Skip to main content
Erschienen in: CNS Drugs 5/2006

01.05.2006 | Review Article

Mechanism of Action of Atypical Antipsychotic Drugs and the Neurobiology of Schizophrenia

verfasst von: Dr Jiri Horacek, Vera Bubenikova-Valesova, Milan Kopecek, Tomas Palenicek, Colleen Dockery, Pavel Mohr, Cyril Höschl

Erschienen in: CNS Drugs | Ausgabe 5/2006

Einloggen, um Zugang zu erhalten

Abstract

Atypical antipsychotics have greatly enhanced the treatment of schizophrenia. The mechanisms underlying the effectiveness and adverse effects of these drugs are, to date, not sufficiently explained. This article summarises the hypothetical mechanisms of action of atypical antipsychotics with respect to the neurobiology of schizophrenia.
When considering treatment models for schizophrenia, the role of dopamine receptor blockade and modulation remains dominant. The optimal occupancy of dopamine D2 receptors seems to be crucial to balancing efficacy and adverse effects — transient D2 receptor antagonism (such as that attained with, for example, quetiapine and clozapine) is sufficient to obtain an antipsychotic effect, while permanent D2 receptor antagonism (as is caused by conventional antipsychotics) increases the risk of adverse effects such as extrapyramidal symptoms. Partial D2 receptor agonism (induced by aripiprazole) offers the possibility of maintaining optimal blockade and function of D2 receptors. Balancing presynaptic and postsynaptic D2 receptor antagonism (e.g. induced by amisulpride) is another mechanism that can, through increased release of endogenous dopamine in the striatum, protect against excessive blockade of D2 receptors.
Serotonergic modulation is associated with a beneficial increase in striatal dopamine release. Effects on the negative and cognitive symptoms of schizophrenia relate to dopamine release in the prefrontal cortex; this can be modulated by combined D2 and serotonin 5-HT2A receptor antagonism (e.g. by olanzapine and risperidone), partial D2 receptor antagonism or the preferential blockade of inhibitory dopamine autoreceptors.
In the context of the neurodevelopmental disconnection hypothesis of schizophrenia, atypical antipsychotics (in contrast to conventional antipsychotics) induce neuronal plasticity and synaptic remodelling, not only in the striatum but also in other brain areas such as the prefrontal cortex and hippocampus. This mechanism may normalise glutamatergic dysfunction and structural abnormalities and affect the core pathophysiological substrates for schizophrenia.
Literatur
1.
Zurück zum Zitat Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96PubMedCrossRef Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96PubMedCrossRef
2.
Zurück zum Zitat Roth BL, Sheffler D, Potkin SG. Atypical antipsychotic drug actions: unitary or multiple mechanisms for “atypicality”? Clin Neurosci Res 2003; 3: 108–17CrossRef Roth BL, Sheffler D, Potkin SG. Atypical antipsychotic drug actions: unitary or multiple mechanisms for “atypicality”? Clin Neurosci Res 2003; 3: 108–17CrossRef
3.
Zurück zum Zitat Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors: implications for atypical antipsychotic action. J Psychiatry Neurosci 2000; 25: 161–6PubMed Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors: implications for atypical antipsychotic action. J Psychiatry Neurosci 2000; 25: 161–6PubMed
4.
Zurück zum Zitat Remington G. Understanding antipsychotic “atypicality”: a clinical and pharmacological moving target. J Psychiatry Neurosci 2003; 28: 275–84PubMed Remington G. Understanding antipsychotic “atypicality”: a clinical and pharmacological moving target. J Psychiatry Neurosci 2003; 28: 275–84PubMed
5.
Zurück zum Zitat Leucht S, Pitschel-Walz G, Abraham D, et al. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68PubMedCrossRef Leucht S, Pitschel-Walz G, Abraham D, et al. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68PubMedCrossRef
6.
Zurück zum Zitat Melkersson K, Dahl ML. Adverse metabolic effects associated with atypical antipsychotics: literature review and clinical implications. Drugs 2004 (7); 64: 701–723PubMedCrossRef Melkersson K, Dahl ML. Adverse metabolic effects associated with atypical antipsychotics: literature review and clinical implications. Drugs 2004 (7); 64: 701–723PubMedCrossRef
7.
Zurück zum Zitat Lehman AF, Lieberman JA, Dixon LB, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 2004; 161: 1–56PubMedCrossRef Lehman AF, Lieberman JA, Dixon LB, et al. Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 2004; 161: 1–56PubMedCrossRef
8.
Zurück zum Zitat Tandon R, Jibson MD. Efficacy of newer generation antipsychotics in the treatment of schizophrenia. Psychoneuroendocrinology 2003; 28Suppl. 1: 9–26PubMedCrossRef Tandon R, Jibson MD. Efficacy of newer generation antipsychotics in the treatment of schizophrenia. Psychoneuroendocrinology 2003; 28Suppl. 1: 9–26PubMedCrossRef
9.
Zurück zum Zitat Tuunainen A, Wahlbeck K, Gilbody SM. Newer atypical antipsychotic medication versus clozapine for schizophrenia. Cochrane Database Syst Rev 2000; (2): CD000966 Tuunainen A, Wahlbeck K, Gilbody SM. Newer atypical antipsychotic medication versus clozapine for schizophrenia. Cochrane Database Syst Rev 2000; (2): CD000966
10.
Zurück zum Zitat Geddes J, Freemantle N, Harrison P, et al. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 2000; 321: 1371–6PubMedCrossRef Geddes J, Freemantle N, Harrison P, et al. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 2000; 321: 1371–6PubMedCrossRef
11.
Zurück zum Zitat Leucht S, Wahlbeck K, Hamann J, et al. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–9PubMedCrossRef Leucht S, Wahlbeck K, Hamann J, et al. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–9PubMedCrossRef
12.
Zurück zum Zitat Davis JM, Chen N, Glick ID. A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 2003; 60: 553–64PubMedCrossRef Davis JM, Chen N, Glick ID. A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 2003; 60: 553–64PubMedCrossRef
13.
Zurück zum Zitat Kinon BJ, Ahl J, Stauffer VL, et al. Dose response and atypical antipsychotics in schizophrenia. CNS Drugs 2004; 18: 597–616PubMedCrossRef Kinon BJ, Ahl J, Stauffer VL, et al. Dose response and atypical antipsychotics in schizophrenia. CNS Drugs 2004; 18: 597–616PubMedCrossRef
14.
Zurück zum Zitat Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997; 11: 123–31PubMedCrossRef Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997; 11: 123–31PubMedCrossRef
15.
Zurück zum Zitat Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63: 241–320PubMedCrossRef Tzschentke TM. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63: 241–320PubMedCrossRef
16.
Zurück zum Zitat Vile JM, Strange PG. Atypical antipsychotics: serotonergic mechanisms but don’t forget dopamine. J Psychopharmacol 1997; 11: 24–5PubMedCrossRef Vile JM, Strange PG. Atypical antipsychotics: serotonergic mechanisms but don’t forget dopamine. J Psychopharmacol 1997; 11: 24–5PubMedCrossRef
17.
Zurück zum Zitat Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38PubMed Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry 2002; 47: 27–38PubMed
18.
Zurück zum Zitat Farde L, Wiesel FA, Jansson P, et al. An open label trial of raclopride in acute schizophrenia: confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology (Berl) 1988; 94: 1–7CrossRef Farde L, Wiesel FA, Jansson P, et al. An open label trial of raclopride in acute schizophrenia: confirmation of D2-dopamine receptor occupancy by PET. Psychopharmacology (Berl) 1988; 94: 1–7CrossRef
19.
Zurück zum Zitat Farde L, Nordstrom AL, Halldin C, et al. PET studies of dopamine receptors in relation to antipsychotic drug treatment. Clin Neuropharmacol 1992; 15 Suppl. 1 Pt A: 468–9ACrossRef Farde L, Nordstrom AL, Halldin C, et al. PET studies of dopamine receptors in relation to antipsychotic drug treatment. Clin Neuropharmacol 1992; 15 Suppl. 1 Pt A: 468–9ACrossRef
20.
Zurück zum Zitat Goyer PF, Berridge MS, Morris ED, et al. PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics. J Nucl Med 1996; 37: 1122–7PubMed Goyer PF, Berridge MS, Morris ED, et al. PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics. J Nucl Med 1996; 37: 1122–7PubMed
21.
Zurück zum Zitat Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999; 156: 286–93PubMed Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999; 156: 286–93PubMed
22.
Zurück zum Zitat Kapur S. Neuroimaging and drug development: an algorithm for decision making. J Clin Pharmacol 2001 Jul; Suppl.: 64-71S Kapur S. Neuroimaging and drug development: an algorithm for decision making. J Clin Pharmacol 2001 Jul; Suppl.: 64-71S
23.
Zurück zum Zitat Sedvall G, Pauli S, Karlsson P, et al. PET imaging of neuroreceptors in schizophrenia. Eur Neuropsychopharmacol 1995; 5 Suppl.: 25–30PubMedCrossRef Sedvall G, Pauli S, Karlsson P, et al. PET imaging of neuroreceptors in schizophrenia. Eur Neuropsychopharmacol 1995; 5 Suppl.: 25–30PubMedCrossRef
24.
Zurück zum Zitat Lynch MR. Schizophrenia and the D1 receptor: focus on negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 797–832PubMedCrossRef Lynch MR. Schizophrenia and the D1 receptor: focus on negative symptoms. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 797–832PubMedCrossRef
25.
Zurück zum Zitat Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 1991; 251: 947–50PubMedCrossRef Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 1991; 251: 947–50PubMedCrossRef
26.
Zurück zum Zitat Weinberger DR. The biological basis of schizophrenia: new directions. J Clin Psychiatry 1997; 58Suppl. 10: 22–7PubMed Weinberger DR. The biological basis of schizophrenia: new directions. J Clin Psychiatry 1997; 58Suppl. 10: 22–7PubMed
28.
Zurück zum Zitat Seeman P. Antypsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res 2001; 1: 53–60CrossRef Seeman P. Antypsychotic drugs, dopamine receptors, and schizophrenia. Clin Neurosci Res 2001; 1: 53–60CrossRef
29.
Zurück zum Zitat Waddington JL. Therapeutic potential of selective D-1 dopamine receptor agonists and antagonists in psychiatry and neurology. Gen Pharmacol 1988; 19: 55–60PubMedCrossRef Waddington JL. Therapeutic potential of selective D-1 dopamine receptor agonists and antagonists in psychiatry and neurology. Gen Pharmacol 1988; 19: 55–60PubMedCrossRef
30.
Zurück zum Zitat Den Boer JA, van Megen HJ, Fleischhacker WW, et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995; 121: 317–22CrossRef Den Boer JA, van Megen HJ, Fleischhacker WW, et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995; 121: 317–22CrossRef
31.
Zurück zum Zitat Labelle A, de Beaurepaire R, Boulay LJ, et al. A pilot study of the safety and tolerance of SCH 39166 in patients with schizophrenia. J Psychiatry Neurosci 1998; 23: 93–4PubMed Labelle A, de Beaurepaire R, Boulay LJ, et al. A pilot study of the safety and tolerance of SCH 39166 in patients with schizophrenia. J Psychiatry Neurosci 1998; 23: 93–4PubMed
32.
Zurück zum Zitat Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000; 287: 2020–2PubMedCrossRef Castner SA, Williams GV, Goldman-Rakic PS. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000; 287: 2020–2PubMedCrossRef
33.
Zurück zum Zitat Goldman-Rakic P. The relevance of the dopamine-D1 receptor in the cognitive symptoms of schizophrenia. Neuropsychopharmacology 1999; 21: S170–80CrossRef Goldman-Rakic P. The relevance of the dopamine-D1 receptor in the cognitive symptoms of schizophrenia. Neuropsychopharmacology 1999; 21: S170–80CrossRef
34.
Zurück zum Zitat Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1091–9PubMedCrossRef Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1091–9PubMedCrossRef
35.
Zurück zum Zitat Broderick PA, Piercey MF. Clozapine, haloperidol, and the D4 antagonist PNU-101387G: in vivo effects on mesocortical, mesolimbic, and nigrostriatal dopamine and serotonin release. J Neural Transm 1998; 105: 749–67PubMedCrossRef Broderick PA, Piercey MF. Clozapine, haloperidol, and the D4 antagonist PNU-101387G: in vivo effects on mesocortical, mesolimbic, and nigrostriatal dopamine and serotonin release. J Neural Transm 1998; 105: 749–67PubMedCrossRef
36.
Zurück zum Zitat Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992; 7: 261–84 Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992; 7: 261–84
37.
Zurück zum Zitat Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4PubMedCrossRef Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4PubMedCrossRef
38.
Zurück zum Zitat Kramer MS, Last B, Getson A, et al. The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997; 54: 567–72CrossRef Kramer MS, Last B, Getson A, et al. The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4 Dopamine Antagonist Group. Arch Gen Psychiatry 1997; 54: 567–72CrossRef
39.
Zurück zum Zitat Scatton B, Claustre Y, Cudennec A, et al. Amisulpride: from animal pharmacology to therapeutic action. Int Clin Psychopharmacol 1997; 12Suppl. 2: S29–36PubMedCrossRef Scatton B, Claustre Y, Cudennec A, et al. Amisulpride: from animal pharmacology to therapeutic action. Int Clin Psychopharmacol 1997; 12Suppl. 2: S29–36PubMedCrossRef
40.
Zurück zum Zitat Bressan RA, Erlandsson K, Jones HM, et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 2003; 160: 1413–20PubMedCrossRef Bressan RA, Erlandsson K, Jones HM, et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? An in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 2003; 160: 1413–20PubMedCrossRef
41.
Zurück zum Zitat Leucht S, Pitschel-Walz G, Engel RR, et al. Amisulpride, an unusual “atypical” antipsychotic: a meta-analysis of randomized controlled trials. Am J Psychiatry 2002; 159: 180–90PubMedCrossRef Leucht S, Pitschel-Walz G, Engel RR, et al. Amisulpride, an unusual “atypical” antipsychotic: a meta-analysis of randomized controlled trials. Am J Psychiatry 2002; 159: 180–90PubMedCrossRef
42.
Zurück zum Zitat McKeage K, Plosker GL. Amisulpride: a review of its use in the management of schizophrenia. CNS Drugs 2004; 18: 933–56PubMedCrossRef McKeage K, Plosker GL. Amisulpride: a review of its use in the management of schizophrenia. CNS Drugs 2004; 18: 933–56PubMedCrossRef
43.
Zurück zum Zitat Moller HJ. Amisulpride: limbic specificity and the mechanism of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1101–11PubMedCrossRef Moller HJ. Amisulpride: limbic specificity and the mechanism of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1101–11PubMedCrossRef
44.
Zurück zum Zitat Laruelle M, D’Souza CD, Baldwin RM, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997; 17: 162–74PubMedCrossRef Laruelle M, D’Souza CD, Baldwin RM, et al. Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997; 17: 162–74PubMedCrossRef
45.
Zurück zum Zitat Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 2001; 158: 360–9PubMedCrossRef Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 2001; 158: 360–9PubMedCrossRef
46.
Zurück zum Zitat Ozdemir V, Fourie J, Ozdener F. Aripiprazole (Otsuka Pharmaceutical Co.). Curr Opin Investig Drugs 2002; 3: 113–20PubMed Ozdemir V, Fourie J, Ozdener F. Aripiprazole (Otsuka Pharmaceutical Co.). Curr Opin Investig Drugs 2002; 3: 113–20PubMed
47.
Zurück zum Zitat Dean B, Scarr E. Antipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr Drug Targets CNS Neurol Disord 2004; 3: 217–25PubMedCrossRef Dean B, Scarr E. Antipsychotic drugs: evolving mechanisms of action with improved therapeutic benefits. Curr Drug Targets CNS Neurol Disord 2004; 3: 217–25PubMedCrossRef
48.
Zurück zum Zitat Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002; 302: 381–9PubMedCrossRef Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002; 302: 381–9PubMedCrossRef
49.
Zurück zum Zitat Lieberman JA. Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 2004; 18: 251–67PubMedCrossRef Lieberman JA. Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 2004; 18: 251–67PubMedCrossRef
50.
Zurück zum Zitat Jordan S, Koprivica V, Chen R, et al. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002; 441: 137–40PubMedCrossRef Jordan S, Koprivica V, Chen R, et al. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 2002; 441: 137–40PubMedCrossRef
51.
Zurück zum Zitat Jordan S, Koprivica V, Dunn R, et al. In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 2004; 483: 45–53PubMedCrossRef Jordan S, Koprivica V, Dunn R, et al. In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 2004; 483: 45–53PubMedCrossRef
52.
Zurück zum Zitat Grunder G, Carlsson A, Wong DF. Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 2003; 60: 974–7PubMedCrossRef Grunder G, Carlsson A, Wong DF. Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 2003; 60: 974–7PubMedCrossRef
53.
Zurück zum Zitat Potkin SG, Saha AR, Kujawa MJ, et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 2003; 60: 681–90PubMedCrossRef Potkin SG, Saha AR, Kujawa MJ, et al. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 2003; 60: 681–90PubMedCrossRef
54.
Zurück zum Zitat Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003; 28: 1400–11PubMedCrossRef
55.
Zurück zum Zitat Barbier P, Colelli A, Maggio R, et al. Pergolide binds tightly to dopamine D2 short receptors and induces receptor sequestration. J Neural Transm 1997; 104: 867–74PubMedCrossRef Barbier P, Colelli A, Maggio R, et al. Pergolide binds tightly to dopamine D2 short receptors and induces receptor sequestration. J Neural Transm 1997; 104: 867–74PubMedCrossRef
56.
57.
Zurück zum Zitat Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214PubMedCrossRef Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214PubMedCrossRef
58.
Zurück zum Zitat Vollenweider FX. Advances and pathophysiological models of hallucinogenic drug actions in humans: a preamble to schizophrenia research. Pharmacopsychiatry 1998; 31Suppl. 2: 92–103PubMedCrossRef Vollenweider FX. Advances and pathophysiological models of hallucinogenic drug actions in humans: a preamble to schizophrenia research. Pharmacopsychiatry 1998; 31Suppl. 2: 92–103PubMedCrossRef
59.
Zurück zum Zitat Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 1997; 27: 79–82PubMedCrossRef Willins DL, Deutch AY, Roth BL. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 1997; 27: 79–82PubMedCrossRef
60.
Zurück zum Zitat Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 1998; 95: 735–40PubMedCrossRef Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 1998; 95: 735–40PubMedCrossRef
61.
Zurück zum Zitat Martin P, Waters N, Schmidt CJ, et al. Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 1998; 105: 365–96PubMedCrossRef Martin P, Waters N, Schmidt CJ, et al. Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 1998; 105: 365–96PubMedCrossRef
62.
Zurück zum Zitat Abi-Saab W, Seibyl JP, D’Souza DC, et al. Ritanserin antagonism of m-chlorophenylpiperazine effects in neuroleptic-free schizophrenics patients: support for serotonin-2 receptor modulation of schizophrenia symptoms. Psychopharmacology (Berl) 2002; 162: 55–62CrossRef Abi-Saab W, Seibyl JP, D’Souza DC, et al. Ritanserin antagonism of m-chlorophenylpiperazine effects in neuroleptic-free schizophrenics patients: support for serotonin-2 receptor modulation of schizophrenia symptoms. Psychopharmacology (Berl) 2002; 162: 55–62CrossRef
63.
Zurück zum Zitat Wiesel FA, Nordstrom AL, Farde L, et al. An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology (Berl) 1994; 114: 31–8CrossRef Wiesel FA, Nordstrom AL, Farde L, et al. An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology (Berl) 1994; 114: 31–8CrossRef
64.
Zurück zum Zitat Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 2000; 864: 176–85PubMedCrossRef Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 2000; 864: 176–85PubMedCrossRef
65.
Zurück zum Zitat Meltzer HY, Li Z, Kaneda Y, et al. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1159–72PubMedCrossRef Meltzer HY, Li Z, Kaneda Y, et al. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1159–72PubMedCrossRef
66.
Zurück zum Zitat Bubser M, Backstrom JR, Sanders-Bush E, et al. Distribution of serotonin 5-HT(2A) receptors in afferents of the rat striatum. Synapse 2001; 39: 297–304PubMedCrossRef Bubser M, Backstrom JR, Sanders-Bush E, et al. Distribution of serotonin 5-HT(2A) receptors in afferents of the rat striatum. Synapse 2001; 39: 297–304PubMedCrossRef
67.
Zurück zum Zitat Umbricht D, Kane JM. Understanding the relationship between extrapyrimidal side effects and tardive dyskinesia. In: Kane JM, Moller HJ, Awouters E, editors. Serotonergic mechanisms in antipsychotic treatment. New York: Marcel Dekker, 1996: 221–51 Umbricht D, Kane JM. Understanding the relationship between extrapyrimidal side effects and tardive dyskinesia. In: Kane JM, Moller HJ, Awouters E, editors. Serotonergic mechanisms in antipsychotic treatment. New York: Marcel Dekker, 1996: 221–51
68.
Zurück zum Zitat Gill HS, DeVane CL, Risch SC. Extrapyramidal symptoms associated with cyclic antidepressant treatment: a review of the literature and consolidating hypotheses. J Clin Psychopharmacol 1997; 17: 377–89PubMedCrossRef Gill HS, DeVane CL, Risch SC. Extrapyramidal symptoms associated with cyclic antidepressant treatment: a review of the literature and consolidating hypotheses. J Clin Psychopharmacol 1997; 17: 377–89PubMedCrossRef
70.
Zurück zum Zitat Di Matteo V, De Blasi A, Giulio C, et al. Role of 5-HT(2C) receptors in the control of central dopamine function [abstract]. Trends Pharmacol Sci 2001; 22: 229–32PubMedCrossRef Di Matteo V, De Blasi A, Giulio C, et al. Role of 5-HT(2C) receptors in the control of central dopamine function [abstract]. Trends Pharmacol Sci 2001; 22: 229–32PubMedCrossRef
71.
Zurück zum Zitat Hutson PH, Barton CL, Jay M, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists: neurochemical and behavioural studies. Neuropharmacology 2000; 39: 2318–28PubMedCrossRef Hutson PH, Barton CL, Jay M, et al. Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT(2C/2B) receptor antagonists: neurochemical and behavioural studies. Neuropharmacology 2000; 39: 2318–28PubMedCrossRef
72.
Zurück zum Zitat Ichikawa J, Ishii H, Bonaccorso S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001; 76: 1521–31PubMedCrossRef Ichikawa J, Ishii H, Bonaccorso S, et al. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001; 76: 1521–31PubMedCrossRef
73.
Zurück zum Zitat Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–46PubMed Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–46PubMed
74.
Zurück zum Zitat Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989; 25: 390–2PubMed Meltzer HY, Matsubara S, Lee JC. The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 1989; 25: 390–2PubMed
75.
Zurück zum Zitat Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 1996; 153: 466–76PubMed Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 1996; 153: 466–76PubMed
76.
Zurück zum Zitat Yan QS. Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 2000; 51: 75–81PubMedCrossRef Yan QS. Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 2000; 51: 75–81PubMedCrossRef
77.
Zurück zum Zitat Pehek EA, McFarlane HG, Maguschak K, et al. M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 2001; 888: 51–9PubMedCrossRef Pehek EA, McFarlane HG, Maguschak K, et al. M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 2001; 888: 51–9PubMedCrossRef
78.
Zurück zum Zitat Liegeois JF, Ichikawa J, Meltzer HY. 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 2002; 947: 157–65PubMedCrossRef Liegeois JF, Ichikawa J, Meltzer HY. 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 2002; 947: 157–65PubMedCrossRef
79.
Zurück zum Zitat Bubeníková V, Horáček J, Kozený J, et al. The effect of tryptophan depletion on the action of haloperidol in MK-801-treated rats. Eur J Pharmacol 2004; 502: 109–16PubMedCrossRef Bubeníková V, Horáček J, Kozený J, et al. The effect of tryptophan depletion on the action of haloperidol in MK-801-treated rats. Eur J Pharmacol 2004; 502: 109–16PubMedCrossRef
80.
Zurück zum Zitat Páleníček T, Horáček J, Bubeníková V. Effects of haloperidol on locomotion in animal model of schizophrenia induced by MK-801. Psychiatrie 2003; 7: 50–4 Páleníček T, Horáček J, Bubeníková V. Effects of haloperidol on locomotion in animal model of schizophrenia induced by MK-801. Psychiatrie 2003; 7: 50–4
81.
Zurück zum Zitat Páleníček T, Horáček J, Bubeníková V, et al. Effects of 5-HT1a receptor agonist 8-OH-DPAT and D2 receptor antagonist haloperidol on locomotion: animal model of schizophrenia [abstract]. Schizophr Res 2004; 67(1 Suppl.): 122 Páleníček T, Horáček J, Bubeníková V, et al. Effects of 5-HT1a receptor agonist 8-OH-DPAT and D2 receptor antagonist haloperidol on locomotion: animal model of schizophrenia [abstract]. Schizophr Res 2004; 67(1 Suppl.): 122
82.
Zurück zum Zitat Palenicek T, Bubenikova V, Horacek J, et al. Atypicka antipsychotika: 5-HT2A antagonismus nebo 5HT1a agonismus [abstract]. In: Raboch J, Doubek P, Zrzavecka I, editors. Psychiatrie v medicine a medicina v psychiatrii. Praha: Galen, 2002: 165. Palenicek T, Bubenikova V, Horacek J, et al. Atypicka antipsychotika: 5-HT2A antagonismus nebo 5HT1a agonismus [abstract]. In: Raboch J, Doubek P, Zrzavecka I, editors. Psychiatrie v medicine a medicina v psychiatrii. Praha: Galen, 2002: 165.
83.
Zurück zum Zitat Palenicek T, Bubenikova V, Horacek J, et al. The effect of 5-HT1C antagonism (SB242084) in the animal model of schizophrenia (MK-801). Prague: Centre of Neuropsychiatric Studies, 2005. (Data on file) Palenicek T, Bubenikova V, Horacek J, et al. The effect of 5-HT1C antagonism (SB242084) in the animal model of schizophrenia (MK-801). Prague: Centre of Neuropsychiatric Studies, 2005. (Data on file)
84.
Zurück zum Zitat Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994; 15: 264–70PubMedCrossRef Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994; 15: 264–70PubMedCrossRef
85.
Zurück zum Zitat Ichikawa J, Meltzer HY. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur J Pharmacol 1990; 176: 371–4PubMedCrossRef Ichikawa J, Meltzer HY. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur J Pharmacol 1990; 176: 371–4PubMedCrossRef
86.
Zurück zum Zitat Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001; 56: 441–51PubMedCrossRef Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001; 56: 441–51PubMedCrossRef
87.
Zurück zum Zitat Gray JA, Sheffler DJ, Bhatnagar A, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol 2001; 60: 1020–30PubMed Gray JA, Sheffler DJ, Bhatnagar A, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol 2001; 60: 1020–30PubMed
88.
Zurück zum Zitat Gobert A, Rivet JM, Lejeune F, et al. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 2000; 36: 205–21PubMedCrossRef Gobert A, Rivet JM, Lejeune F, et al. Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 2000; 36: 205–21PubMedCrossRef
89.
Zurück zum Zitat Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998; 37: 953–5PubMedCrossRef Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998; 37: 953–5PubMedCrossRef
90.
Zurück zum Zitat Bonaccorso S, Meltzer HY, Li Z, et al. SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 2002; 27: 430–41PubMedCrossRef Bonaccorso S, Meltzer HY, Li Z, et al. SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 2002; 27: 430–41PubMedCrossRef
91.
Zurück zum Zitat Reavill C, Kettle A, Holland V, et al. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 1999; 126: 572–4PubMedCrossRef Reavill C, Kettle A, Holland V, et al. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 1999; 126: 572–4PubMedCrossRef
92.
Zurück zum Zitat Ellingrod VL, Perry PJ, Ringold JC, et al. Weight gain associated with the -759C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 76–8 Ellingrod VL, Perry PJ, Ringold JC, et al. Weight gain associated with the -759C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 76–8
93.
Zurück zum Zitat Miller DD, Ellingrod VL, Holman TL, et al. Clozapine-induced weight gain associated with the 5HT2C receptor -759C/T polymorphism. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 97–100 Miller DD, Ellingrod VL, Holman TL, et al. Clozapine-induced weight gain associated with the 5HT2C receptor -759C/T polymorphism. Am J Med Genet B Neuropsychiatr Genet 2005; 133: 97–100
94.
Zurück zum Zitat Sakaue M, Somboonthum P, Nishihara B, et al. Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 2000; 129: 1028–34PubMedCrossRef Sakaue M, Somboonthum P, Nishihara B, et al. Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 2000; 129: 1028–34PubMedCrossRef
95.
Zurück zum Zitat Konradi C, Heckers S. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729–42PubMedCrossRef Konradi C, Heckers S. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729–42PubMedCrossRef
96.
Zurück zum Zitat Levey AI. Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 1993; 52: 441–8PubMedCrossRef Levey AI. Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 1993; 52: 441–8PubMedCrossRef
97.
Zurück zum Zitat Bymaster FP, Felder CC, Tzavara E, et al. Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1125–43PubMedCrossRef Bymaster FP, Felder CC, Tzavara E, et al. Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1125–43PubMedCrossRef
98.
Zurück zum Zitat Snyder S, Greenberg D, Yamamura HI. Antischizophrenic drugs and brain cholinergic receptors: affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 1974; 31: 58–61PubMedCrossRef Snyder S, Greenberg D, Yamamura HI. Antischizophrenic drugs and brain cholinergic receptors: affinity for muscarinic sites predicts extrapyramidal effects. Arch Gen Psychiatry 1974; 31: 58–61PubMedCrossRef
99.
Zurück zum Zitat Parada MA, Hernandez L, Puig DP, et al. Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 1997; 281: 582–8PubMed Parada MA, Hernandez L, Puig DP, et al. Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 1997; 281: 582–8PubMed
100.
Zurück zum Zitat Martin LF, Kern WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 2004; 174: 54–64CrossRef Martin LF, Kern WR, Freedman R. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 2004; 174: 54–64CrossRef
101.
Zurück zum Zitat Chiodo LA, Bunney BS. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 1985; 5: 2539–44PubMed Chiodo LA, Bunney BS. Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 1985; 5: 2539–44PubMed
102.
Zurück zum Zitat Lane RF, Blaha CD, Rivet JM. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha 1-noradrenergic receptors demonstrated by in vivo voltammetry. Brain Res 1988; 460: 398–401PubMedCrossRef Lane RF, Blaha CD, Rivet JM. Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine: involvement of alpha 1-noradrenergic receptors demonstrated by in vivo voltammetry. Brain Res 1988; 460: 398–401PubMedCrossRef
103.
Zurück zum Zitat Lejeune F, Audinot V, Gobert A, et al. Clozapine inhibits serotoninergic transmission by an action at alpha 1-adrenoceptors not at 5-HT1A receptors. Eur J Pharmacol 1994; 260: 79–83PubMedCrossRef Lejeune F, Audinot V, Gobert A, et al. Clozapine inhibits serotoninergic transmission by an action at alpha 1-adrenoceptors not at 5-HT1A receptors. Eur J Pharmacol 1994; 260: 79–83PubMedCrossRef
104.
Zurück zum Zitat Kalkman HO. The role of alpha2-adrenoceptor antagonism in the anti-cataleptic properties of the atypical neuroleptic agent, clozapine, in the rat. Br J Pharmacol 1998 Aug; 124(7): 1550–6PubMedCrossRef Kalkman HO. The role of alpha2-adrenoceptor antagonism in the anti-cataleptic properties of the atypical neuroleptic agent, clozapine, in the rat. Br J Pharmacol 1998 Aug; 124(7): 1550–6PubMedCrossRef
105.
Zurück zum Zitat Horacek J. Schizophrenia as the deficit of information processing [in Czech]. Psychiatrie 2001; 5(2 Suppl.): 43–4 Horacek J. Schizophrenia as the deficit of information processing [in Czech]. Psychiatrie 2001; 5(2 Suppl.): 43–4
106.
Zurück zum Zitat Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73PubMedCrossRef Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73PubMedCrossRef
107.
Zurück zum Zitat Bartzokis G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27: 672–83PubMedCrossRef Bartzokis G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27: 672–83PubMedCrossRef
108.
Zurück zum Zitat DeLisi LE, Hoff AL, Schwartz JE, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991; 29: 159–175CrossRef DeLisi LE, Hoff AL, Schwartz JE, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991; 29: 159–175CrossRef
109.
Zurück zum Zitat Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–44PubMedCrossRef Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–44PubMedCrossRef
110.
Zurück zum Zitat Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527PubMedCrossRef Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527PubMedCrossRef
111.
Zurück zum Zitat Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–18PubMedCrossRef Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–18PubMedCrossRef
112.
Zurück zum Zitat Selemon LD, Mrzljak J, Kleinman JE, et al. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry 2003; 60: 69–77PubMedCrossRef Selemon LD, Mrzljak J, Kleinman JE, et al. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry 2003; 60: 69–77PubMedCrossRef
113.
Zurück zum Zitat Davis KL, Stewart DG, Friedman JI, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–56PubMedCrossRef Davis KL, Stewart DG, Friedman JI, et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–56PubMedCrossRef
114.
Zurück zum Zitat Tkachev D, Mimmack ML, Ryan MM, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805PubMedCrossRef Tkachev D, Mimmack ML, Ryan MM, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805PubMedCrossRef
115.
Zurück zum Zitat Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 1992; 99: 45–77PubMedCrossRef Cohen JD, Servan-Schreiber D. Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 1992; 99: 45–77PubMedCrossRef
116.
Zurück zum Zitat Cohen JD, Braver TS, Brown JW. Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 2002; 12: 223–9PubMedCrossRef Cohen JD, Braver TS, Brown JW. Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 2002; 12: 223–9PubMedCrossRef
117.
118.
Zurück zum Zitat Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1113–23PubMedCrossRef Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1113–23PubMedCrossRef
119.
Zurück zum Zitat Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179: 30–53CrossRef Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179: 30–53CrossRef
120.
Zurück zum Zitat Goldman-Rakic PS, Muly EC, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000; 31: 295–301PubMedCrossRef Goldman-Rakic PS, Muly EC, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000; 31: 295–301PubMedCrossRef
121.
Zurück zum Zitat Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999; 288: 774–81PubMed Kuroki T, Meltzer HY, Ichikawa J. Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 1999; 288: 774–81PubMed
122.
Zurück zum Zitat Angelucci F, Aloe L, Gruber SH, et al. Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions. Int J Neuropsychopharmacol 2000; 3: 13–25PubMedCrossRef Angelucci F, Aloe L, Gruber SH, et al. Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions. Int J Neuropsychopharmacol 2000; 3: 13–25PubMedCrossRef
123.
Zurück zum Zitat Ozaki T. Comparative effects of dopamine D(1) and D(2) receptor antagonists on nerve growth factor protein induction. Eur J Pharmacol 2000; 402: 39–44PubMedCrossRef Ozaki T. Comparative effects of dopamine D(1) and D(2) receptor antagonists on nerve growth factor protein induction. Eur J Pharmacol 2000; 402: 39–44PubMedCrossRef
124.
Zurück zum Zitat Ozaki T, Mui K, Yamagami S. Comparison of the effects of dopamine D1 and D2 receptor antagonists on nerve growth factor mRNA expression. Eur J Pharmacol 1999; 369: 133–43PubMedCrossRef Ozaki T, Mui K, Yamagami S. Comparison of the effects of dopamine D1 and D2 receptor antagonists on nerve growth factor mRNA expression. Eur J Pharmacol 1999; 369: 133–43PubMedCrossRef
125.
Zurück zum Zitat Chakos MH, Lieberman JA, Alvir J, et al. Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 1995; 345: 456–7PubMedCrossRef Chakos MH, Lieberman JA, Alvir J, et al. Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 1995; 345: 456–7PubMedCrossRef
126.
Zurück zum Zitat Chakos MH, Lieberman JA, Bilder RM, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994; 151: 1430–6PubMed Chakos MH, Lieberman JA, Bilder RM, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994; 151: 1430–6PubMed
127.
Zurück zum Zitat Angelucci F, Mathe AA, Aloe L. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 2004; 146: 151–65PubMedCrossRef Angelucci F, Mathe AA, Aloe L. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 2004; 146: 151–65PubMedCrossRef
128.
Zurück zum Zitat Bilder RM, Wu H, Chakos MH, et al. Cerebral morphometry and clozapine treatment in schizophrenia. J Clin Psychiatry 1994; 55Suppl. B: 53–6PubMed Bilder RM, Wu H, Chakos MH, et al. Cerebral morphometry and clozapine treatment in schizophrenia. J Clin Psychiatry 1994; 55Suppl. B: 53–6PubMed
129.
Zurück zum Zitat Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–79PubMedCrossRef Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–79PubMedCrossRef
130.
Zurück zum Zitat Gandolfi O, Dall’Olio R. Modulatory role of dopamine on excitatory amino acid receptors. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20: 659–71PubMedCrossRef Gandolfi O, Dall’Olio R. Modulatory role of dopamine on excitatory amino acid receptors. Prog Neuropsychopharmacol Biol Psychiatry 1996; 20: 659–71PubMedCrossRef
131.
Zurück zum Zitat Ossowska K, Pietraszek M, Wardas J, et al. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 280–7PubMedCrossRef Ossowska K, Pietraszek M, Wardas J, et al. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 280–7PubMedCrossRef
132.
Zurück zum Zitat Pietraszek M. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms. Pol J Pharmacol 2003; 55: 133–54PubMed Pietraszek M. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms. Pol J Pharmacol 2003; 55: 133–54PubMed
133.
Zurück zum Zitat Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–94PubMedCrossRef Angelucci F, Mathe AA, Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–94PubMedCrossRef
134.
Zurück zum Zitat Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRef Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRef
135.
Zurück zum Zitat Bai O, Chlan-Fourney J, Bowen R, et al. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 2003; 71: 127–31PubMedCrossRef Bai O, Chlan-Fourney J, Bowen R, et al. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 2003; 71: 127–31PubMedCrossRef
136.
Zurück zum Zitat Parikh V, Khan MM, Mahadik SP. Olanzapine counteracts reduction of brain-derived neurotrophic factor and TrkB receptors in rat hippocampus produced by haloperidol. Neurosci Lett 2004; 356: 135–9PubMedCrossRef Parikh V, Khan MM, Mahadik SP. Olanzapine counteracts reduction of brain-derived neurotrophic factor and TrkB receptors in rat hippocampus produced by haloperidol. Neurosci Lett 2004; 356: 135–9PubMedCrossRef
137.
Zurück zum Zitat Kahn R, Lieberman J, Charles C, et al. Antipsychotic treatment effects on progression of brain pathomorphology in first episode schizophrenia [abstract]. 16th Annual European College of Neuropsychopharmacology; 2002 Sep 20–24; Prague Kahn R, Lieberman J, Charles C, et al. Antipsychotic treatment effects on progression of brain pathomorphology in first episode schizophrenia [abstract]. 16th Annual European College of Neuropsychopharmacology; 2002 Sep 20–24; Prague
138.
Zurück zum Zitat Lieberman JA, Tollefson GD, Charles C, et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005; 62: 361–70PubMedCrossRef Lieberman JA, Tollefson GD, Charles C, et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005; 62: 361–70PubMedCrossRef
139.
Zurück zum Zitat Castren E, da Penha BM, Lindholm D, et al. Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol 1993; 122: 244–52PubMedCrossRef Castren E, da Penha BM, Lindholm D, et al. Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rat brain. Exp Neurol 1993; 122: 244–52PubMedCrossRef
140.
Zurück zum Zitat Fumagalli F, Molteni R, Roceri M, et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 2003; 72: 622–8PubMedCrossRef Fumagalli F, Molteni R, Roceri M, et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 2003; 72: 622–8PubMedCrossRef
141.
Zurück zum Zitat Vaidya VA, Terwilliger RM, Duman RS. Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 1999; 262: 1–4PubMedCrossRef Vaidya VA, Terwilliger RM, Duman RS. Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 1999; 262: 1–4PubMedCrossRef
142.
Zurück zum Zitat Vaidya VA, Marek GJ, Aghajanian GK, et al. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–95PubMed Vaidya VA, Marek GJ, Aghajanian GK, et al. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 1997; 17: 2785–95PubMed
143.
Zurück zum Zitat Meredith GE, Switzer RC, Napier TC. Short-term, D2 receptor blockade induces synaptic degeneration, reduces levels of tyrosine hydroxylase and brain-derived neurotrophic factor, and enhances D2-mediated firing in the ventral pallidum. Brain Res 2004; 995: 14–22PubMedCrossRef Meredith GE, Switzer RC, Napier TC. Short-term, D2 receptor blockade induces synaptic degeneration, reduces levels of tyrosine hydroxylase and brain-derived neurotrophic factor, and enhances D2-mediated firing in the ventral pallidum. Brain Res 2004; 995: 14–22PubMedCrossRef
144.
Zurück zum Zitat Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRef Chlan-Fourney J, Ashe P, Nylen K, et al. Differential regulation of hippocampal BDNF mRNA by typical and atypical antipsychotic administration. Brain Res 2002; 954: 11–20PubMedCrossRef
145.
Zurück zum Zitat Hoffman RE, McGlashan TH. Parallel distributed processing and the emergence of schizophrenic symptoms. Schizophr Bull 1993; 19: 119–40PubMedCrossRef Hoffman RE, McGlashan TH. Parallel distributed processing and the emergence of schizophrenic symptoms. Schizophr Bull 1993; 19: 119–40PubMedCrossRef
146.
Zurück zum Zitat Fumagalli F, Molteni R, Bedogni F, et al. Quetiapine regulates FGF-2 and BDNF expression in the hippocampus of animals treated with MK-801. Neuroreport 2004; 15: 2109–12PubMedCrossRef Fumagalli F, Molteni R, Bedogni F, et al. Quetiapine regulates FGF-2 and BDNF expression in the hippocampus of animals treated with MK-801. Neuroreport 2004; 15: 2109–12PubMedCrossRef
147.
Zurück zum Zitat Harrison PJ. The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99PubMedCrossRef Harrison PJ. The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99PubMedCrossRef
148.
Zurück zum Zitat Dalgalarrondo P, Gattaz WF. Basal ganglia abnormalities in tardive dyskinesia: possible relationship with duration of neuroleptic treatment. Eur Arch Psychiatry Clin Neurosci 1994; 244: 272–7PubMedCrossRef Dalgalarrondo P, Gattaz WF. Basal ganglia abnormalities in tardive dyskinesia: possible relationship with duration of neuroleptic treatment. Eur Arch Psychiatry Clin Neurosci 1994; 244: 272–7PubMedCrossRef
149.
Zurück zum Zitat Mion CC, Andreasen NC, Arndt S, et al. MRI abnormalities in tardive dyskinesia. Psychiatry Res 1991; 40: 157–66PubMedCrossRef Mion CC, Andreasen NC, Arndt S, et al. MRI abnormalities in tardive dyskinesia. Psychiatry Res 1991; 40: 157–66PubMedCrossRef
150.
Zurück zum Zitat Robertson GS, Fibiger HC. Effects of olanzapine on regional C-Fos expression in rat forebrain. Neuropsychopharmacology 1996; 14: 105–10PubMedCrossRef Robertson GS, Fibiger HC. Effects of olanzapine on regional C-Fos expression in rat forebrain. Neuropsychopharmacology 1996; 14: 105–10PubMedCrossRef
151.
Zurück zum Zitat Robertson GS, Matsumura H, Fibiger HC. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994; 271: 1058–66PubMed Robertson GS, Matsumura H, Fibiger HC. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 1994; 271: 1058–66PubMed
152.
Zurück zum Zitat Robertson GS, Fibiger HC. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 1992; 46: 315–28PubMedCrossRef Robertson GS, Fibiger HC. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 1992; 46: 315–28PubMedCrossRef
153.
Zurück zum Zitat Leveque JC, Macias W, Rajadhyaksha A, et al. Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 2000; 20: 4011–20PubMed Leveque JC, Macias W, Rajadhyaksha A, et al. Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 2000; 20: 4011–20PubMed
154.
Zurück zum Zitat Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–91PubMedCrossRef Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–91PubMedCrossRef
155.
Zurück zum Zitat Dawirs RR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 1998; 105: 317–27PubMedCrossRef Dawirs RR, Hildebrandt K, Teuchert-Noodt G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 1998; 105: 317–27PubMedCrossRef
156.
Zurück zum Zitat Halim ND, Weickert CS, McClintock BW, et al. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004; 29: 1063–9PubMedCrossRef Halim ND, Weickert CS, McClintock BW, et al. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 2004; 29: 1063–9PubMedCrossRef
157.
Zurück zum Zitat Luo C, Xu H, Li XM. Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 2005; 1063: 32–9PubMedCrossRef Luo C, Xu H, Li XM. Quetiapine reverses the suppression of hippocampal neurogenesis caused by repeated restraint stress. Brain Res 2005; 1063: 32–9PubMedCrossRef
158.
Zurück zum Zitat Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 2004; 56: 570–80PubMedCrossRef Kodama M, Fujioka T, Duman RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 2004; 56: 570–80PubMedCrossRef
159.
Zurück zum Zitat Wang HD, Dunnavant FD, Jarman T, et al. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 2004; 29: 1230–8PubMedCrossRef Wang HD, Dunnavant FD, Jarman T, et al. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 2004; 29: 1230–8PubMedCrossRef
160.
Zurück zum Zitat Schmitt A, Weber S, Jatzko A, et al. Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm 2004; 111: 91–100PubMedCrossRef Schmitt A, Weber S, Jatzko A, et al. Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm 2004; 111: 91–100PubMedCrossRef
161.
Zurück zum Zitat Wakade CG, Mahadik SP, Waller JL, et al. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 2002; 69: 72–9PubMedCrossRef Wakade CG, Mahadik SP, Waller JL, et al. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 2002; 69: 72–9PubMedCrossRef
162.
Zurück zum Zitat Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRef Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRef
163.
Zurück zum Zitat Horacek J. Novel antipsychotics and extrapyramidal side effects: theory and reality. Pharmacopsychiatry 2000; 33Suppl. 1: 34–42PubMedCrossRef Horacek J. Novel antipsychotics and extrapyramidal side effects: theory and reality. Pharmacopsychiatry 2000; 33Suppl. 1: 34–42PubMedCrossRef
164.
Zurück zum Zitat Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRef Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001; 179: 503–8PubMedCrossRef
165.
Zurück zum Zitat Pilowsky LS, O’Connell P, Davies N, et al. In vivo effects on striatal dopamine D2 receptor binding by the novel atypical antipsychotic drug sertindole: a 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology (Berl) 1997; 130: 152–8CrossRef Pilowsky LS, O’Connell P, Davies N, et al. In vivo effects on striatal dopamine D2 receptor binding by the novel atypical antipsychotic drug sertindole: a 123I IBZM single photon emission tomography (SPET) study. Psychopharmacology (Berl) 1997; 130: 152–8CrossRef
166.
Zurück zum Zitat Nyberg S, Farde L. Non-equipotent doses partly explain differences among antipsychotics: implications of PET studies. Psychopharmacology (Berl) 2000; 148: 22–3CrossRef Nyberg S, Farde L. Non-equipotent doses partly explain differences among antipsychotics: implications of PET studies. Psychopharmacology (Berl) 2000; 148: 22–3CrossRef
167.
Zurück zum Zitat Kopecek M, Hoschl C, Hajek T. Regional selectivity of novel antipsychotics. Br J Psychiatry 2002; 181: 254–5PubMedCrossRef Kopecek M, Hoschl C, Hajek T. Regional selectivity of novel antipsychotics. Br J Psychiatry 2002; 181: 254–5PubMedCrossRef
Metadaten
Titel
Mechanism of Action of Atypical Antipsychotic Drugs and the Neurobiology of Schizophrenia
verfasst von
Dr Jiri Horacek
Vera Bubenikova-Valesova
Milan Kopecek
Tomas Palenicek
Colleen Dockery
Pavel Mohr
Cyril Höschl
Publikationsdatum
01.05.2006
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 5/2006
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200620050-00004

Weitere Artikel der Ausgabe 5/2006

CNS Drugs 5/2006 Zur Ausgabe

Adis Drug Profile

Zolpidem Extended-Release

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.