Skip to main content
Log in

Antiepileptic Agents and Birth Defects

Incidence, Mechanisms and Prevention

  • Adverse Effects
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

An association exists between maternal use of antiepileptic drugs (AEDs) during pregnancy and birth defects in offspring. The overall malformation rate is 11.1% in offspring of AED-treated epileptic mothers, while it is 5.7% in the offspring of untreated epileptic mothers and 4.8% in those of the general population. Cardiovascular defects, facial cleftings and skeletal anomalies are the most frequently occurring AED-associated malformations. No firm patterns of specific AEDs inducing particular birth defects have been established. Nevertheless, neural tube defects may be specific malformations in infants exposed to both valproic acid (sodium valproate) and/or carbamazepine. Several minor anomalies are influenced by genetic factors.

From prospective studies a number of primary risk factors for increased incidences of congenital malformations in the offspring of epileptic mothers receiving AEDs have been identified. These include high drug dosage, high serum drug concentration, the use of AEDs with high teratogenicity potency [primidone > valproic acid > phenytoin > carbamazepine > phenobarbital (phenobarbitone)] and AED polypharmacy (especially combinations of valproic acid and carbamazepine, and phenytoin and/or carbamazepine with or without barbiturates).

The mechanism of teratogenicity of AEDs is still being investigated, but it is postulated that epoxide intermediates and other toxic metabolites of AEDs might be involved. In addition, the folate deficiency and impaired folate metabolism caused by AEDs may contribute to the teratogenicity of these drugs.

To prevent birth defects, the use of the lowest effective AED dosage and a change from polypharmacy to monotherapy are recommended before conception. A decrease in serum AED concentrations during pregnancy does not in itself justify an increase in drug dosage. The high risk of neural tube defects in offspring exposed to valproic acid (or carbamazepine) warrants prenatal examination in pregnant women receiving this drug, such as ultrasound and amniotic fluid α-fetoprotein investigations. To reduce the risk of this malformation, replacement of conventional formulations of valproic acid with controlled release formulations and the use of folate supplementation are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogawa Y, Nomura Y, Kaneko S, et al. Insidious effect of antiepileptic drugs in the perinatal period. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 197–202

    Google Scholar 

  2. Kaneko S, Otani K, Fukushima Y, et al. Transplacental passage and half-life of sodium valproate in infants born to epileptic mothers. Br J Clin Pharmacol 1983; 15: 503–5

    Article  PubMed  CAS  Google Scholar 

  3. Nau H, Rating D, Koch S, et al. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. J Pharmacol Exp Ther 1981; 291: 768–77

    Google Scholar 

  4. Kojima S, Ogura H, Yokoyama M, et al. The effect of diazepam on neonatal neurobehavioral response. Acta Obstet Gynecol Jpn 1985; 37: 2784–90

    CAS  Google Scholar 

  5. Nau H, Helge H, Luck W. Valproic acid in the perinatal period: decreased maternal serum protein binding results in fetal accumulation and neonatal displacement of the drug and some metabolites. J Pediatr 1984; 104: 627–34

    Article  PubMed  CAS  Google Scholar 

  6. Nau H, Krauer B. Serum protein binding of valproic acid in fetus-mother pairs throughout pregnancy: correlation with oxytocin administration and albumin and free fatty acid concentrations. J Clin Pharmacol 1986; 26: 215–21

    PubMed  CAS  Google Scholar 

  7. Cotariu D, Zaidman JL. Developmental toxicity of valproic acid. LifeSci 1991; 48: 1341–50

    Article  CAS  Google Scholar 

  8. Kaneko S. Antiepileptic drug therapy and reproductive consequence: functional and morphologic effects. Reprod Toxicol 1991; 5: 179–98

    Article  PubMed  CAS  Google Scholar 

  9. Sullivan FM, McElhatton PR. Teratogenic activity of the antiepileptic drugs: phenobarbital, phenytoin, and primidone in mice. Toxicol Appl Pharmacol 1975; 34: 271–82

    Article  PubMed  CAS  Google Scholar 

  10. Nau H, Loscher W. Valproic acid and metabolites: pharmacological and toxicological studies. Epilepsia 1984; 25: SI4–22

    Article  Google Scholar 

  11. Massey KM. Teratogenic effects of diphenylhydantoin sodium. Oral Ther Pharmacol 1966; 2: 380–5

    CAS  Google Scholar 

  12. Brown NA, Shull G, Fabro S. Assessment of the teratogenic potential of trimethadione in the CD-I mouse. Toxicol Appl Pharmacol 1979; 51: 59–71

    Article  PubMed  CAS  Google Scholar 

  13. Nau H, Zierer R, Spielmann D, et al. A new model for embryotoxicity testing: teratogenicity and pharmacokinetics of valproic acid following constant-rate administration in the mouse using human therapeutic drug and metabolite concentrations. Life Sci 1981; 29: 2803–14

    Article  PubMed  CAS  Google Scholar 

  14. Bergman A, Rosseli-Austin L, Yedwab G, et al. Neuronal deficits in mice following phenobarbital exposure during various periods in fetal development. Acta Anat 1980; 108: 370–3

    Article  PubMed  CAS  Google Scholar 

  15. Shah RM, Donaldson D, Burdett D. Teratogenic effects of diazepam in the hamster. Can J Physiol Pharmacol 1979; 57: 556–61

    Article  PubMed  CAS  Google Scholar 

  16. Chatot CL, Klein NW, Clapper ML, et al. Human serum teratogenicity studied by rat embryo culture: epilepsy, anticonvulsant drugs, and nutrition. Epilepsia 1984; 25: 205–16?

    Article  PubMed  CAS  Google Scholar 

  17. South J. Teratogenic effect of anticonvulsants [letter]. Lancet 1972; 2: 1154

    Article  PubMed  CAS  Google Scholar 

  18. Kuenssberg EV, Knox JDE. Teratogenic effect of anticonvulsants [letter]. Lancet 1973; 1: 198

    Article  PubMed  CAS  Google Scholar 

  19. Hill RM, Verniaud VM, Rettig GM, et al. Relationship between antiepileptic drug exposure of the infant and development potential. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 409–17

    Google Scholar 

  20. Goujard J, Huel G, Rumeau-Roquette C. Antiepileptiques et malformations congenitales. J Gynecol Obstet Biol Reprod 1974; 3: 831–42

    CAS  Google Scholar 

  21. Shapiro S, Hartz SC, Siskind V, et al. Anticonvulsants and parental epilepsy in the development of birth defects. Lancet 1976; 1: 272–5

    Article  PubMed  CAS  Google Scholar 

  22. Granstrom ML, Hiilesmaa VK. Malformations and minor anomalies in the children of epileptic mothers: preliminary results of the prospective Helsinki study. In: Janz D, Dam D, Richens A, et al. editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 303–7

    Google Scholar 

  23. Nakane Y. Factors influencing the risk of malformation among infants of epileptic mothers. In: Janz D, Dam D, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 259–65

    Google Scholar 

  24. Koch S, Hartmann AM, Jager-Roman E, et al. Major malformations in children of epileptic mothers - due to epilepsy or its therapy?. In: Janz D, Dam D, Richens A. et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 313–5

    Google Scholar 

  25. Bossi L, Battino D, Boldi B, et al. Anthropometric data and minor malformations in newborns of epileptic mothers. In: Janz D, Dam D, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 299–301

    Google Scholar 

  26. Lindhout H, Meinardi H, Barth PG. Hazards of fetal exposure to drug combinations. In: Janz D, Dam D, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 275–81

    Google Scholar 

  27. Miyakoshi M, Seino M. Malformations in children born to mothers with epilepsy. In: Sato T, Shinagawa S, editors. Antiepileptic drugs and pregnancy. Amsterdam: Excerpta Medica, 1984: 125–31

    Google Scholar 

  28. Kaneko S, Fukushima Y, Sato T, et al. Teratogenicity of antiepileptic drugs - a prospective study. Jpn J Psychiatry Neurol 1986; 40: 447–50

    Google Scholar 

  29. Kaneko S, Battino D, Andermann E, et al. International collaborative study on mechanisms of teratogenesis of antiepileptic drugs (apreliminary report) [in Japanese, abstract in English]. Ann Rep Jpn Epil Res Found 1993; 5: 191–9

    Google Scholar 

  30. Kaneko S, Otani K, Fukushima Y, et al. Teratogenicity of antiepileptic drugs: analysis of possible risk factors. Epilepsia 1988; 29: 459–67

    Article  PubMed  CAS  Google Scholar 

  31. Kaneko S, Otani K, Kondo T, et al. Malformation in infants of mothers with epilepsy receiving antiepileptic drugs. Neurology 1992; 42Suppl. 5: 68–74

    PubMed  CAS  Google Scholar 

  32. Bossi L. Fetal effects of anticonvulsants. In: Morselli PL, Pippenger CE, Penry JK, editors. Antiepileptic drug therapy in pediatrics. New York: Raven Press, 1983: 37–64

    Google Scholar 

  33. Meadow SR. Anticonvulsant drugs and congenital abnormalities [letter]. Lancet 1968; 2: 1296

    Article  PubMed  CAS  Google Scholar 

  34. Beck-Mannagetta G, Drees B, Janz D. Malformations and minor anomalies in the offspring of epileptic patients. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 317–23

    Google Scholar 

  35. German J, Ehlers KM, Kowal A, et al. Possible teratogenicity of the trimethadione and paramethadione. Lancet 1970; 2: 261–2

    Article  PubMed  CAS  Google Scholar 

  36. Zachai EH, Mellman WJ, Niederren B, et al. The fetal trimethadione syndrome. J Pediatr 1975; 87: 280–4

    Article  Google Scholar 

  37. Feldman GL, Weaver DD, Lovrien EW. The fetal trimethadione syndrome. Report of additional family and further delineation of this syndrome. Am J Dis Child 1977; 131: 1389–92

    PubMed  CAS  Google Scholar 

  38. Nakane Y, Okuma T, Takahashi R, et al. Multi-institutional study on the teratogenicity and fetal toxicity of antiepileptic drugs: a report of a collaborative study group in Japan. Epilepsia 1980; 21: 663–80

    Article  PubMed  CAS  Google Scholar 

  39. Andermann E, Dansky L, Andermann F, et al. Minor congenital malformations and dermatoglyphic alterations in the offspring of epileptic women. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy and the child. New York: Raven Press, 1982: 235–49

    Google Scholar 

  40. Anderson RC. Cardiac defects in children of mothers receiving anticonvulsant therapy during pregnancy. J Pediatr 1976: 89 318–9

    Article  PubMed  CAS  Google Scholar 

  41. Annegers JF, Elvebeck LR, Hauser WA, et al. Do anticonvulsants have a teratogenic effect? Arch Neurol 1974; 31: 364–73

    Article  PubMed  CAS  Google Scholar 

  42. Annegers JF, Elvebeck LR, Hauser WA, et al. Congenital malformations and seizure disorders in the offspring of parents with epilepsy. Int J Epidemiol 1978; 7: 241–7

    Article  PubMed  CAS  Google Scholar 

  43. Barr M, Posnanski AK, Schmickel RD. Digital hypoplasia and anticonvulsants during gestation: a teratogenic syndrome? J Pediatr 1974; 84: 254–6

    Article  PubMed  Google Scholar 

  44. Barry JE, Danks DM. Anticonvulsants and congenital abnormalities. Lancet 1974; 2: 48–9

    Article  PubMed  CAS  Google Scholar 

  45. Baughman FA, Randinitis EJ. Passage of DPH across the placenta [letter]. JAMA 1970; 213: 466

    Article  PubMed  Google Scholar 

  46. Bethenod M, Fredreich A. Les enfants des antiepileptiques. Pediatric 1975; 30: 227–48

    CAS  Google Scholar 

  47. Biale Y, Lewenthal H, Aderet NB. Congenital malformations due to anticonvulsive drugs. Obstet Gynecol 1975; 45: 439–42

    PubMed  CAS  Google Scholar 

  48. Bjerkedal T. Outcome of pregnancy in women with epilepsy. Norway 1968-1978: congenital malformations. In: Janz D, Bossi L, Dam M, et al., editors. Epilepsy, pregnancy and the child. New York: Raven Press, 1982; 289–95

    Google Scholar 

  49. Dansky L, Andermann E, Sherwin AL, et al. Maternal epilepsy and birth defects: a prospective study with monitoring of plasma anticonvulsant levels during pregnancy. In: Dam M, Gram L, Penry JK, et al., editors. Advances in epileptology, XIIth Epilepsy International Symposium. New York: Raven Press, 1981: 607–12

    Google Scholar 

  50. Desmond HM. Maternal barbiturate utilization and neonate withdrawal symptomatology. J Pediatr 1972; 80: 190–7

    Article  PubMed  CAS  Google Scholar 

  51. Elshove J, Van Eck JHM. Aageboren misvormingen, mentam gespleten lip met of zonder gespleten verhemelte, bij kindarer van moeders met epilepsie. Ned Tijdschr Geneeskd 1971; 115: 1371–5

    PubMed  CAS  Google Scholar 

  52. Fedrick J. Epilepsy and pregnancy. A report from the Oxford record linkage study. BMJ 1973; 2: 442–8

    Article  PubMed  CAS  Google Scholar 

  53. Hanson JW, Myrianthopoulos NC, Sedgwick Harvey MA, et al. Risks to the offspring of women treated with hydantoin anticonvulsants, with emphasis on the fetal hydantoin syndrome. J Pediatr 1976; 89: 662–8

    Article  PubMed  CAS  Google Scholar 

  54. Hill RM, Verniaud WM, Horning MD, et al. Infants exposed in utero to antiepileptic drugs. Am J Dis Child 1974; 127: 645–53

    PubMed  CAS  Google Scholar 

  55. Janz D, Fuchs U. Sind antiepileptitishe Medikamente während der Schwangerschaft schädlich? Dtsch Med Wochenschr 1964; 89: 241–3

    Article  PubMed  CAS  Google Scholar 

  56. Koppe JG, Bosman W, Oppers VM, et al. Epilepsie en aangeboren afwijkingen. Ned Tijdschr Geneeskd 1973; 117: 220–4

    PubMed  CAS  Google Scholar 

  57. Loughnan PM, Gold H, Vance JC. Phenytoin teratogenicity in man. Lancet 1973; 1: 70–2

    Article  PubMed  CAS  Google Scholar 

  58. Lowe CR. Congenital malformations among infants born to epileptic women. Lancet 1973; 1: 9–10

    Article  PubMed  CAS  Google Scholar 

  59. Maroni E, Markoff R. Epilepsie und Schwangerschaft. Gynaecologia 1969; 168: 418–21

    PubMed  CAS  Google Scholar 

  60. McMullin GP. Teratogenic effects of anticonvulsants. BMJ 1971; 4: 430

    Article  PubMed  CAS  Google Scholar 

  61. Meadow SR. Congenital abnormalities and anticonvulsant drugs. Proc R Soc Med 1970; 63: 48–9

    PubMed  CAS  Google Scholar 

  62. Melchior IC, Svensmark O, Trolle D. Placental transfer of phenobarbitone in epileptic women, and elimination in newborns. Lancet 1967; 2: 860–1

    Article  PubMed  CAS  Google Scholar 

  63. Meyer JG. The teratological effects of anticonvulsants and the effects on pregnancy and birth. Eur Neurol 1973; 10: 179–90

    Article  PubMed  CAS  Google Scholar 

  64. Millarr HG, Nevin NC. Congenital malformations and anticonvulsant drugs [letter]. Lancet 1973; 1: 328

    Article  Google Scholar 

  65. Mirkin BL. Diphenylhydantoin: placental transport, fetal localization, neonatal metabolism, and possible teratogenic effect. J Pediatr 1971; 78: 329–37

    Article  PubMed  CAS  Google Scholar 

  66. Monson RR, Rosenberg L, Hartz SC, et al. Diphenylhydantoin and selected congenital malformations. N Engl J Med 1973; 289: 1049–52

    Article  PubMed  CAS  Google Scholar 

  67. Pashayan H, Pruzansky D, Pruzansky S. Are anticonvulsants teratogenic? Lancet 1971; 2: 702–3

    Article  PubMed  CAS  Google Scholar 

  68. Speidel BD, Meadow SR. Maternal epilepsy and abnormalities of the fetus and the newborn. Lancet 1972; 2: 839–43

    Article  PubMed  CAS  Google Scholar 

  69. Starreveld-Zimmermann AAE, Van der Kolk WJ, Meinardi H, et al. Are anticonvulsants teratogenic? [letter] Lancet 1973; 2: 48

    Article  Google Scholar 

  70. Villumsen Al, Zacau-Christiansen B. Incidence of malformations in the newborn in a prospective child health study. Bull Soc R Beige Gynecol Obstet 1973; 23: 95

    Google Scholar 

  71. Watson ID, Spellacy WN. Neonatal effects of maternal treatment with the anticonvulsant drug diphenylhydantoin. Obstet Gynecol 1971; 37: 881–5

    PubMed  CAS  Google Scholar 

  72. Weber M, Schweitzer M, Mur JM, et al. Epilepsie, medicaments antiepileptiques et grossesse. Arch Fr Pediatr 1977; 34: 374–83

    PubMed  CAS  Google Scholar 

  73. Janz D. On major malformations and minor anomalies in the offspring of parents with epilepsy. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 221–2

    Google Scholar 

  74. Friis ML. Epilepsy among parents of children with facial clefts. Epilepsia 1979; 20: 69–76

    Article  PubMed  CAS  Google Scholar 

  75. Friis ML, Holm NV, Sindrup EH, et al. Facial clefts in siblings and children of epileptic patients. Neurology 1986; 36: 346–50

    Article  PubMed  CAS  Google Scholar 

  76. Jäger-Roman E, Deichi A, Jacob S, et al. Fetal growth, major malformations, and minor anomalies in infants born to women receiving valproic acid. J Pediatr 1986; 108: 997–1004

    Article  PubMed  Google Scholar 

  77. Rating D, Jager-Roman E, Koch S, et al. Minor anomalies in the offspring of epileptic parents. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 283–8

    Google Scholar 

  78. Hanson JW, Smith DW. The fetal hydantoin syndrome. J Pediatr 1975; 87: 285–90

    Article  PubMed  CAS  Google Scholar 

  79. Seip M. Growth retardation, dysmorphic facies and minor malformations following massive exposure to phenobarbitone in utero. Acta Paediatr Scand 1976; 65: 617–21

    Article  PubMed  CAS  Google Scholar 

  80. Smith DW. Teratogenicity of anticonvulsive medications. Am J Dis Child 1977; 131: 1337–9

    PubMed  CAS  Google Scholar 

  81. Goldman AS, Yaffe SJ. Fetal trimethadione syndrome. Teratology 1978; 17: 103–6

    Article  PubMed  CAS  Google Scholar 

  82. Di Liberti JM, Farndon PA, Dennis NR. The fetal valproate syndrome. Am J Med Genet 1984; 19: 473–81

    Article  Google Scholar 

  83. Gaily E, Granstrom M-L, Hiilesmaa V, et al. Minor anomalies in offspring of epileptic mothers. J Pediatr 1988; 112: 520–9

    Article  PubMed  CAS  Google Scholar 

  84. Robert E, Rosa F. Valproate and birth defects [letter]. Lancet 1983; 2: 1142

    Article  PubMed  CAS  Google Scholar 

  85. Robert E, Guiboud P. Maternal valproic acid and congenital neural tube defects [letter]. Lancet 1982; 2: 937

    Article  PubMed  CAS  Google Scholar 

  86. Lindhout D, Schmidt D. In-utero exposure to valproate and neural tube defects [letter]. Lancet 1986; 1: 1392–3

    Article  PubMed  CAS  Google Scholar 

  87. Rosa FW. Spina bifida in infants of women treated with carbamazepine during pregnancy. N Engl J Med 1991; 342: 674–7

    Article  Google Scholar 

  88. Dansky L, Andermann E, Andermann F. Maternal epilepsy and congenital malformations: correlation with maternal plasma anticonvulsant levels during pregnancy. In: Janz D, Dam M, Richens A, et al., editors. Epilepsy, pregnancy, and the child. New York: Raven Press, 1982: 251–8

    Google Scholar 

  89. Nau H. Teratogenic valproic acid concentrations: infusion by implanted mini pumps vs conventional injection regimen in the mouse. Toxicol Appl Pharmacol 1985: 80; 243–50

    Article  PubMed  CAS  Google Scholar 

  90. Kondo T, Kaneko S. Teratogenicity of valproate pharmacokinetic aspects [abstract]. Neuropsychopharmacology 1994; 10Suppl. 3: 573S

    Google Scholar 

  91. Lindhout D, Hoppener RJEA, Meinardi H. Teratogenicity of anti-epileptic drug combinations with special emphasis on epoxidation (of carbamazepine). Epilepsia 1984; 25: 77–83

    Article  PubMed  CAS  Google Scholar 

  92. Martz F, Failinger III C, Blake DA. Phenytoin teratogenesis: correlation between embryopathic effect and covalent binding of putative arene oxide metabolite in gestational tissue. Pharmacol Exp Ther 1977; 203: 231–9

    CAS  Google Scholar 

  93. Conney AH. Microsomal enzyme induction by drugs. Pharmacol Physicians 1969; 3: 1–6

    PubMed  CAS  Google Scholar 

  94. Remmer H, Fleischmann R, Kunz W. Pharmacological consequences of induction of drug metabolizing enzymes. In: Estabrook RW, Lindenlaub E, editors. The induction of drug metabolism. Stuttgart: Schattauer, 1979: 555–81

    Google Scholar 

  95. Yaffe SJ, Rane A, Sjoqvist F, et al. The presence of a mono-oxygenase system in human fetal liver microsomes. Life Sci 1970; 9: 1189–200

    Article  CAS  Google Scholar 

  96. Pelkonen D, Karki NT. Epoxidation of xenobiotics in the human fetus and placenta: a possible mechanism of transplacental drug-induced injuries. Biochem Pharmacol 1975; 24: 1445–8

    Article  CAS  Google Scholar 

  97. Piafsky KM, Rane A. Formation of carbamazepine epoxide in human fetal liver. Drug Metab Dispos 1978; 6: 502–3

    PubMed  CAS  Google Scholar 

  98. Pacifici GM, Norlin A, Rane A. Glutathione S-transferase in human fetal liver. Biochem Pharmacol 1981; 30: 3367–71

    Article  PubMed  CAS  Google Scholar 

  99. Pacifici GM, Rane A. Epoxide hydrolase in human fetal liver. Pharmacology 1983; 26: 241–8

    Article  PubMed  CAS  Google Scholar 

  100. Rollins D, Larsson A, Steen B, et al. Glutathione and gammaglutamyl cycle enzymes in fetal liver. J Pharmacol Exp Ther 1981; 217: 697–700

    PubMed  CAS  Google Scholar 

  101. Rane A, Peng D. Phenytoin enhances epoxide metabolism in human, fetal liver culture. Drug Metab Dispos 1985; 13: 382–5

    PubMed  CAS  Google Scholar 

  102. Strickler SM, Miller MA, Andermann E, et al. Genetic predisposition to phenytoin-induced birth defects. Lancet 1985; 2: 746–9

    Article  PubMed  CAS  Google Scholar 

  103. Buehler BA, Delimont D, Van Waes M, et al. Prenatal prediction of risk of the fetal hydantoin syndrome. N Engl J Med 1990; 322: 1567–72

    Article  PubMed  CAS  Google Scholar 

  104. Finnell RH, Kerr BM, Van Waes M, et al. Protection from phenytoin-induced congenital malformations by coadministration of the antiepileptic drug stiripentol in a mouse model. Epilepsia 1994; 35: 141–8

    Article  PubMed  CAS  Google Scholar 

  105. Jerina DM, Daly JW. Arene oxides: a new aspect of drug metabolism; metabolic formation of arene oxide explains many toxic and carcinogenic properties of aromatic hydrocarbons. Science 1974; 185: 573–82

    Article  PubMed  CAS  Google Scholar 

  106. Spielberg SP, Gordon GB, Blake DA, et al. Anticonvulsant toxicity in vitro: possible role of arene oxides. J Pharmacol Exp Ther 1981; 217: 386–9

    PubMed  CAS  Google Scholar 

  107. Frigerio A, Morselli PL. Carbamazepine: biotransformation. Adv Neurol 1975; 11: 295–308

    PubMed  CAS  Google Scholar 

  108. Rambec B, Salke-Treumann A, May T, et al. Valproic acid-induced carbamazepine-10,11-epoxide toxicity in children and adolescents. Eur Neurol 1980; 30: 79–83

    Article  Google Scholar 

  109. Kerr BM, Rettie AE, Eddy AC, et al. Inhibition of human liver microsomal epoxide hydrolase by valproate and valpromide: in vitro/in vivo correlation. Clin Pharmacol Ther 1989; 46: 82–93

    Article  PubMed  CAS  Google Scholar 

  110. Theisohn M, Meimann G. Disposition of the antiepileptic oxcarbazepine and its metabolites in healthy volunteers. Eur J Clin Pharmacol 1982; 22: 545–51

    Article  PubMed  CAS  Google Scholar 

  111. Kondo T, Kaneko S, Otani K, et al. Associations between risk factors for valproate hepatotoxicity and altered valproate metabolism. Epilepsia 1992; 33: 172–7

    Article  PubMed  CAS  Google Scholar 

  112. Kitay DZ. Folic acid and reproduction. Clin Obstet Gynecol 1979; 22: 809–17

    Article  PubMed  CAS  Google Scholar 

  113. Reynolds EH. Anticonvulsants, folic acid, and epilepsy. Lancet 1973; 1: 1376–8

    Article  PubMed  CAS  Google Scholar 

  114. Dansky LV, Andermann E, Rosenblatt D, et al. Anticonvulsants, folate levels, and pregnancy outcome: a prospective study. Ann Neurol 1987; 21: 176–82

    Article  PubMed  CAS  Google Scholar 

  115. Yamamoto M, Takahashi S, Otsuki S, et al. Serum folate levels during pregnancy and after delivery in treated epileptic women: a preliminary report. In: Sato T, Shinagawa S, editors. Antiepileptic drugs and pregnancy. Amsterdam: Excerpta Medica, 1984: 163–7

    Google Scholar 

  116. Kaneko S, Otani K, Hirano T, et al. Mechanism of teratogenicity of antiepileptic drugs. Third report: serum folic acid levels during pregnancy. Ann Rep Pharmacopsychiat Res Found 1988; 19: 306–11

    Google Scholar 

  117. Woodbury DM, Kemp JM. Pharmacology and mechanisms of action of diphenylhydantoin. Psychiatr Neurol Neurochem 1971; 74: 91–115

    CAS  Google Scholar 

  118. Hiilesmaa VK, Teramo K, Granstrom M-L, et al. Serum folate concentrations during pregnancy in women with epilepsy: relation to antiepileptic drug concentrations, number of seizures, and fetal outcome. BMJ 1983; 287: 577–9

    Article  PubMed  CAS  Google Scholar 

  119. Berg MJ, Fincham RW, Ebert BE, et al. Decrease of serum folates in healthy male volunteers taking phenytoin. Epilepsia 1988; 29: 67–73

    Article  PubMed  CAS  Google Scholar 

  120. Laurence KM, James N, Miller MH, et al. Double-blind randomized controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. BMJ 1981; 282: 1509–11

    Article  PubMed  CAS  Google Scholar 

  121. Smithells RW, Sheppard S, Schorah CJ, et al. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child 1981; 56: 911–8

    Article  PubMed  CAS  Google Scholar 

  122. Wegner C, Nau H. Alteration of embryonic folate metabolism be valproic acid during organogenesis: implications for mechanisms of teratogenesis. Neurology 1992; 42Suppl. 5: 17–24

    PubMed  CAS  Google Scholar 

  123. Netzloff ML, Streiff RR, Frias JL, et al. Folate antagonism following teratogenic exposure to diphenylhydantoin. Teratology 1979; 19: 45–50

    Article  PubMed  CAS  Google Scholar 

  124. Wells PG, Harbison RD. Significance of the phenytoin reactive arene oxide intermediate, its oxepin tautomer, and clinical factors modifying their roles in phenytoin-induced teratology. In: Hassell TH, Johnston MC, Dudley KH, editors. Phenytoin-induced teratology and gingival pathology. New York: Raven Press, 1980: 83–112

    Google Scholar 

  125. Wells PG, Zubovits JT, Wong ST, et al. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase. Toxicol Pharmacol 1989; 97: 192–202

    CAS  Google Scholar 

  126. Kaneko S. Major malformations in children of mothers with epilepsy [abstract]. Neuropsychopharmacology 1994; 10Suppl. 3: 576S

    Google Scholar 

  127. Commission on Genetics, Pregnancy, and the Child, International League Against Epilepsy. Guidelines for the care of women of childbearing age with epilepsy. Epilepsia 1993; 34: 588–9

    Google Scholar 

  128. Olney JW, Fuller TA, de Gubareff T. Kainate-like neurotoxicity of folate. Nature 1981; 292: 165–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, S., Kondo, T. Antiepileptic Agents and Birth Defects. CNS Drugs 3, 41–55 (1995). https://doi.org/10.2165/00023210-199503010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199503010-00005

Keywords

Navigation