Skip to main content
Erschienen in: Sports Medicine 9/2007

01.09.2007 | Review Article

Regulation of Cerebral Blood Flow During Exercise

verfasst von: Jordan S. Querido, Dr A. William Sheel

Erschienen in: Sports Medicine | Ausgabe 9/2007

Einloggen, um Zugang zu erhalten

Abstract

Constant cerebral blood flow (CBF) is vital to human survival. Originally thought to receive steady blood flow, the brain has shown to experience increases in blood flow during exercise. Although increases have not consistently been documented, the overwhelming evidence supporting an increase may be a result of an increase in brain metabolism. While an increase in metabolism may be the underlying causative factor for the increase in CBF during exercise, there are many modulating variables. Arterial blood gas tensions, most specifically the partial pressure of carbon dioxide, strongly regulate CBF by affecting cerebral vessel diameter through changes in pH, while carbon dioxide reactivity increases from rest to exercise. Muscle mechanoreceptors may contribute to the initial increase in CBF at the onset of exercise, after which exercise-induced hyperventilation tends to decrease flow by pial vessel vasoconstriction. Although elite athletes may benefit from hyperoxia during intense exercise, cerebral tissue is well protected during exercise, and cerebral oxygenation does not appear to pose a limiting factor to exercise performance. The role of arterial blood pressure is important to the increase in CBF during exercise; however, during times of acute hypotension such as during diastole at high-intensity exercise or post-exercise hypotension, cerebral autoregulation may be impaired. The impairment of an increase in cardiac output during exercise with a large muscle mass similarly impairs the increase in CBF velocity, suggesting that cardiac output may play a key role in the CBF response to exercise. Glucose uptake and CBF do not appear to be related; however, there is growing evidence to suggest that lactate is used as a substrate when glucose levels are low. Traditionally thought to have no influence, neural innervation appears to be a protective mechanism to large increases in cardiac output. Changes in middle cerebral arterial velocity are independent of changes in muscle sympathetic nerve activity, suggesting that sympathetic activity does not alter medium-sized arteries (middle cerebral artery).
CBF does not remain steady, as seen by apparent increases during exercise, which is accomplished by a multi-factorial system, operating in a way that does not pose any clear danger to cerebral tissue during exercise under normal circumstances.
Literatur
1.
Zurück zum Zitat Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959; 39 (2): 183–238PubMed Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959; 39 (2): 183–238PubMed
2.
Zurück zum Zitat Heistad DD, Kontos HA. Cerebral circulation. In: Shepherd JT, Abboud FM, Geiger SR, editors. Handbook of physiology: the cardiovascular system. Bethesda (MD): American Physiological Society 1983: 137–82 Heistad DD, Kontos HA. Cerebral circulation. In: Shepherd JT, Abboud FM, Geiger SR, editors. Handbook of physiology: the cardiovascular system. Bethesda (MD): American Physiological Society 1983: 137–82
3.
Zurück zum Zitat Betz E. Cerebral blood flow: its measurement and regulation. Physiol Rev 1972; 52 (3): 595–630PubMed Betz E. Cerebral blood flow: its measurement and regulation. Physiol Rev 1972; 52 (3): 595–630PubMed
4.
Zurück zum Zitat Lassen NA. Control of cerebral circulation in health and disease. Circ Res 1974; 34 (6): 749–60PubMedCrossRef Lassen NA. Control of cerebral circulation in health and disease. Circ Res 1974; 34 (6): 749–60PubMedCrossRef
5.
Zurück zum Zitat Jorgensen LG, Nowak M, Ide K, et al. Cerebral blood flow and metabolism. In: Saltin B, Boushel R, Secher N, et al.,editors. Exercise and circulation in health and disease. Champaign (IL): Human Kinetics, 2000: 113–23 Jorgensen LG, Nowak M, Ide K, et al. Cerebral blood flow and metabolism. In: Saltin B, Boushel R, Secher N, et al.,editors. Exercise and circulation in health and disease. Champaign (IL): Human Kinetics, 2000: 113–23
6.
Zurück zum Zitat Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355: 161–75PubMed Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 1984; 355: 161–75PubMed
7.
Zurück zum Zitat Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 1945; 143: 53–66 Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 1945; 143: 53–66
8.
Zurück zum Zitat Kety SS, Schmidt CF. The nitrous oxide method for the quantititative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948; 27 (4): 476–83PubMedCrossRef Kety SS, Schmidt CF. The nitrous oxide method for the quantititative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948; 27 (4): 476–83PubMedCrossRef
9.
Zurück zum Zitat Zobl EG, Talmers FN, Christensen RC, et al. Effect of exercise on the cerebral circulation and metabolism. J Appl Physiol 1965; 20 (6): 1289–93 Zobl EG, Talmers FN, Christensen RC, et al. Effect of exercise on the cerebral circulation and metabolism. J Appl Physiol 1965; 20 (6): 1289–93
10.
Zurück zum Zitat Scheinberg P, Blackburn LI, Rich M, et al. Effects of vigorous physical exercise on cerebral circulation and metabolism. Am J Med 1954; 16 (4): 549–54PubMedCrossRef Scheinberg P, Blackburn LI, Rich M, et al. Effects of vigorous physical exercise on cerebral circulation and metabolism. Am J Med 1954; 16 (4): 549–54PubMedCrossRef
11.
Zurück zum Zitat Himwich WA, Homburger E, Maresca R, et al. Brain metabolism in man: unanesthetized and in pentothal narcosis. Am J Psychiat 1947; 103: 689–99PubMed Himwich WA, Homburger E, Maresca R, et al. Brain metabolism in man: unanesthetized and in pentothal narcosis. Am J Psychiat 1947; 103: 689–99PubMed
12.
Zurück zum Zitat Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol 2000; 61 (4): 397–414PubMedCrossRef Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol 2000; 61 (4): 397–414PubMedCrossRef
13.
Zurück zum Zitat Globus M, Melamed E, Keren A, et al. Effect of exercise on cerebral circulation. J Cereb Blood Flow Metab 1983; 3 (3): 287–90PubMedCrossRef Globus M, Melamed E, Keren A, et al. Effect of exercise on cerebral circulation. J Cereb Blood Flow Metab 1983; 3 (3): 287–90PubMedCrossRef
14.
Zurück zum Zitat Thomas SN, Schroeder T, Secher NH, et al. Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol 1989; 67 (2): 744–8PubMed Thomas SN, Schroeder T, Secher NH, et al. Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol 1989; 67 (2): 744–8PubMed
15.
Zurück zum Zitat Friedman DB, Friberg L, Mitchell JH, et al. Effect of axillary blockade on regional cerebral blood flow during static handgrip. J Appl Physiol 1991; 71 (2): 651–6PubMed Friedman DB, Friberg L, Mitchell JH, et al. Effect of axillary blockade on regional cerebral blood flow during static handgrip. J Appl Physiol 1991; 71 (2): 651–6PubMed
16.
Zurück zum Zitat Huang SY, Tawney KW, Bender PR, et al. Internal carotid flow velocity with exercise before and after acclimatization to 4,300m. J Appl Physiol 1991; 71 (4): 1469–76PubMed Huang SY, Tawney KW, Bender PR, et al. Internal carotid flow velocity with exercise before and after acclimatization to 4,300m. J Appl Physiol 1991; 71 (4): 1469–76PubMed
17.
Zurück zum Zitat Jorgensen LG, Perko M, Hanel B, et al. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol 1992; 72 (3): 1123–32PubMed Jorgensen LG, Perko M, Hanel B, et al. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans. J Appl Physiol 1992; 72 (3): 1123–32PubMed
18.
Zurück zum Zitat Jorgensen LG, Perko G, Secher NH. Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol 1992; 73 (5): 1825–30PubMed Jorgensen LG, Perko G, Secher NH. Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol 1992; 73 (5): 1825–30PubMed
19.
Zurück zum Zitat Madsen PL, Sperling BK, Warming T, et al. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol 1993; 74 (1): 245–50PubMed Madsen PL, Sperling BK, Warming T, et al. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J Appl Physiol 1993; 74 (1): 245–50PubMed
20.
Zurück zum Zitat Moraine JJ, Lamotte M, Berre J, et al. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol 1993; 67 (1): 12–6CrossRef Moraine JJ, Lamotte M, Berre J, et al. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol 1993; 67 (1): 12–6CrossRef
21.
Zurück zum Zitat Linkis P, Jorgensen LG, Olesen HL, et al. Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 1995; 78 (1): 12–6PubMed Linkis P, Jorgensen LG, Olesen HL, et al. Dynamic exercise enhances regional cerebral artery mean flow velocity. J Appl Physiol 1995; 78 (1): 12–6PubMed
22.
Zurück zum Zitat Hellstrom G, Fischer-Colbrie W, Wahlgren NG, et al. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol 1996; 81 (1): 413–8PubMed Hellstrom G, Fischer-Colbrie W, Wahlgren NG, et al. Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. J Appl Physiol 1996; 81 (1): 413–8PubMed
23.
Zurück zum Zitat Pott F, Jensen K, Hansen H, et al. Middle cerebral artery blood velocity and plasma catecholamines during exercise. Acta Physiol Scand 1996; 158 (4): 349–56PubMedCrossRef Pott F, Jensen K, Hansen H, et al. Middle cerebral artery blood velocity and plasma catecholamines during exercise. Acta Physiol Scand 1996; 158 (4): 349–56PubMedCrossRef
24.
Zurück zum Zitat Pott F, Knudsen L, Nowak M, et al. Middle cerebral artery blood velocity during rowing. Acta Physiol Scand 1997; 160 (3): 251–5PubMedCrossRef Pott F, Knudsen L, Nowak M, et al. Middle cerebral artery blood velocity during rowing. Acta Physiol Scand 1997; 160 (3): 251–5PubMedCrossRef
25.
Zurück zum Zitat Pott F, Ray CA, Olesen HL, et al. Middle cerebral artery blood velocity, arterial diameter and muscle sympathetic nerve activity during post-exercise muscle ischaemia. Acta Physiol Scand 1997; 160 (1): 43–7CrossRef Pott F, Ray CA, Olesen HL, et al. Middle cerebral artery blood velocity, arterial diameter and muscle sympathetic nerve activity during post-exercise muscle ischaemia. Acta Physiol Scand 1997; 160 (1): 43–7CrossRef
26.
Zurück zum Zitat Ide K, Pott F, Van Lieshout JJ, et al. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass. Acta Physiol Scand 1998; 162 (1): 13–20PubMedCrossRef Ide K, Pott F, Van Lieshout JJ, et al. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass. Acta Physiol Scand 1998; 162 (1): 13–20PubMedCrossRef
27.
Zurück zum Zitat Doering TJ, Resch KL, Steuernagel B, et al. Passive and active exercises increase cerebral blood flow velocity in young, healthy individuals. Am J Phys Med Rehabil 1998; 77 (6): 490–3PubMedCrossRef Doering TJ, Resch KL, Steuernagel B, et al. Passive and active exercises increase cerebral blood flow velocity in young, healthy individuals. Am J Phys Med Rehabil 1998; 77 (6): 490–3PubMedCrossRef
28.
Zurück zum Zitat Giller CA, Giller AM, Cooper CR, et al. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol 2000; 88 (6): 2205–13PubMed Giller CA, Giller AM, Cooper CR, et al. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol 2000; 88 (6): 2205–13PubMed
29.
Zurück zum Zitat Nybo L, Nielsen B. Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 2001; 534 (Pt 1): 279–86PubMedCrossRef Nybo L, Nielsen B. Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 2001; 534 (Pt 1): 279–86PubMedCrossRef
30.
Zurück zum Zitat Nybo L, Moller K, Volianitis S, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 2002; 93 (1): 58–64PubMed Nybo L, Moller K, Volianitis S, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol 2002; 93 (1): 58–64PubMed
31.
Zurück zum Zitat Heckmann JG, Brown CM, Cheregi M, et al. Delayed cerebrovascular autoregulatory response to ergometer exercise in normotensive elderly humans. Cerebrovasc Dis 2003; 16 (4): 423–9PubMedCrossRef Heckmann JG, Brown CM, Cheregi M, et al. Delayed cerebrovascular autoregulatory response to ergometer exercise in normotensive elderly humans. Cerebrovasc Dis 2003; 16 (4): 423–9PubMedCrossRef
32.
Zurück zum Zitat Brys M, Brown CM, Marthol H, et al. Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons. Am J Physiol Heart Circ Physiol 2003; 285 (3): H1048–54PubMed Brys M, Brown CM, Marthol H, et al. Dynamic cerebral autoregulation remains stable during physical challenge in healthy persons. Am J Physiol Heart Circ Physiol 2003; 285 (3): H1048–54PubMed
33.
Zurück zum Zitat Pott F, Van Lieshout JJ, Ide K, et al. Middle cerebral artery blood velocity during intense static exercise is dominated by a Valsalva maneuver. J Appl Physiol 2003; 94 (4): 1335–44PubMed Pott F, Van Lieshout JJ, Ide K, et al. Middle cerebral artery blood velocity during intense static exercise is dominated by a Valsalva maneuver. J Appl Physiol 2003; 94 (4): 1335–44PubMed
34.
Zurück zum Zitat Ogoh S, Fadel PJ, Zhang R, et al. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 2005; 288 (4): H1526–31PubMedCrossRef Ogoh S, Fadel PJ, Zhang R, et al. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 2005; 288 (4): H1526–31PubMedCrossRef
35.
Zurück zum Zitat Imray CH, Myers SD, Pattinson KT, et al. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol 2005; 99 (2): 699–706PubMedCrossRef Imray CH, Myers SD, Pattinson KT, et al. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol 2005; 99 (2): 699–706PubMedCrossRef
36.
Zurück zum Zitat Obrist WD, Thompson HK Jr, King CH, et al. Determination of regional cerebral blood flow by inhalation of 133-Xenon. Circ Res 1967; 20 (1): 124–35PubMedCrossRef Obrist WD, Thompson HK Jr, King CH, et al. Determination of regional cerebral blood flow by inhalation of 133-Xenon. Circ Res 1967; 20 (1): 124–35PubMedCrossRef
37.
Zurück zum Zitat Veall N, Mallett BL. Regional cerebral blood flow determine by 133-Xe inhalation and external recording: the effect of arterial recirculation. Clin Sci 1966; 30 (3): 353–69PubMed Veall N, Mallett BL. Regional cerebral blood flow determine by 133-Xe inhalation and external recording: the effect of arterial recirculation. Clin Sci 1966; 30 (3): 353–69PubMed
38.
Zurück zum Zitat Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005; 36 (9): e83–99PubMedCrossRef Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. Stroke 2005; 36 (9): e83–99PubMedCrossRef
39.
Zurück zum Zitat Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans. Stroke 1989; 20 (1): 45–52PubMedCrossRef Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans. Stroke 1989; 20 (1): 45–52PubMedCrossRef
40.
Zurück zum Zitat Poulin MJ, Syed RJ, Robbins PA. Assessments of flow by transcranial Doppler ultrasound in the middle cerebral artery during exercise in humans. J Appl Physiol 1999; 86 (5): 1632–7PubMed Poulin MJ, Syed RJ, Robbins PA. Assessments of flow by transcranial Doppler ultrasound in the middle cerebral artery during exercise in humans. J Appl Physiol 1999; 86 (5): 1632–7PubMed
41.
Zurück zum Zitat Heckmann JG, Hilz MJ, Muck-Weymann M, et al. Transcranial doppler sonography-ergometer test for the non-invasive assessment of cerebrovascular autoregulation in humans. J Neurol Sci 2000; 177 (1): 41–7PubMedCrossRef Heckmann JG, Hilz MJ, Muck-Weymann M, et al. Transcranial doppler sonography-ergometer test for the non-invasive assessment of cerebrovascular autoregulation in humans. J Neurol Sci 2000; 177 (1): 41–7PubMedCrossRef
42.
Zurück zum Zitat Kleinerman J, Salvatore MS. Effect of mild steady state exercise on cerebral and general hemodynamics of normal untrained subjects. J Clin Invest 1955; 34: 945–56 Kleinerman J, Salvatore MS. Effect of mild steady state exercise on cerebral and general hemodynamics of normal untrained subjects. J Clin Invest 1955; 34: 945–56
43.
Zurück zum Zitat Ide K, Horn A, Secher NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol 1999; 87 (5): 1604–8PubMed Ide K, Horn A, Secher NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol 1999; 87 (5): 1604–8PubMed
44.
Zurück zum Zitat Herholz K, Buskies W, Rist M, et al. Regional cerebral blood flow in man at rest and during exercise. J Neurol 1987; 234 (1): 9–13PubMedCrossRef Herholz K, Buskies W, Rist M, et al. Regional cerebral blood flow in man at rest and during exercise. J Neurol 1987; 234 (1): 9–13PubMedCrossRef
45.
Zurück zum Zitat Koch A, Ivers M, Gehrt A, et al. Cerebral autoregulation is temporarily disturbed in the early recovery phase after dynamic resistance exercise. Clin Auton Res 2005; 15 (2): 83–91PubMedCrossRef Koch A, Ivers M, Gehrt A, et al. Cerebral autoregulation is temporarily disturbed in the early recovery phase after dynamic resistance exercise. Clin Auton Res 2005; 15 (2): 83–91PubMedCrossRef
46.
Zurück zum Zitat Edwards MR, Martin DH, Hughson RL. Cerebral hemodynamics and resistance exercise. Med Sci Sports Exerc 2002; 34 (7): 1207–11PubMedCrossRef Edwards MR, Martin DH, Hughson RL. Cerebral hemodynamics and resistance exercise. Med Sci Sports Exerc 2002; 34 (7): 1207–11PubMedCrossRef
47.
Zurück zum Zitat Imray CH, Walsh S, Clarke T, et al. Effects of breathing air containing 3% carbon dioxide, 35% oxygen or a mixture of 3% carbon dioxide/35% oxygen on cerebral and peripheral oxygenation at 150 m and 3459 m. Clin Sci (Lond) 2003; 104 (3): 203–10CrossRef Imray CH, Walsh S, Clarke T, et al. Effects of breathing air containing 3% carbon dioxide, 35% oxygen or a mixture of 3% carbon dioxide/35% oxygen on cerebral and peripheral oxygenation at 150 m and 3459 m. Clin Sci (Lond) 2003; 104 (3): 203–10CrossRef
48.
Zurück zum Zitat Bergo GW, Tyssebotn I. Cerebral blood flow and systemic hemodynamics during exposure to 2 kPa CO2-300 kPa O2 in rats. J Appl Physiol 1995; 78 (6): 2100–8PubMed Bergo GW, Tyssebotn I. Cerebral blood flow and systemic hemodynamics during exposure to 2 kPa CO2-300 kPa O2 in rats. J Appl Physiol 1995; 78 (6): 2100–8PubMed
49.
Zurück zum Zitat Rowell LB. Human cardiovascular control. New York: Oxford University Press, 1993 Rowell LB. Human cardiovascular control. New York: Oxford University Press, 1993
50.
Zurück zum Zitat Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 2004; 97 (1): 149–59PubMedCrossRef Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol 2004; 97 (1): 149–59PubMedCrossRef
51.
Zurück zum Zitat Shapiro W, Wasserman AJ, Baker JP, et al. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man. J Clin Invest 1970; 49 (12): 2362–8PubMedCrossRef Shapiro W, Wasserman AJ, Baker JP, et al. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man. J Clin Invest 1970; 49 (12): 2362–8PubMedCrossRef
52.
Zurück zum Zitat Tenney SM, Lamb TW. Physiological consequences of hypoventilation and hyperventilation.In: Fenn WO, Rahn H, editors. Handbook of physiology: respiration. Washington,DC: American Physiological Society, 1965: 979–1010 Tenney SM, Lamb TW. Physiological consequences of hypoventilation and hyperventilation.In: Fenn WO, Rahn H, editors. Handbook of physiology: respiration. Washington,DC: American Physiological Society, 1965: 979–1010
53.
Zurück zum Zitat Siegel G, Niesert G, Ehehalt R, et al. Membrane basis of vascular regulation. In: Betz E, editor. Ionic actions on vascular smooth muscle: with special regard to brain vessels. New York: Springer-Verlag, 1976: 48–55CrossRef Siegel G, Niesert G, Ehehalt R, et al. Membrane basis of vascular regulation. In: Betz E, editor. Ionic actions on vascular smooth muscle: with special regard to brain vessels. New York: Springer-Verlag, 1976: 48–55CrossRef
54.
Zurück zum Zitat Greenberg HE, Sica A, Batson D, et al. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 1999; 86 (1): 298–305PubMed Greenberg HE, Sica A, Batson D, et al. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 1999; 86 (1): 298–305PubMed
55.
Zurück zum Zitat Rasmussen P, Stie H, Nielsen B, et al. Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 2006; 96 (3): 299–304PubMedCrossRef Rasmussen P, Stie H, Nielsen B, et al. Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol 2006; 96 (3): 299–304PubMedCrossRef
56.
Zurück zum Zitat Jordan J, Shannon JR, Diedrich A, et al. Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 2000; 36 (3): 38CrossRef Jordan J, Shannon JR, Diedrich A, et al. Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 2000; 36 (3): 38CrossRef
57.
Zurück zum Zitat Ogoh S, Brothers RM, Barnes Q, et al. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 2005; 569 (Pt 2): 697–704PubMedCrossRef Ogoh S, Brothers RM, Barnes Q, et al. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol 2005; 569 (Pt 2): 697–704PubMedCrossRef
58.
Zurück zum Zitat Borgstrom L, Johannsson H, Siesjo BK. The relationship bettween arterial pO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 1975; 93 (3): 423–32PubMedCrossRef Borgstrom L, Johannsson H, Siesjo BK. The relationship bettween arterial pO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 1975; 93 (3): 423–32PubMedCrossRef
59.
Zurück zum Zitat Lennox WG, Gibbs EL. The blood flow in the brain and the leg of man, and the changes induced by alteration of blood gases. J Clin Invest 1932; 11 (6): 1155–77PubMedCrossRef Lennox WG, Gibbs EL. The blood flow in the brain and the leg of man, and the changes induced by alteration of blood gases. J Clin Invest 1932; 11 (6): 1155–77PubMedCrossRef
60.
Zurück zum Zitat Johnston AJ, Steiner LA, Balestreri M, et al. Hyperoxia and the cerebral hemodynamic responses to moderate hyperventilation. Acta Anaesthesiol Scand 2003; 47 (4): 391–6PubMedCrossRef Johnston AJ, Steiner LA, Balestreri M, et al. Hyperoxia and the cerebral hemodynamic responses to moderate hyperventilation. Acta Anaesthesiol Scand 2003; 47 (4): 391–6PubMedCrossRef
61.
Zurück zum Zitat Haggendal E, Johansson B. Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand Suppl 1965; 258: 27–53PubMedCrossRef Haggendal E, Johansson B. Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand Suppl 1965; 258: 27–53PubMedCrossRef
62.
Zurück zum Zitat Kogure K, Scheinberg P, Reinmuth OM, et al. Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol 1970; 29 (2): 223–9PubMed Kogure K, Scheinberg P, Reinmuth OM, et al. Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol 1970; 29 (2): 223–9PubMed
63.
Zurück zum Zitat Brisswalter J, Arcelin R, Audiffren M, et al. Influence of physical exercise on simple reaction time: effect of physical fitness. Percept Mot Skills 1997; 85 (3 Pt 1): 1019–27PubMedCrossRef Brisswalter J, Arcelin R, Audiffren M, et al. Influence of physical exercise on simple reaction time: effect of physical fitness. Percept Mot Skills 1997; 85 (3 Pt 1): 1019–27PubMedCrossRef
64.
Zurück zum Zitat Richards JC, McKenzie DC, Warburton DE, et al. Prevalence of exercise-induced arterial hypoxemia in healthy women. Med Sci Sports Exerc 2004; 36 (9): 1514–21PubMedCrossRef Richards JC, McKenzie DC, Warburton DE, et al. Prevalence of exercise-induced arterial hypoxemia in healthy women. Med Sci Sports Exerc 2004; 36 (9): 1514–21PubMedCrossRef
65.
Zurück zum Zitat Rasmussen P, Dawson EA, Nybo L, et al. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 2007; 27 (5): 1082–93PubMed Rasmussen P, Dawson EA, Nybo L, et al. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 2007; 27 (5): 1082–93PubMed
66.
Zurück zum Zitat Brooks GA, Fahey TD, Baldwin KM. The why of pulmonary ventilation. In: Barrosse E, Barrett N, editors. Exercise physiology: human bioenergetics and its applications. 4th ed. New York: McGraw-Hill, 2005: 241–57 Brooks GA, Fahey TD, Baldwin KM. The why of pulmonary ventilation. In: Barrosse E, Barrett N, editors. Exercise physiology: human bioenergetics and its applications. 4th ed. New York: McGraw-Hill, 2005: 241–57
67.
Zurück zum Zitat Gonzalez-Alonso J, Dalsgaard MK, Osada T, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 2004; 557 (Pt 1): 331–42PubMedCrossRef Gonzalez-Alonso J, Dalsgaard MK, Osada T, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 2004; 557 (Pt 1): 331–42PubMedCrossRef
68.
Zurück zum Zitat Nielsen HB, Boushel R, Madsen P, et al. Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol 1999; 277 (3 Pt 2): H1045–52PubMed Nielsen HB, Boushel R, Madsen P, et al. Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol 1999; 277 (3 Pt 2): H1045–52PubMed
69.
Zurück zum Zitat Rowell LB, Taylor HL, Wang Y, et al. Saturation of arterial blood with oxygen during maximal exercise. J Appl Physiol 1964; 19: 284–6PubMed Rowell LB, Taylor HL, Wang Y, et al. Saturation of arterial blood with oxygen during maximal exercise. J Appl Physiol 1964; 19: 284–6PubMed
70.
Zurück zum Zitat Kontos HA, Wei EP, Navari RM, et al. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978; 234 (4): H371–83PubMed Kontos HA, Wei EP, Navari RM, et al. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 1978; 234 (4): H371–83PubMed
71.
Zurück zum Zitat Brooks GA, Fahey TD, Baldwin KM. Cardiovascular dynamics during exercise. in: Exercise physiology: human bioenergetics and its applications. 4th ed. New York: McGraw-Hill, 2005: 340–62 Brooks GA, Fahey TD, Baldwin KM. Cardiovascular dynamics during exercise. in: Exercise physiology: human bioenergetics and its applications. 4th ed. New York: McGraw-Hill, 2005: 340–62
72.
Zurück zum Zitat Scheinberg P, Stead EA. The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J Clin Invest:1949; 28 (5 Pt 2): 1163–71PubMedCrossRef Scheinberg P, Stead EA. The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J Clin Invest:1949; 28 (5 Pt 2): 1163–71PubMedCrossRef
73.
Zurück zum Zitat Magyar MT, Valikovics A, Czuriga I, et al. Changes of cerebral hemodynamics in hypertensives during physical exercise. J Neuroimaging 2005; 15 (1): 64–9PubMed Magyar MT, Valikovics A, Czuriga I, et al. Changes of cerebral hemodynamics in hypertensives during physical exercise. J Neuroimaging 2005; 15 (1): 64–9PubMed
74.
Zurück zum Zitat Ogoh S, Dalsgaard MK, Yoshiga CC, et al. Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 2005; 288 (3): H1461–7PubMedCrossRef Ogoh S, Dalsgaard MK, Yoshiga CC, et al. Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol 2005; 288 (3): H1461–7PubMedCrossRef
75.
Zurück zum Zitat Koike A, Itoh H, Oohara R, et al. Cerebral oxygenation during exercise in cardiac patients. Chest 2004; 125 (1): 182–90PubMedCrossRef Koike A, Itoh H, Oohara R, et al. Cerebral oxygenation during exercise in cardiac patients. Chest 2004; 125 (1): 182–90PubMedCrossRef
76.
Zurück zum Zitat Bogert LW, Erol-Yilmaz A, Tukkie R, et al. Varying the heart rate response to dynamic exercise in pacemaker-dependent subjects: effects on cardiac output and cerebral blood velocity. Clin Sci (Lond) 2005; 109 (6): 493–501CrossRef Bogert LW, Erol-Yilmaz A, Tukkie R, et al. Varying the heart rate response to dynamic exercise in pacemaker-dependent subjects: effects on cardiac output and cerebral blood velocity. Clin Sci (Lond) 2005; 109 (6): 493–501CrossRef
77.
Zurück zum Zitat Secher NH, Quistorff B. Brain glucose and lactate uptake during exhaustive exercise. J Physiol 2005; 568 (Pt 1): 3PubMedCrossRef Secher NH, Quistorff B. Brain glucose and lactate uptake during exhaustive exercise. J Physiol 2005; 568 (Pt 1): 3PubMedCrossRef
78.
Zurück zum Zitat Nybo L, Nielsen B, Blomstrand E, et al. Neurohumoral responses during prolonged exercise in humans. J Appl Physiol 2003; 95 (3): 1125–31PubMed Nybo L, Nielsen B, Blomstrand E, et al. Neurohumoral responses during prolonged exercise in humans. J Appl Physiol 2003; 95 (3): 1125–31PubMed
79.
Zurück zum Zitat Kemppainen J, Aalto S, Fujimoto T, et al. High intensity exercise decreases global brain glucose uptake in humans. J Physiol 2005; 568 (Pt 1): 323–32PubMedCrossRef Kemppainen J, Aalto S, Fujimoto T, et al. High intensity exercise decreases global brain glucose uptake in humans. J Physiol 2005; 568 (Pt 1): 323–32PubMedCrossRef
80.
Zurück zum Zitat McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition, and human performance. 6th ed. Baltimore (MD): Lippincott Williams & Wilkins, 2007 McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition, and human performance. 6th ed. Baltimore (MD): Lippincott Williams & Wilkins, 2007
81.
Zurück zum Zitat Nybo L, Moller K, Pedersen BK, et al. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand 2003; 179 (1): 67–74PubMedCrossRef Nybo L, Moller K, Pedersen BK, et al. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand 2003; 179 (1): 67–74PubMedCrossRef
82.
Zurück zum Zitat Smith D, Pernet A, Hallett WA, et al. Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 2003; 23 (6): 658–64PubMedCrossRef Smith D, Pernet A, Hallett WA, et al. Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 2003; 23 (6): 658–64PubMedCrossRef
83.
Zurück zum Zitat Ido Y, Chang K, Woolsey TA, et al. NADH: sensor of blood flow need in brain, muscle, and other tissues. Faseb J 2001; 15 (8): 1419–21PubMed Ido Y, Chang K, Woolsey TA, et al. NADH: sensor of blood flow need in brain, muscle, and other tissues. Faseb J 2001; 15 (8): 1419–21PubMed
84.
Zurück zum Zitat Mintun MA, Vlassenko AG, Rundle MM, et al. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci USA 2004; 101 (2): 659–64PubMedCrossRef Mintun MA, Vlassenko AG, Rundle MM, et al. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci USA 2004; 101 (2): 659–64PubMedCrossRef
85.
Zurück zum Zitat Rasmussen P, Plomgaard P, Krogh-Madsen R, et al. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip. J Appl Physiol 2006; 101 (5): 1406–11PubMedCrossRef Rasmussen P, Plomgaard P, Krogh-Madsen R, et al. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip. J Appl Physiol 2006; 101 (5): 1406–11PubMedCrossRef
86.
Zurück zum Zitat Vlassenko AG, Rundle MM, Raichle ME, et al. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci USA 2006; 103 (6): 1964–9PubMedCrossRef Vlassenko AG, Rundle MM, Raichle ME, et al. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci USA 2006; 103 (6): 1964–9PubMedCrossRef
87.
Zurück zum Zitat Rowell LB, Marx HJ, Bruce RA, et al. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J Clin Invest 1966; 45 (11): 1801PubMedCrossRef Rowell LB, Marx HJ, Bruce RA, et al. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J Clin Invest 1966; 45 (11): 1801PubMedCrossRef
88.
Zurück zum Zitat Heistad DD, Marcus ML. Evidence that neural mechanisms do not have important effects on cerebral blood flow. Circ Res 1978; 42 (3): 295–302PubMedCrossRef Heistad DD, Marcus ML. Evidence that neural mechanisms do not have important effects on cerebral blood flow. Circ Res 1978; 42 (3): 295–302PubMedCrossRef
89.
Zurück zum Zitat Harper AM, Deshmukh VD, Rowan JO, et al. The influence of sympathetic nervous activity on cerebral blood flow. Arch Neurol 1972; 27 (1): 1–6PubMedCrossRef Harper AM, Deshmukh VD, Rowan JO, et al. The influence of sympathetic nervous activity on cerebral blood flow. Arch Neurol 1972; 27 (1): 1–6PubMedCrossRef
90.
Zurück zum Zitat Rea RF, Wallin BG. Sympathetic nerve activity in arm and leg muscles during lower body negative pressure in humans. J Appl Physiol 1989; 66 (6): 2778–81PubMed Rea RF, Wallin BG. Sympathetic nerve activity in arm and leg muscles during lower body negative pressure in humans. J Appl Physiol 1989; 66 (6): 2778–81PubMed
91.
Zurück zum Zitat van der Zwan A, Hillen B, Tulleken CA, et al. Variability of the territories of the major cerebral arteries. J Neurosurg 1992; 77 (6): 927–40PubMedCrossRef van der Zwan A, Hillen B, Tulleken CA, et al. Variability of the territories of the major cerebral arteries. J Neurosurg 1992; 77 (6): 927–40PubMedCrossRef
92.
Zurück zum Zitat Jones MD, Jones MD Jr, Traystman RJ, Simmons MA, et al. Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol 1981; 240 (2): H209–15PubMed Jones MD, Jones MD Jr, Traystman RJ, Simmons MA, et al. Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol 1981; 240 (2): H209–15PubMed
93.
Zurück zum Zitat Hardebo JE, Hanko J, Owman C. Species variation in the cerebrovascular response to neurotransmitters and related vasoactive agents. Gen Pharmacol 1983; 14 (1): 135–6PubMedCrossRef Hardebo JE, Hanko J, Owman C. Species variation in the cerebrovascular response to neurotransmitters and related vasoactive agents. Gen Pharmacol 1983; 14 (1): 135–6PubMedCrossRef
94.
Zurück zum Zitat Byrne A, Byrne DG. The effect of exercise on depression, anxiety and other mood states: a review. J Psychosom Res 1993; 37 (6): 565–74PubMedCrossRef Byrne A, Byrne DG. The effect of exercise on depression, anxiety and other mood states: a review. J Psychosom Res 1993; 37 (6): 565–74PubMedCrossRef
95.
Zurück zum Zitat Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 2003; 58 (2): 176–80PubMedCrossRef Colcombe SJ, Erickson KI, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 2003; 58 (2): 176–80PubMedCrossRef
96.
Zurück zum Zitat Boule NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286 (10): 121CrossRef Boule NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286 (10): 121CrossRef
97.
Zurück zum Zitat Zachwieja JJ. Exercise as treatment for obesity. Endocrinol Metab Clin North Am 1996; 25 (4): 965–88PubMedCrossRef Zachwieja JJ. Exercise as treatment for obesity. Endocrinol Metab Clin North Am 1996; 25 (4): 965–88PubMedCrossRef
98.
Zurück zum Zitat Rippe JM, Hess S. The role of physical activity in the prevention and management of obesity. J Am Diet Assoc 1998; 98 (10 Suppl. 2): S31–8PubMedCrossRef Rippe JM, Hess S. The role of physical activity in the prevention and management of obesity. J Am Diet Assoc 1998; 98 (10 Suppl. 2): S31–8PubMedCrossRef
99.
Zurück zum Zitat Powell KE, Thompson PD, Caspersen CJ, et al. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health 1987; 8: 253–87PubMedCrossRef Powell KE, Thompson PD, Caspersen CJ, et al. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health 1987; 8: 253–87PubMedCrossRef
Metadaten
Titel
Regulation of Cerebral Blood Flow During Exercise
verfasst von
Jordan S. Querido
Dr A. William Sheel
Publikationsdatum
01.09.2007
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2007
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200737090-00002

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.