Skip to main content
Erschienen in: CNS Drugs 1/2009

01.11.2009 | Review Article

Toward a New Understanding of Attention-Deficit Hyperactivity Disorder Pathophysiology

An Important Role for Prefrontal Cortex Dysfunction

verfasst von: Amy F. T. Arnsten

Erschienen in: CNS Drugs | Sonderheft 1/2009

Einloggen, um Zugang zu erhalten

Abstract

Recent advances in neurobiology have aided our understanding of attention-deficit hyperactivity disorder (ADHD). The higher-order association cortices in the temporal and parietal lobes and prefrontal cortex (PFC) interconnect to mediate aspects of attention. The parietal association cortices are important for orienting attentional resources in time/space, while the temporal association cortices analyse visual features critical for identifying objects/ places. These posterior cortices are engaged by the salience of a stimulus (its physical characteristics such as movement and colour). Conversely, the PFC is critical for regulating attention based on relevance (i.e. its meaning). The PFC is important for screening distractions, sustaining attention and shifting/ dividing attention in a task-appropriate manner. The PFC is critical for regulating behaviour/emotion, especially for inhibiting inappropriate emotions, impulses and habits. The PFC is needed for allocating/planning to achieve goals and organizing behaviour/thought. These regulatory abilities are often referred to as executive functions. In humans, the right hemisphere of the PFC is important for regulating distractions, inappropriate behaviour and emotional responses. Imaging studies of patients with ADHD indicate that these regions are underactive with weakened connections to other parts of the brain.
The PFC regulates attention and behaviour through networks of interconnected pyramidal cells. These networks excite each other to store goals/ rules to guide actions and are highly dependent on their neurochemical environment, as small changes in the catecholamines noradrenaline (NA) or dopamine (DA) can have marked effects on PFC function. NA and DA are released in the PFC according to our arousal state; too little (during fatigue or boredom) or too much (during stress) impairs PFC function. Optimal amounts are released when we are alert/interested. The beneficial effects of NA occur at postsynaptic α2A-receptors on the dendritic spines of PFC pyramidal cells. Stimulation of these receptors initiates a series of chemical events inside the cell. These chemical signals lead to the closing of special ion channels, thus strengthening the connectivity of network inputs to the cell. Conversely, the beneficial effects of moderate amounts of DA occur at D1 receptors, which act by weakening irrelevant inputs to the cells on another set of spines. Genetic linkage studies of ADHD suggest that these catecholamine pathways may be altered in some families with ADHD, e.g. alterations in the enzyme that synthesizes NA (DA β-hydroxylase) are associated with weakened PFC abilities.
Pharmacological studies in animals indicate catecholamine actions in the PFC are highly relevant to ADHD. Blocking NA α2A-receptors in the PFC with yohimbine produces a profile similar to ADHD: locomotor hyper-activity, impulsivity and poor working memory. Conversely, drugs that enhance α2-receptor stimulation improve PFC function. Guanfacine directly stimulates postsynaptic α2A-receptors in the PFC and improves functioning, while methylphenidate and atomoxetine increase endogenous NA and DA levels and indirectly improve PFC function via α2A- and D1 receptor actions. Methylphenidate and atomoxetine have more potent actions in the PFC than in subcortical structures, which may explain why proper administration of stimulant medications does not lead to abuse. Further understanding of the neurobiology of attention and impulse control will allow us to better tailor treatments for specific patient needs.
Literatur
1.
Zurück zum Zitat Haxby JV, Grady CL, Horwitz B, et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A 1991; 88(5): 1621–5PubMedPubMedCentral Haxby JV, Grady CL, Horwitz B, et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci U S A 1991; 88(5): 1621–5PubMedPubMedCentral
2.
Zurück zum Zitat Posner MI, Walker JA, Friedrich FJ, et al. Effects of parietal injury on covert orienting of attention. J Neurosci 1984; 4(7): 1863–74PubMedPubMedCentral Posner MI, Walker JA, Friedrich FJ, et al. Effects of parietal injury on covert orienting of attention. J Neurosci 1984; 4(7): 1863–74PubMedPubMedCentral
3.
Zurück zum Zitat Knight RT, Scabini D, Woods DL. Prefrontal cortex gating of auditory transmission in humans. Brain Res 1989; 504(2): 338–42PubMed Knight RT, Scabini D, Woods DL. Prefrontal cortex gating of auditory transmission in humans. Brain Res 1989; 504(2): 338–42PubMed
4.
Zurück zum Zitat Knight RT, Grabowecky MF, Scabini D. Role of human prefrontal cortex in attention control. Adv Neurol 1995; 66: 21–34PubMed Knight RT, Grabowecky MF, Scabini D. Role of human prefrontal cortex in attention control. Adv Neurol 1995; 66: 21–34PubMed
5.
Zurück zum Zitat Arnsten AF. Fundamentals of attention-deficit/ hyperactivity disorder: circuits and pathways. J Clin Psychiatry 2006; 67Suppl. 8: 7–12PubMed Arnsten AF. Fundamentals of attention-deficit/ hyperactivity disorder: circuits and pathways. J Clin Psychiatry 2006; 67Suppl. 8: 7–12PubMed
6.
Zurück zum Zitat Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 2000; 31(2–3): 236–50PubMed Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 2000; 31(2–3): 236–50PubMed
7.
Zurück zum Zitat Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 2007; 362(1481): 917–32PubMedPubMedCentral Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci 2007; 362(1481): 917–32PubMedPubMedCentral
8.
Zurück zum Zitat Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 1996; 107: 523–36PubMed Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 1996; 107: 523–36PubMed
9.
Zurück zum Zitat Rubia K, Smith AB, Brammer MJ, et al. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 2003; 20(1): 351–8PubMed Rubia K, Smith AB, Brammer MJ, et al. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 2003; 20(1): 351–8PubMed
10.
Zurück zum Zitat Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8(4): 170–7PubMed Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8(4): 170–7PubMed
11.
Zurück zum Zitat Chambers CD, Bellgrove MA, Stokes MG, et al. Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci 2006; 18(3): 444–55PubMed Chambers CD, Bellgrove MA, Stokes MG, et al. Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci 2006; 18(3): 444–55PubMed
12.
Zurück zum Zitat Kennard MA, Spencer S, Fountain Jr G. Hyperactivity in monkeys following lesions of the frontal lobes. J Neuro-physiology 1941; 4: 512–24 Kennard MA, Spencer S, Fountain Jr G. Hyperactivity in monkeys following lesions of the frontal lobes. J Neuro-physiology 1941; 4: 512–24
13.
Zurück zum Zitat Rubia K, Overmeyer S, Taylor E, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 1999; 156(6): 891–6PubMed Rubia K, Overmeyer S, Taylor E, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 1999; 156(6): 891–6PubMed
14.
Zurück zum Zitat Dickstein SG, Bannon K, Castellanos FX, et al. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 2006; 47(10): 1051–62PubMed Dickstein SG, Bannon K, Castellanos FX, et al. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 2006; 47(10): 1051–62PubMed
15.
Zurück zum Zitat Stuss DT, Gow CA, Hetherington CR. “No longer Gage”: frontal lobe dysfunction and emotional changes. J Consult Clin Psychol 1992; 60(3): 349–59PubMed Stuss DT, Gow CA, Hetherington CR. “No longer Gage”: frontal lobe dysfunction and emotional changes. J Consult Clin Psychol 1992; 60(3): 349–59PubMed
16.
Zurück zum Zitat Rubia K, Smith AB, Halari R, et al. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry 2009; 166(1): 83–94PubMed Rubia K, Smith AB, Halari R, et al. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry 2009; 166(1): 83–94PubMed
17.
Zurück zum Zitat Goldman-Rakic PS. Cellular basis of working memory. Neuron 1995; 14(3): 477–85PubMed Goldman-Rakic PS. Cellular basis of working memory. Neuron 1995; 14(3): 477–85PubMed
18.
Zurück zum Zitat Wang M, Ramos BP, Paspalas CD, et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 2007; 129(2): 397–410PubMed Wang M, Ramos BP, Paspalas CD, et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 2007; 129(2): 397–410PubMed
19.
Zurück zum Zitat Smiley JF, Levey AI, Ciliax BJ, et al. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci U S A 1994; 91(12): 5720–4PubMedPubMedCentral Smiley JF, Levey AI, Ciliax BJ, et al. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci U S A 1994; 91(12): 5720–4PubMedPubMedCentral
20.
Zurück zum Zitat Brozoski TJ, Brown RM, Rosvold HE, et al. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979; 205(4409): 929–32PubMed Brozoski TJ, Brown RM, Rosvold HE, et al. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979; 205(4409): 929–32PubMed
21.
Zurück zum Zitat Arnsten AF. Catecholamine and second messenger influences on prefrontal cortical networks of “representational knowledge”: a rational bridge between genetics and the symptoms of mental illness. Cereb Cortex 2007; 17Suppl. 1: i6–15PubMed Arnsten AF. Catecholamine and second messenger influences on prefrontal cortical networks of “representational knowledge”: a rational bridge between genetics and the symptoms of mental illness. Cereb Cortex 2007; 17Suppl. 1: i6–15PubMed
22.
Zurück zum Zitat Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 2005; 57(11): 1377–84PubMed Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 2005; 57(11): 1377–84PubMed
23.
Zurück zum Zitat Li BM, Mei ZT. Delayed-response deficit induced by local injection of the alpha 2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol 1994; 62(2): 134–9PubMed Li BM, Mei ZT. Delayed-response deficit induced by local injection of the alpha 2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol 1994; 62(2): 134–9PubMed
24.
Zurück zum Zitat Ma CL, Qi XL, Peng JY, et al. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. Neuroreport 2003; 14(7): 1013–6PubMed Ma CL, Qi XL, Peng JY, et al. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. Neuroreport 2003; 14(7): 1013–6PubMed
25.
Zurück zum Zitat Ma CL, Arnsten AF, Li BM. Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol Psychiatry 2005; 57(2): 192–5PubMed Ma CL, Arnsten AF, Li BM. Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol Psychiatry 2005; 57(2): 192–5PubMed
26.
Zurück zum Zitat Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 1995; 64(3): 619–28PubMed Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 1995; 64(3): 619–28PubMed
27.
Zurück zum Zitat Berridge CW, Devilbiss DM, Andrzejewski ME, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry 2006; 60(10): 1111–20PubMed Berridge CW, Devilbiss DM, Andrzejewski ME, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry 2006; 60(10): 1111–20PubMed
28.
Zurück zum Zitat Birnbaum SG, Yuan PX, Wang M, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 2004; 306(5697): 882–4PubMed Birnbaum SG, Yuan PX, Wang M, et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 2004; 306(5697): 882–4PubMed
29.
Zurück zum Zitat Ramos BP, Colgan L, Nou E, et al. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry 2005; 58(11): 894–900PubMed Ramos BP, Colgan L, Nou E, et al. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry 2005; 58(11): 894–900PubMed
30.
Zurück zum Zitat Lidow MS, Goldman-Rakic PS, Gallager DW, et al. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone, and [3H]SCH 23390. Neuroscience 1991; 40(3): 657–71PubMed Lidow MS, Goldman-Rakic PS, Gallager DW, et al. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone, and [3H]SCH 23390. Neuroscience 1991; 40(3): 657–71PubMed
31.
Zurück zum Zitat Vijayraghavan S, Wang M, Birnbaum SG, et al. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 2007; 10(3): 376–84PubMed Vijayraghavan S, Wang M, Birnbaum SG, et al. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 2007; 10(3): 376–84PubMed
32.
Zurück zum Zitat Wang M, Vijayraghavan S, Goldman-Rakic PS. Selective D2 receptor actions on the functional circuitry of working memory. Science 2004; 303(5659): 853–6PubMed Wang M, Vijayraghavan S, Goldman-Rakic PS. Selective D2 receptor actions on the functional circuitry of working memory. Science 2004; 303(5659): 853–6PubMed
33.
Zurück zum Zitat Wang X, Zhong P, Yan Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J Neurosci 2002; 22(21): 9185–93PubMedPubMedCentral Wang X, Zhong P, Yan Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J Neurosci 2002; 22(21): 9185–93PubMedPubMedCentral
34.
Zurück zum Zitat Bush G, Valera EM, Seidman LJ. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 2005; 57(11): 1273–84PubMed Bush G, Valera EM, Seidman LJ. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 2005; 57(11): 1273–84PubMed
35.
Zurück zum Zitat Casey BJ, Castellanos FX, Giedd JN, et al. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1997; 36(3): 374–83PubMed Casey BJ, Castellanos FX, Giedd JN, et al. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1997; 36(3): 374–83PubMed
36.
Zurück zum Zitat Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57(11): 1263–72PubMed Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57(11): 1263–72PubMed
37.
Zurück zum Zitat Sheridan MA, Hinshaw S, D’Esposito M. Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2007; 46(10): 1357–66PubMed Sheridan MA, Hinshaw S, D’Esposito M. Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2007; 46(10): 1357–66PubMed
38.
Zurück zum Zitat Sowell ER, Thompson PM, Welcome SE, et al. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003; 362(9397): 1699–707PubMed Sowell ER, Thompson PM, Welcome SE, et al. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003; 362(9397): 1699–707PubMed
39.
Zurück zum Zitat Casey BJ, Epstein JN, Buhle J, et al. Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am J Psychiatry 2007; 164(11): 1729–36PubMed Casey BJ, Epstein JN, Buhle J, et al. Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am J Psychiatry 2007; 164(11): 1729–36PubMed
40.
Zurück zum Zitat Makris N, Buka SL, Biederman J, et al. Attention and executive systems abnormalities in adults with childhood ADHD: a DT-MRI study of connections. Cereb Cortex 2008; 18(5): 1210–20PubMed Makris N, Buka SL, Biederman J, et al. Attention and executive systems abnormalities in adults with childhood ADHD: a DT-MRI study of connections. Cereb Cortex 2008; 18(5): 1210–20PubMed
41.
Zurück zum Zitat Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288(14): 1740–8PubMed Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288(14): 1740–8PubMed
42.
Zurück zum Zitat Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/ hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A 2007; 104(49): 19649–54PubMedPubMedCentral Shaw P, Eckstrand K, Sharp W, et al. Attention-deficit/ hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A 2007; 104(49): 19649–54PubMedPubMedCentral
43.
Zurück zum Zitat Makris N, Biederman J, Valera EM, et al. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 2007; 17(6): 1364–75PubMed Makris N, Biederman J, Valera EM, et al. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 2007; 17(6): 1364–75PubMed
44.
Zurück zum Zitat Seidman LJ, Valera EM, Makris N, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 2006; 60(10): 1071–80PubMed Seidman LJ, Valera EM, Makris N, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 2006; 60(10): 1071–80PubMed
45.
Zurück zum Zitat Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57(11): 1313–23PubMed Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57(11): 1313–23PubMed
46.
Zurück zum Zitat Bellgrove MA, Mattingley JB. Molecular genetics of attention. Ann NY Acad Sci 2008; 1129: 200–12PubMed Bellgrove MA, Mattingley JB. Molecular genetics of attention. Ann NY Acad Sci 2008; 1129: 200–12PubMed
47.
Zurück zum Zitat Bellgrove MA, Hawi Z, Gill M, et al. The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype. Cortex 2006; 42(6): 838–45PubMed Bellgrove MA, Hawi Z, Gill M, et al. The cognitive genetics of attention deficit hyperactivity disorder (ADHD): sustained attention as a candidate phenotype. Cortex 2006; 42(6): 838–45PubMed
48.
Zurück zum Zitat Kieling C, Genro JP, Hutz MH, et al. The -1021 C/T DBH polymorphism is associated with neuropsychological performance among children and adolescents with ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B(4): 485–90PubMed Kieling C, Genro JP, Hutz MH, et al. The -1021 C/T DBH polymorphism is associated with neuropsychological performance among children and adolescents with ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B(4): 485–90PubMed
49.
Zurück zum Zitat Volkow ND, Wang GJ, Newcorn J, et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/ hyperactivity disorder. Arch Gen Psychiatry 2007; 64(8): 932–40PubMed Volkow ND, Wang GJ, Newcorn J, et al. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/ hyperactivity disorder. Arch Gen Psychiatry 2007; 64(8): 932–40PubMed
50.
Zurück zum Zitat Ernst M, Zametkin AJ, Matochik JA, et al. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci 1998; 18(15): 5901–7 Ernst M, Zametkin AJ, Matochik JA, et al. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci 1998; 18(15): 5901–7
51.
Zurück zum Zitat Rapoport JL, Inoff-Germain G. Responses to methylphenidate in Attention-Deficit/Hyperactivity Disorder and normal children: update 2002. J Atten Disord 2002; 6Suppl. 1: S57–60PubMed Rapoport JL, Inoff-Germain G. Responses to methylphenidate in Attention-Deficit/Hyperactivity Disorder and normal children: update 2002. J Atten Disord 2002; 6Suppl. 1: S57–60PubMed
52.
Zurück zum Zitat Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 2005; 1(1): 2PubMedPubMedCentral Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 2005; 1(1): 2PubMedPubMedCentral
53.
Zurück zum Zitat Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27(5): 699–711PubMed Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27(5): 699–711PubMed
54.
Zurück zum Zitat Arnsten AFT, Goldman-Rakic PS. Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 1985; 230(4731): 1273–6PubMed Arnsten AFT, Goldman-Rakic PS. Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 1985; 230(4731): 1273–6PubMed
55.
Zurück zum Zitat Ramos B, Stark D, Verduzco L, et al. Alpha-2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learning Memory 2006; 13(6): 770–6PubMedPubMedCentral Ramos B, Stark D, Verduzco L, et al. Alpha-2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learning Memory 2006; 13(6): 770–6PubMedPubMedCentral
56.
Zurück zum Zitat Ernsberger P, Giuliano R, Willette RN, et al. Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medulla. JPET 1990; 253(1): 408–18 Ernsberger P, Giuliano R, Willette RN, et al. Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medulla. JPET 1990; 253(1): 408–18
57.
Zurück zum Zitat Uhlen S, Wikberg JES. Delineation of rat kidney alpha 2A and alpha 2B-adrenoceptors with [3H]RX821002 radio-ligand binding: computer modeling reveals that guanfacine is an alpha-2A-selective compound. Eur J Pharmacol 1991; 202(2): 235–43PubMed Uhlen S, Wikberg JES. Delineation of rat kidney alpha 2A and alpha 2B-adrenoceptors with [3H]RX821002 radio-ligand binding: computer modeling reveals that guanfacine is an alpha-2A-selective compound. Eur J Pharmacol 1991; 202(2): 235–43PubMed
58.
Zurück zum Zitat Ernsberger P, Meeley MP, Mann JJ, et al. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 2008; 134: 1–13 Ernsberger P, Meeley MP, Mann JJ, et al. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 2008; 134: 1–13
59.
Zurück zum Zitat Arnsten AF, Scahill L, Findling RL. Alpha(2)-adrenergic receptor agonists for the treatment of attention-deficit/ hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol 2007; 17(4): 393–406PubMed Arnsten AF, Scahill L, Findling RL. Alpha(2)-adrenergic receptor agonists for the treatment of attention-deficit/ hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol 2007; 17(4): 393–406PubMed
60.
Zurück zum Zitat Arnsten AF, Cai JX, Goldman-Rakic PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 1988; 8(11): 4287–98PubMedPubMedCentral Arnsten AF, Cai JX, Goldman-Rakic PS. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 1988; 8(11): 4287–98PubMedPubMedCentral
61.
Zurück zum Zitat Arnsten AF, Contant TA. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology (Berl) 1992; 108(1–2): 159–69 Arnsten AF, Contant TA. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology (Berl) 1992; 108(1–2): 159–69
62.
Zurück zum Zitat O’Neill J, Fitten LJ, Siembieda DW, et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sci 2000; 67(8): 877–85PubMed O’Neill J, Fitten LJ, Siembieda DW, et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sci 2000; 67(8): 877–85PubMed
63.
Zurück zum Zitat Rama P, Linnankoski I, Tanila H, et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmocol Biochem Behav 1996; 54: 1–7 Rama P, Linnankoski I, Tanila H, et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmocol Biochem Behav 1996; 54: 1–7
64.
Zurück zum Zitat Sagvolden T. The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention-deficit/ hyperactivity disorder (ADHD). Behav Brain Funct 2006; 2: 41PubMedPubMedCentral Sagvolden T. The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention-deficit/ hyperactivity disorder (ADHD). Behav Brain Funct 2006; 2: 41PubMedPubMedCentral
65.
Zurück zum Zitat Steere JC, Arnsten AF. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 1997; 111(5): 883–91PubMed Steere JC, Arnsten AF. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 1997; 111(5): 883–91PubMed
66.
Zurück zum Zitat Wang M, Ji JZ, Li BM. The alpha(2A)-adrenergic agonist guanfacine improves visuomotor associative learning in monkeys. Neuropsychopharmacology 2004; 29(1): 86–92PubMed Wang M, Ji JZ, Li BM. The alpha(2A)-adrenergic agonist guanfacine improves visuomotor associative learning in monkeys. Neuropsychopharmacology 2004; 29(1): 86–92PubMed
67.
Zurück zum Zitat Biederman J, Melmed RD, Patel A, et al. A randomized, double-blind, placebo-controlled study of guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder. Pediatrics 2008; 121(1): e73–84PubMed Biederman J, Melmed RD, Patel A, et al. A randomized, double-blind, placebo-controlled study of guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder. Pediatrics 2008; 121(1): e73–84PubMed
68.
Zurück zum Zitat Scahill L, Chappell PB, Kim YS, et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry 2001; 158(7): 1067–74PubMed Scahill L, Chappell PB, Kim YS, et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am J Psychiatry 2001; 158(7): 1067–74PubMed
69.
Zurück zum Zitat Taylor FB, Russo J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 2001; 21(2): 223–8PubMed Taylor FB, Russo J. Comparing guanfacine and dextroamphetamine for the treatment of adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 2001; 21(2): 223–8PubMed
Metadaten
Titel
Toward a New Understanding of Attention-Deficit Hyperactivity Disorder Pathophysiology
An Important Role for Prefrontal Cortex Dysfunction
verfasst von
Amy F. T. Arnsten
Publikationsdatum
01.11.2009
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe Sonderheft 1/2009
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200923000-00005

Weitere Artikel der Sonderheft 1/2009

CNS Drugs 1/2009 Zur Ausgabe

CME Post-test

Post-Test Questions

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.