Sports Med 1996; 24: 834–842PubMedCrossRef Heidt RS, Dormer SG, Cawley PW. Differences in friction and torsional resistance in athletic shoe-turf surface interfaces. Am J Sports Med 1996; 24: 834–842PubMedCrossRef
Metadaten
Titel
Biomechanical Analysis of Tibial Torque and Knee Flexion Angle
Implications for Understanding Knee Injury
verfasst von
Carlin Senter
Dr Sharon L. Hame
Publikationsdatum
01.08.2006
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 8/2006
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200636080-00001

Weitere Artikel der Ausgabe 8/2006

Sports Medicine 8/2006 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.