Skip to main content
Erschienen in: Sports Medicine 2/2008

01.02.2008 | Review Article

Mechanotransduction in Human Bone

In Vitro Cellular Physiology that Underpins Bone Changes with Exercise

verfasst von: Dr Alexander Scott, Karim M. Khan, Vincent Duronio, David A. Hart

Erschienen in: Sports Medicine | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Bone has a remarkable ability to adjust its mass and architecture in response to a wide range of loads, from low-level gravitational forces to high-level impacts. A variety of types and magnitudes of mechanical stimuli have been shown to influence human bone cell metabolism in vitro, including fluid shear, tensile and compressive strain, altered gravity and vibration. Therefore, the current article aims to synthesize in vitro data regarding the cellular mechanisms underlying the response of human bone cells to mechanical loading. Current data demonstrate commonalities in response to different types of mechanical stimuli on the one hand, along with differential activation of intracellular signalling on the other. A major unanswered question is, how do bone cells sense and distinguish between different types of load? The studies included in the present article suggest that the type and magnitude of loading may be discriminated by overlapping mechanosensory mechanisms including (i) ion channels; (ii) integrins; (iii) G-proteins; and (iv) the cytoskeleton. The downstream signalling pathways identified to date appear to overlap with known growth factor and hormone signals, providing a mechanism of interaction between systemic influences and the local mechanical environment. Finally, the data suggest that exercise should emphasize the amount of load rather than the number of repetitions.
Literatur
1.
Zurück zum Zitat Rittweger J, Frost HM, Schiessl H, et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36: 1019–29PubMed Rittweger J, Frost HM, Schiessl H, et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36: 1019–29PubMed
2.
Zurück zum Zitat Giangregorio L, Mc Cartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 2006; 29: 489–500PubMed Giangregorio L, Mc Cartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 2006; 29: 489–500PubMed
3.
Zurück zum Zitat Jones DB, Scholuebbers G, Matthias HH. Wolff’s law, piezoelectricity and mechanical responses in the skeleton. Proceedings of the Annual International Conference of the IEEE; 1988 Nov 4-7; New Orleans (LA) Jones DB, Scholuebbers G, Matthias HH. Wolff’s law, piezoelectricity and mechanical responses in the skeleton. Proceedings of the Annual International Conference of the IEEE; 1988 Nov 4-7; New Orleans (LA)
4.
Zurück zum Zitat Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 1081–101PubMed Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 1081–101PubMed
5.
Zurück zum Zitat Tasevski V, Sorbetti JM, Chiu SS, et al. Influence of mechanical and biological signals on gene expression in human MG−63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF—beta1 on MMP−1 and MMP−3 mRNA levels. Biochem Cell Biol 2005; 83: 96–107PubMed Tasevski V, Sorbetti JM, Chiu SS, et al. Influence of mechanical and biological signals on gene expression in human MG−63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF—beta1 on MMP−1 and MMP−3 mRNA levels. Biochem Cell Biol 2005; 83: 96–107PubMed
6.
Zurück zum Zitat Cheng MZ, Rawlinson SC, Pitsillides AA, et al. Human osteoblasts’ proliferative responses to strain and 17beta—estradiol are mediated by the estrogen receptor and the receptor for insulin—like growth factor I. J Bone Miner Res 2002; 17: 593–602PubMed Cheng MZ, Rawlinson SC, Pitsillides AA, et al. Human osteoblasts’ proliferative responses to strain and 17beta—estradiol are mediated by the estrogen receptor and the receptor for insulin—like growth factor I. J Bone Miner Res 2002; 17: 593–602PubMed
7.
Zurück zum Zitat Sorkin AM, Dee KC, Knothe Tate ML. ‘Culture shock’ from the bone cell’s perspective: emulating physiological conditions for mechanobiological investigations. Am J Physiol Cell Physiol 2004; 287: C1527–36 Sorkin AM, Dee KC, Knothe Tate ML. ‘Culture shock’ from the bone cell’s perspective: emulating physiological conditions for mechanobiological investigations. Am J Physiol Cell Physiol 2004; 287: C1527–36
8.
Zurück zum Zitat Jorgensen NR, Henriksen Z, Brot C, et al. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 2000; 15: 1024–32PubMed Jorgensen NR, Henriksen Z, Brot C, et al. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 2000; 15: 1024–32PubMed
9.
Zurück zum Zitat Jorgensen NR, Henriksen Z, Sorensen OH, et al. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 2002; 277: 7574–80PubMed Jorgensen NR, Henriksen Z, Sorensen OH, et al. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 2002; 277: 7574–80PubMed
10.
Zurück zum Zitat Haut Donahue TL, Genetos DC, Jacobs CR, et al. Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 2004; 35: 656–63PubMed Haut Donahue TL, Genetos DC, Jacobs CR, et al. Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 2004; 35: 656–63PubMed
11.
Zurück zum Zitat Li YJ, Batra NN, You L, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004; 22: 1283–9PubMed Li YJ, Batra NN, You L, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004; 22: 1283–9PubMed
12.
Zurück zum Zitat Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun 2004; 320: 1163–8PubMed Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun 2004; 320: 1163–8PubMed
13.
Zurück zum Zitat Taylor AF, Saunders MM, Shingle DL, et al. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol 2007; 292: C545–52 Taylor AF, Saunders MM, Shingle DL, et al. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol 2007; 292: C545–52
14.
Zurück zum Zitat Liegibel UM, Sommer U, Bundschuh B, et al. Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro. Exp Clin Endocrinol Diabetes 2004; 112: 356–63PubMed Liegibel UM, Sommer U, Bundschuh B, et al. Fluid shear of low magnitude increases growth and expression of TGFbeta1 and adhesion molecules in human bone cells in vitro. Exp Clin Endocrinol Diabetes 2004; 112: 356–63PubMed
15.
Zurück zum Zitat Bakker AD, Klein-Nulend J, Burger EH. Mechanotransduction in bone cells proceeds via activation of COX−2, but not COX−1. Biochem Biophys Res Commun 2003; 305: 677–83PubMed Bakker AD, Klein-Nulend J, Burger EH. Mechanotransduction in bone cells proceeds via activation of COX−2, but not COX−1. Biochem Biophys Res Commun 2003; 305: 677–83PubMed
16.
Zurück zum Zitat Bannister SR, Lohmann CH, Liu Y, et al. Shear force modulates osteoblast response to surface roughness. J Biomed Mater Res 2002; 60: 167–74PubMed Bannister SR, Lohmann CH, Liu Y, et al. Shear force modulates osteoblast response to surface roughness. J Biomed Mater Res 2002; 60: 167–74PubMed
17.
Zurück zum Zitat Joldersma M, Burger EH, Semeins CM, et al. Mechanical stress induces COX−2 mRNA expression in bone cells from elderly women. J Biomech 2000; 33: 53–61PubMed Joldersma M, Burger EH, Semeins CM, et al. Mechanical stress induces COX−2 mRNA expression in bone cells from elderly women. J Biomech 2000; 33: 53–61PubMed
18.
Zurück zum Zitat Joldersma M, Klein-Nulend J, Oleksik AM, et al. Estrogen enhances mechanical stress—induced prostaglandin production by bone cells from elderly women. Am J Physiol Endocrinol Metab 2001; 280: E436–42 Joldersma M, Klein-Nulend J, Oleksik AM, et al. Estrogen enhances mechanical stress—induced prostaglandin production by bone cells from elderly women. Am J Physiol Endocrinol Metab 2001; 280: E436–42
19.
Zurück zum Zitat Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 2003; 32: 241–51PubMed Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 2003; 32: 241–51PubMed
20.
Zurück zum Zitat Klein-Nulend J, Helfrich MH, Sterck JG, et al. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 1998; 250: 108–14PubMed Klein-Nulend J, Helfrich MH, Sterck JG, et al. Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 1998; 250: 108–14PubMed
21.
Zurück zum Zitat Mc Donald F, Somasundaram B, Mc Cann TJ, et al. Calcium waves in fluid flow stimulated osteoblasts are G protein mediated. Arch Biochem Biophys 1996; 326: 31–8 Mc Donald F, Somasundaram B, Mc Cann TJ, et al. Calcium waves in fluid flow stimulated osteoblasts are G protein mediated. Arch Biochem Biophys 1996; 326: 31–8
22.
Zurück zum Zitat Mullender M, El Haj AJ, Yang Y, et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 2004; 42: 14–21PubMed Mullender M, El Haj AJ, Yang Y, et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 2004; 42: 14–21PubMed
23.
Zurück zum Zitat Ogata T. Increase in epidermal growth factor receptor protein induced in osteoblastic cells after exposure to flow of culture media. Am J Physiol Cell Physiol 2003; 285: C425–32 Ogata T. Increase in epidermal growth factor receptor protein induced in osteoblastic cells after exposure to flow of culture media. Am J Physiol Cell Physiol 2003; 285: C425–32
24.
Zurück zum Zitat Pines A, Romanello M, Cesaratto L, et al. Extracellular ATP stimulates the early growth response protein 1 (Egr−1) via a protein kinase C—dependent pathway in the human osteoblastic HOBIT cell line. Biochem J 2003; 373: 815–24PubMed Pines A, Romanello M, Cesaratto L, et al. Extracellular ATP stimulates the early growth response protein 1 (Egr−1) via a protein kinase C—dependent pathway in the human osteoblastic HOBIT cell line. Biochem J 2003; 373: 815–24PubMed
25.
Zurück zum Zitat Romanello M, Pani B, Bicego M, et al. Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 2001; 289: 1275–81PubMed Romanello M, Pani B, Bicego M, et al. Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 2001; 289: 1275–81PubMed
26.
Zurück zum Zitat Sakai K, Mohtai M, Iwamoto Y. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast—like cells: modulation by cation channel blockades. Calcif Tissue Int 1998; 63: 515–20PubMed Sakai K, Mohtai M, Iwamoto Y. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast—like cells: modulation by cation channel blockades. Calcif Tissue Int 1998; 63: 515–20PubMed
27.
Zurück zum Zitat Sakai K, Mohtai M, Shida J, et al. Fluid shear stress increases interleukin−11 expression in human osteoblast—like cells: its role in osteoclast induction. J Bone Miner Res 1999; 14: 2089–98PubMed Sakai K, Mohtai M, Shida J, et al. Fluid shear stress increases interleukin−11 expression in human osteoblast—like cells: its role in osteoclast induction. J Bone Miner Res 1999; 14: 2089–98PubMed
28.
Zurück zum Zitat Sterck JG, Klein-Nulend J, Lips P, et al. Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 1998; 274: E1113–20 Sterck JG, Klein-Nulend J, Lips P, et al. Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 1998; 274: E1113–20
29.
Zurück zum Zitat Weyts FA, Bosmans B, Niesing R, et al. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 2003; 72: 505–12PubMed Weyts FA, Bosmans B, Niesing R, et al. Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 2003; 72: 505–12PubMed
30.
Zurück zum Zitat You J, Yellowley CE, Donahue HJ, et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading—induced oscillatory fluid flow. J Biomech Eng 2000; 122: 387–93PubMed You J, Yellowley CE, Donahue HJ, et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading—induced oscillatory fluid flow. J Biomech Eng 2000; 122: 387–93PubMed
31.
Zurück zum Zitat Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3−D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 2004; 74: 458–68PubMed Mauney JR, Sjostorm S, Blumberg J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3−D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 2004; 74: 458–68PubMed
32.
Zurück zum Zitat Liu D, Vandahl BB, Birkelund S, et al. Secretion of osteopontin from MG−63 cells under a physiological level of mechanical strain in vitro—a [35S] incorporation approach. Eur J Orthod 2004; 26: 143–9PubMed Liu D, Vandahl BB, Birkelund S, et al. Secretion of osteopontin from MG−63 cells under a physiological level of mechanical strain in vitro—a [35S] incorporation approach. Eur J Orthod 2004; 26: 143–9PubMed
33.
Zurück zum Zitat Carvalho RS, Scott JE, Yen EH. The effects of mechanical stimulation on the distribution of beta 1 integrin and expression of beta 1−integrin mRNA in TE−85 human osteosarcoma cells. Arch Oral Biol 1995; 40: 257–64PubMed Carvalho RS, Scott JE, Yen EH. The effects of mechanical stimulation on the distribution of beta 1 integrin and expression of beta 1−integrin mRNA in TE−85 human osteosarcoma cells. Arch Oral Biol 1995; 40: 257–64PubMed
34.
Zurück zum Zitat Cillo Jr JE, Gassner R, Koepsel RR, et al. Growth factor and cytokine gene expression in mechanically strained human osteoblast—like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 90: 147–54PubMed Cillo Jr JE, Gassner R, Koepsel RR, et al. Growth factor and cytokine gene expression in mechanically strained human osteoblast—like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 90: 147–54PubMed
35.
Zurück zum Zitat Di Palma F, Chamson A, Lafage-Proust MH, et al. Physiological strains remodel extracellular matrix and cell—cell adhesion in osteoblastic cells cultured on alumina—coated titanium alloy. Biomaterials 2004; 25: 2565–75PubMed Di Palma F, Chamson A, Lafage-Proust MH, et al. Physiological strains remodel extracellular matrix and cell—cell adhesion in osteoblastic cells cultured on alumina—coated titanium alloy. Biomaterials 2004; 25: 2565–75PubMed
36.
Zurück zum Zitat Di Palma F, Douet M, Boachon C, et al. Physiological strains induce differentiation in human osteoblasts cultured on orthopaedic biomaterial. Biomaterials 2003; 24: 3139–51PubMed Di Palma F, Douet M, Boachon C, et al. Physiological strains induce differentiation in human osteoblasts cultured on orthopaedic biomaterial. Biomaterials 2003; 24: 3139–51PubMed
37.
Zurück zum Zitat Fermor B, Gundle R, Evans M, et al. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 1998; 22: 637–43PubMed Fermor B, Gundle R, Evans M, et al. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 1998; 22: 637–43PubMed
38.
Zurück zum Zitat Harter LV, Hruska KA, Duncan RL. Human osteoblast—like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 1995; 136: 528–35PubMed Harter LV, Hruska KA, Duncan RL. Human osteoblast—like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 1995; 136: 528–35PubMed
39.
Zurück zum Zitat Jagodzinski M, Drescher M, Zeichen J, et al. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 2004; 7: 35–41; discussion 41PubMed Jagodzinski M, Drescher M, Zeichen J, et al. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 2004; 7: 35–41; discussion 41PubMed
40.
Zurück zum Zitat Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 2000; 33: 45–51PubMed Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 2000; 33: 45–51PubMed
41.
Zurück zum Zitat Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Proliferation of human—derived osteoblast—like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 2002; 35: 873–80PubMed Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Proliferation of human—derived osteoblast—like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 2002; 35: 873–80PubMed
42.
Zurück zum Zitat Lacouture ME, Schaffer JL, Klickstein LB. A comparison of type I collagen, fibronectin, and vitronectin in supporting adhesion of mechanically strained osteoblasts. J Bone Miner Res 2002; 17: 481–92PubMed Lacouture ME, Schaffer JL, Klickstein LB. A comparison of type I collagen, fibronectin, and vitronectin in supporting adhesion of mechanically strained osteoblasts. J Bone Miner Res 2002; 17: 481–92PubMed
43.
Zurück zum Zitat Liedert A, Augat P, Ignatius A, et al. Mechanical regulation of HB—GAM expression in bone cells. Biochem Biophys Res Commun 2004; 319: 951–8PubMed Liedert A, Augat P, Ignatius A, et al. Mechanical regulation of HB—GAM expression in bone cells. Biochem Biophys Res Commun 2004; 319: 951–8PubMed
44.
Zurück zum Zitat Neidlinger-Wilke C, Wilke HJ, Claes L. Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 1994; 12: 70–8PubMed Neidlinger-Wilke C, Wilke HJ, Claes L. Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 1994; 12: 70–8PubMed
45.
Zurück zum Zitat Neidlinger-Wilke C, Stalla I, Claes L, et al. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta—release in response to cyclic strain. J Biomech 1995; 28: 1411–8PubMed Neidlinger-Wilke C, Stalla I, Claes L, et al. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta—release in response to cyclic strain. J Biomech 1995; 28: 1411–8PubMed
46.
Zurück zum Zitat Neidlinger-Wilke C, Grood ES, Wang J-C, et al. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 2001; 19: 286–93PubMed Neidlinger-Wilke C, Grood ES, Wang J-C, et al. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 2001; 19: 286–93PubMed
47.
Zurück zum Zitat Peake MA, Cooling LM, Magnay JL, et al. Selected contribution: regulatory pathways involved in mechanical induction of c—fos gene expression in bone cells. J Appl Physiol 2000; 89: 2498–507PubMed Peake MA, Cooling LM, Magnay JL, et al. Selected contribution: regulatory pathways involved in mechanical induction of c—fos gene expression in bone cells. J Appl Physiol 2000; 89: 2498–507PubMed
48.
Zurück zum Zitat Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res 1997; 12: 1133–41PubMed Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res 1997; 12: 1133–41PubMed
49.
Zurück zum Zitat Salter DM, Wallace WH, Robb JE, et al. Human bone cell hyperpolarization response to cyclical mechanical strain is mediated by an interleukin−1beta autocrine/paracrine loop. J Bone Miner Res 2000; 15: 1746–55PubMed Salter DM, Wallace WH, Robb JE, et al. Human bone cell hyperpolarization response to cyclical mechanical strain is mediated by an interleukin−1beta autocrine/paracrine loop. J Bone Miner Res 2000; 15: 1746–55PubMed
50.
Zurück zum Zitat Stanford CM, Welsch F, Kastner N, et al. Primary human bone cultures from older patients do not respond at continuum levels of in vivo strain magnitudes. J Biomech 2000; 33: 63–71PubMed Stanford CM, Welsch F, Kastner N, et al. Primary human bone cultures from older patients do not respond at continuum levels of in vivo strain magnitudes. J Biomech 2000; 33: 63–71PubMed
51.
Zurück zum Zitat Weyts FA, Li YS, van Leeuwen J, et al. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem 2002; 87: 85–92PubMed Weyts FA, Li YS, van Leeuwen J, et al. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem 2002; 87: 85–92PubMed
52.
Zurück zum Zitat Wozniak M, Fausto A, Carron CP, et al. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3—integrin expression. J Bone Miner Res 2000; 15: 1731–45PubMed Wozniak M, Fausto A, Carron CP, et al. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3—integrin expression. J Bone Miner Res 2000; 15: 1731–45PubMed
53.
Zurück zum Zitat Yang Y, Magnay J, Cooling L, et al. Effects of substrate characteristics on bone cell response to the mechanical environment. Med Biol Eng Comput 2004; 42: 22–9PubMed Yang Y, Magnay J, Cooling L, et al. Effects of substrate characteristics on bone cell response to the mechanical environment. Med Biol Eng Comput 2004; 42: 22–9PubMed
54.
Zurück zum Zitat Jansen JH, Weyts FA, Westbroek I, et al. Stretch—induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J Cell Biochem 2004; 93: 542–51PubMed Jansen JH, Weyts FA, Westbroek I, et al. Stretch—induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J Cell Biochem 2004; 93: 542–51PubMed
55.
Zurück zum Zitat Chen YJ, Wang CJ, Yang KD, et al. Pertussis toxin—sensitive Galphai protein and ERK—dependent pathways mediate ultra—sound promotion of osteogenic transcription in human osteoblasts. FEBS Lett 2003; 554: 154–8PubMed Chen YJ, Wang CJ, Yang KD, et al. Pertussis toxin—sensitive Galphai protein and ERK—dependent pathways mediate ultra—sound promotion of osteogenic transcription in human osteoblasts. FEBS Lett 2003; 554: 154–8PubMed
56.
Zurück zum Zitat Doan N, Reher P, Meghji S, et al. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 1999; 57: 409–19; discussion 420PubMed Doan N, Reher P, Meghji S, et al. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 1999; 57: 409–19; discussion 420PubMed
57.
Zurück zum Zitat Harle J, Salih V, Knowles JC, et al. Effects of therapeutic ultrasound on osteoblast gene expression. J Mater Sci Mater Med 2001; 12: 1001–4PubMed Harle J, Salih V, Knowles JC, et al. Effects of therapeutic ultrasound on osteoblast gene expression. J Mater Sci Mater Med 2001; 12: 1001–4PubMed
58.
Zurück zum Zitat Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 2002; 31: 236–41PubMed Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 2002; 31: 236–41PubMed
59.
Zurück zum Zitat Rosenberg N, Levy M, Francis M. Experimental model for stimulation of cultured human osteoblast—like cells by high frequency vibration. Cytotechnology 2002; 39: 125–30PubMed Rosenberg N, Levy M, Francis M. Experimental model for stimulation of cultured human osteoblast—like cells by high frequency vibration. Cytotechnology 2002; 39: 125–30PubMed
60.
Zurück zum Zitat Rosenberg N. The role of the cytoskeleton in mechanotransduction in human osteoblast-like cells. Hum Exp Toxicol 2003; 22: 271–4PubMed Rosenberg N. The role of the cytoskeleton in mechanotransduction in human osteoblast-like cells. Hum Exp Toxicol 2003; 22: 271–4PubMed
61.
Zurück zum Zitat Davidson RM, Tatakis DW, Auerbach AL. Multiple forms of mechanosensitive ion channels in osteoblast—like cells. Pflugers Arch 1990; 416: 646–51PubMed Davidson RM, Tatakis DW, Auerbach AL. Multiple forms of mechanosensitive ion channels in osteoblast—like cells. Pflugers Arch 1990; 416: 646–51PubMed
62.
Zurück zum Zitat Davidson RM. Membrane stretch activates a high—conductance K+ channel in G292 osteoblastic—like cells. J Membr Biol 1993; 131: 81–92PubMed Davidson RM. Membrane stretch activates a high—conductance K+ channel in G292 osteoblastic—like cells. J Membr Biol 1993; 131: 81–92PubMed
63.
Zurück zum Zitat Hughes S, Dobson J, El Haj AJ. Mechanical stimulation of calcium signaling pathways in human bone cells using ferromagnetic micro—particles: implications for tissue engineering. Eur Cell Mater 2003; 6: 43 Hughes S, Dobson J, El Haj AJ. Mechanical stimulation of calcium signaling pathways in human bone cells using ferromagnetic micro—particles: implications for tissue engineering. Eur Cell Mater 2003; 6: 43
64.
Zurück zum Zitat Jorgensen NR, Teilmann SC, Henriksen Z, et al. Activation of L—type calcium channels is required for gap junction—mediated intercellular calcium signaling in osteoblastic cells. J Biol Chem 2003; 278: 4082–6PubMed Jorgensen NR, Teilmann SC, Henriksen Z, et al. Activation of L—type calcium channels is required for gap junction—mediated intercellular calcium signaling in osteoblastic cells. J Biol Chem 2003; 278: 4082–6PubMed
65.
Zurück zum Zitat Pommerenke H, Schreiber E, Durr F, et al. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 1996; 70: 157–64PubMed Pommerenke H, Schreiber E, Durr F, et al. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 1996; 70: 157–64PubMed
66.
Zurück zum Zitat Pommerenke H, Schmidt C, Durr F, et al. The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res 2002; 17: 603–11PubMed Pommerenke H, Schmidt C, Durr F, et al. The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res 2002; 17: 603–11PubMed
67.
Zurück zum Zitat Romanello M, D’Andrea P. Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap—junctional hemichannels. J Bone Miner Res 2001; 16: 1465–76PubMed Romanello M, D’Andrea P. Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap—junctional hemichannels. J Bone Miner Res 2001; 16: 1465–76PubMed
68.
Zurück zum Zitat Rychly J, Pommerenke H, Durr F, et al. Analysis of spatial distributions of cellular molecules during mechanical stressing of cell surface receptors using confocal microscopy. Cell Biol Int 1998; 22: 7–12PubMed Rychly J, Pommerenke H, Durr F, et al. Analysis of spatial distributions of cellular molecules during mechanical stressing of cell surface receptors using confocal microscopy. Cell Biol Int 1998; 22: 7–12PubMed
69.
Zurück zum Zitat Schmidt C, Pommerenke H, Durr F, et al. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 1998; 273: 5081–5PubMed Schmidt C, Pommerenke H, Durr F, et al. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 1998; 273: 5081–5PubMed
70.
Zurück zum Zitat Jorgensen NR, Teilmann SC, Henriksen Z, et al. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats. Endocrinology 2005; 146: 4745–54PubMed Jorgensen NR, Teilmann SC, Henriksen Z, et al. The antiarrhythmic peptide analog rotigaptide (ZP123) stimulates gap junction intercellular communication in human osteoblasts and prevents decrease in femoral trabecular bone strength in ovariectomized rats. Endocrinology 2005; 146: 4745–54PubMed
71.
Zurück zum Zitat Walker LM, Holm A, Cooling L, et al. Mechanical manipulation of bone and cartilage cells with ‘optical tweezers’. FEBS Lett 1999; 459: 39–42PubMed Walker LM, Holm A, Cooling L, et al. Mechanical manipulation of bone and cartilage cells with ‘optical tweezers’. FEBS Lett 1999; 459: 39–42PubMed
72.
Zurück zum Zitat Carmeliet G, Nys G, Stockmans I, et al. Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 1998; 22: 139–43S Carmeliet G, Nys G, Stockmans I, et al. Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 1998; 22: 139–43S
73.
Zurück zum Zitat Gebken J, Luders B, Notbohm H, et al. Hypergravity stimulates collagen synthesis in human osteoblast—like cells: evidence for the involvement of p44/42 MAP—kinases (ERK 1/2). J Biochem (Tokyo) 1999; 126: 676–82 Gebken J, Luders B, Notbohm H, et al. Hypergravity stimulates collagen synthesis in human osteoblast—like cells: evidence for the involvement of p44/42 MAP—kinases (ERK 1/2). J Biochem (Tokyo) 1999; 126: 676–82
74.
Zurück zum Zitat Kobayashi K, Kambe F, Kurokouchi K, et al. TNF—alpha—dependent activation of NF—kappa B in human osteoblastic HOS—TE85 cells is repressed in vector—averaged gravity using clinostat rotation. Biochem Biophys Res Commun 2000; 279: 258–64PubMed Kobayashi K, Kambe F, Kurokouchi K, et al. TNF—alpha—dependent activation of NF—kappa B in human osteoblastic HOS—TE85 cells is repressed in vector—averaged gravity using clinostat rotation. Biochem Biophys Res Commun 2000; 279: 258–64PubMed
75.
Zurück zum Zitat Kunisada T, Kawai A, Inoue H, et al. Effects of simulated microgravity on human osteoblast—like cells in culture. Acta Med Okayama 1997; 51: 135–40PubMed Kunisada T, Kawai A, Inoue H, et al. Effects of simulated microgravity on human osteoblast—like cells in culture. Acta Med Okayama 1997; 51: 135–40PubMed
76.
Zurück zum Zitat Brand RA, Stanford CM, Nicolella DP. Primary adult human bone cells do not respond to tissue (continuum) level strains. J Orthop Sci 2001; 6: 295–301PubMed Brand RA, Stanford CM, Nicolella DP. Primary adult human bone cells do not respond to tissue (continuum) level strains. J Orthop Sci 2001; 6: 295–301PubMed
77.
Zurück zum Zitat Meyer CJ, Alenghat FJ, Rim P, et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2000; 2: 666–8PubMed Meyer CJ, Alenghat FJ, Rim P, et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2000; 2: 666–8PubMed
78.
Zurück zum Zitat Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994; 9: 487–96PubMed Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994; 9: 487–96PubMed
79.
Zurück zum Zitat Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996; 18: 451–7PubMed Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone 1996; 18: 451–7PubMed
80.
Zurück zum Zitat Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons. J Cell Biol 2002; 156: 609–15PubMed Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons. J Cell Biol 2002; 156: 609–15PubMed
81.
Zurück zum Zitat Charras GT, Horton MA. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 2002; 82: 2970–81PubMed Charras GT, Horton MA. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 2002; 82: 2970–81PubMed
82.
Zurück zum Zitat Turner CH, Takano Y, Owan I, et al. Nitric oxide inhibitor L—NAME suppresses mechanically induced bone formation in rats. Am J Physiol 1996; 270: E634–9 Turner CH, Takano Y, Owan I, et al. Nitric oxide inhibitor L—NAME suppresses mechanically induced bone formation in rats. Am J Physiol 1996; 270: E634–9
83.
Zurück zum Zitat Lander HM, Hajjar DP, Hempstead BL, et al. A molecular redox switch on p21(ras): structural basis for the nitric oxide—p21(ras) interaction. J Biol Chem 1997; 272: 4323–6PubMed Lander HM, Hajjar DP, Hempstead BL, et al. A molecular redox switch on p21(ras): structural basis for the nitric oxide—p21(ras) interaction. J Biol Chem 1997; 272: 4323–6PubMed
84.
Zurück zum Zitat Gu M, Lynch J, Brecher P. Nitric oxide increases p21(Waf1/Cip1) expression by a cGMP—dependent pathway that includes activation of extracellular signal—regulated kinase and p70(S6k). J Biol Chem 2000; 275: 11389–96PubMed Gu M, Lynch J, Brecher P. Nitric oxide increases p21(Waf1/Cip1) expression by a cGMP—dependent pathway that includes activation of extracellular signal—regulated kinase and p70(S6k). J Biol Chem 2000; 275: 11389–96PubMed
85.
Zurück zum Zitat Komalavilas P, Shah PK, Jo H, et al. Activation of mitogen—activated protein kinase pathways by cyclic GMP and cyclic GMP—dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 1999; 274: 34301–9PubMed Komalavilas P, Shah PK, Jo H, et al. Activation of mitogen—activated protein kinase pathways by cyclic GMP and cyclic GMP—dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem 1999; 274: 34301–9PubMed
86.
Zurück zum Zitat Maroto R, Hamill OP. Brefeldin A block of integrin—dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 2001; 276: 23867–72PubMed Maroto R, Hamill OP. Brefeldin A block of integrin—dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 2001; 276: 23867–72PubMed
87.
Zurück zum Zitat Veitonmaki N, Cao R, Wu LH, et al. Endothelial cell surface ATP synthase—triggered caspase—apoptotic pathway is essential for k1–5−induced antiangiogenesis. Cancer Res 2004; 64: 3679–86PubMed Veitonmaki N, Cao R, Wu LH, et al. Endothelial cell surface ATP synthase—triggered caspase—apoptotic pathway is essential for k1–5−induced antiangiogenesis. Cancer Res 2004; 64: 3679–86PubMed
88.
Zurück zum Zitat Cowles EA, De Rome ME, Pastizzo G, et al. Mineralization and the expression of matrix proteins during in vivo bone development. Calcif Tissue Int 1998; 62: 74–82PubMed Cowles EA, De Rome ME, Pastizzo G, et al. Mineralization and the expression of matrix proteins during in vivo bone development. Calcif Tissue Int 1998; 62: 74–82PubMed
89.
Zurück zum Zitat Kato M, Patel MS, Levasseur R, et al. Cbfa1−independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157: 303–14PubMed Kato M, Patel MS, Levasseur R, et al. Cbfa1−independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157: 303–14PubMed
90.
Zurück zum Zitat Turner CH, Owan I, Alvey T, et al. Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained—release bromodeoxyuridine. Bone 1998; 22: 463–9PubMed Turner CH, Owan I, Alvey T, et al. Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained—release bromodeoxyuridine. Bone 1998; 22: 463–9PubMed
91.
Zurück zum Zitat Bonewald LF. Osteocyte biology: its implications for osteoporosis. J Musculoskelet Neuronal Interact 2004; 4: 101–4PubMed Bonewald LF. Osteocyte biology: its implications for osteoporosis. J Musculoskelet Neuronal Interact 2004; 4: 101–4PubMed
92.
Zurück zum Zitat Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol 2004; 19: 973–83PubMed Zhan M, Zhao H, Han ZC. Signalling mechanisms of anoikis. Histol Histopathol 2004; 19: 973–83PubMed
93.
Zurück zum Zitat Bucaro MA, Fertala J, Adams CS, et al. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann N Y Acad Sci 2004; 1027: 64–73PubMed Bucaro MA, Fertala J, Adams CS, et al. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann N Y Acad Sci 2004; 1027: 64–73PubMed
94.
Zurück zum Zitat Henriksen Z, Hiken JF, Steinberg TH, et al. The predominant mechanism of intercellular calcium wave propagation changes during long—term culture of human osteoblast—like cells. Cell Calcium 2006; 39: 435–44PubMed Henriksen Z, Hiken JF, Steinberg TH, et al. The predominant mechanism of intercellular calcium wave propagation changes during long—term culture of human osteoblast—like cells. Cell Calcium 2006; 39: 435–44PubMed
95.
Zurück zum Zitat Heino TJ, Hentunen TA, Vaananen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 2004; 294: 458–68PubMed Heino TJ, Hentunen TA, Vaananen HK. Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 2004; 294: 458–68PubMed
96.
Zurück zum Zitat Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int 2002; 13: 688–700PubMed Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int 2002; 13: 688–700PubMed
97.
Zurück zum Zitat Jessop HL, Sjoberg M, Cheng MZ, et al. Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res 2001; 16: 1045–55PubMed Jessop HL, Sjoberg M, Cheng MZ, et al. Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J Bone Miner Res 2001; 16: 1045–55PubMed
98.
Zurück zum Zitat Civitelli R, Ziambaras K, Warlow PM, et al. Regulation of connexin43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem 1998; 68: 8–21PubMed Civitelli R, Ziambaras K, Warlow PM, et al. Regulation of connexin43 expression and function by prostaglandin E2 (PGE2) and parathyroid hormone (PTH) in osteoblastic cells. J Cell Biochem 1998; 68: 8–21PubMed
99.
Zurück zum Zitat Schiller PC, Mehta PP, Roos BA, et al. Hormonal regulation of intercellular communication: parathyroid hormone increases connexin 43 gene expression and gap—junctional communication in osteoblastic cells. Mol Endocrinol 1992; 6: 1433–40PubMed Schiller PC, Mehta PP, Roos BA, et al. Hormonal regulation of intercellular communication: parathyroid hormone increases connexin 43 gene expression and gap—junctional communication in osteoblastic cells. Mol Endocrinol 1992; 6: 1433–40PubMed
100.
Zurück zum Zitat Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 2003; 116: 1157–73PubMed Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 2003; 116: 1157–73PubMed
101.
Zurück zum Zitat Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003; 116: 1397–408PubMed Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003; 116: 1397–408PubMed
102.
Zurück zum Zitat van’t Hof RJ, Macphee J, Libouban H, et al. Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 2004; 145: 5068–74 van’t Hof RJ, Macphee J, Libouban H, et al. Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 2004; 145: 5068–74
103.
Zurück zum Zitat Hart DA, Natsu-ume T, Sciore P, et al. Mechanobiology: similarities and differences between in vivo and in vitro analysis at the functional and molecular levels. Recent Res Devel Biophys Biochem 2002; 2: 153–77 Hart DA, Natsu-ume T, Sciore P, et al. Mechanobiology: similarities and differences between in vivo and in vitro analysis at the functional and molecular levels. Recent Res Devel Biophys Biochem 2002; 2: 153–77
Metadaten
Titel
Mechanotransduction in Human Bone
In Vitro Cellular Physiology that Underpins Bone Changes with Exercise
verfasst von
Dr Alexander Scott
Karim M. Khan
Vincent Duronio
David A. Hart
Publikationsdatum
01.02.2008
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 2/2008
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200838020-00004

Weitere Artikel der Ausgabe 2/2008

Sports Medicine 2/2008 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.