Skip to main content
Erschienen in: BioDrugs 5/2003

01.09.2003 | Drug Development

Biotherapeutics in Orthopaedic Medicine

Accelerating the Healing Process?

verfasst von: Dr David A. Puleo

Erschienen in: BioDrugs | Ausgabe 5/2003

Einloggen, um Zugang zu erhalten

Abstract

Musculoskeletal injuries have a significant human and financial impact on society. In particular, fractures that lead to delayed union or even nonunion represent a serious clinical challenge for which few treatment options are available. The multiple surgical procedures often needed are associated with patient morbidity and reduced quality of life. Biotechnological advances have made possible a host of potential treatments for enhancing and accelerating the repair of bone. By stimulating the body’s own healing mechanisms, clinical outcomes may be improved while also containing procedural costs. Biotherapeutics may take the form of proteins, genes or cells that can be used to treat the injury. Protein biotherapeutics have received the greatest attention. Using recombinant DNA techniques, growth factors that play important roles in bone development and repair are being produced. By delivering exogenous growth factors to the site of injury in an appropriate manner, bone formation can be stimulated. Although individual proteins have been the primary focus of investigation, combinations of biomolecules can have additive, and perhaps synergistic, effects. Alternatively, genes coding for osteotropic growth factors can be delivered to the site of injury. Expression of the gene effectively results in localised delivery of the growth factor. Delivery of cells having osteogenic potential can also result in bone formation. Furthermore, it may be possible to obtain additional benefits by combining biotherapeutic approaches, such as by introducing cells genetically modified to overexpress therapeutic proteins of interest. Although biotherapeutics have great potential for stimulating bone repair, only a limited number of treatments have been approved by governmental regulatory agencies for clinical use. Bone morphogenetic activity was initially described in 1965, but not until 2001 and 2002 did two protein biotherapeutics, utilising bone morphogenetic proteins 2 and 7, receive approval for commercial distribution. Gene-and cell-based therapies are in a comparatively early stage of development.
Fußnoten
1
The use of tradenames is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Rosemont (IL): American Academy of Orthopaedic Surgeons, 1999 Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Rosemont (IL): American Academy of Orthopaedic Surgeons, 1999
2.
Zurück zum Zitat Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995 Jun; 77(6): 940–56PubMed Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am 1995 Jun; 77(6): 940–56PubMed
3.
Zurück zum Zitat Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand 1996 Aug; 67(4): 407–17PubMedCrossRef Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand 1996 Aug; 67(4): 407–17PubMedCrossRef
4.
Zurück zum Zitat Mohan S, Baylink DJ. Bone growth factors. Clin Orthop 1991 Feb; 263: 30–48PubMed Mohan S, Baylink DJ. Bone growth factors. Clin Orthop 1991 Feb; 263: 30–48PubMed
5.
Zurück zum Zitat Lind M. Growth factor stimulation of bone healing: effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl 1998 Oct; 283: 2–37PubMed Lind M. Growth factor stimulation of bone healing: effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl 1998 Oct; 283: 2–37PubMed
6.
Zurück zum Zitat Iwata H, Sakano S, Itoh T, et al. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop 2002 Feb; 395: 99–109PubMedCrossRef Iwata H, Sakano S, Itoh T, et al. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery. Clin Orthop 2002 Feb; 395: 99–109PubMedCrossRef
7.
Zurück zum Zitat Li H, Pujic Z, Xiao Y, et al. Identification of bone morphogenetic proteins 2 and 4 in commercial demineralized freeze-dried bone allograft preparations: pilot study. Clin Implant Dent Relat Res 2000; 2(2): 110–7PubMedCrossRef Li H, Pujic Z, Xiao Y, et al. Identification of bone morphogenetic proteins 2 and 4 in commercial demineralized freeze-dried bone allograft preparations: pilot study. Clin Implant Dent Relat Res 2000; 2(2): 110–7PubMedCrossRef
8.
Zurück zum Zitat Takikawa S, Bauer TW, Kambic H, et al. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J Biomed Mater Res 2003 Apr 1; 65A(1): 37–42CrossRef Takikawa S, Bauer TW, Kambic H, et al. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J Biomed Mater Res 2003 Apr 1; 65A(1): 37–42CrossRef
9.
Zurück zum Zitat Lucas PA, Syftestad GT, Goldberg VM, et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle. J Biomed Mater Res 1989 Apr; 23(A1 Suppl.): 23–39PubMedCrossRef Lucas PA, Syftestad GT, Goldberg VM, et al. Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle. J Biomed Mater Res 1989 Apr; 23(A1 Suppl.): 23–39PubMedCrossRef
10.
Zurück zum Zitat Nielsen HM, Andreassen TT, Ledet T, et al. Local injection of TGF-beta increases the strength of tibial fractures in the rat. Acta Orthop Scand 1994 Feb; 65(1): 37–41PubMedCrossRef Nielsen HM, Andreassen TT, Ledet T, et al. Local injection of TGF-beta increases the strength of tibial fractures in the rat. Acta Orthop Scand 1994 Feb; 65(1): 37–41PubMedCrossRef
11.
Zurück zum Zitat Kato T, Kawaguchi H, Hanada K, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 1998 Nov; 16(6): 654–9PubMedCrossRef Kato T, Kawaguchi H, Hanada K, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 1998 Nov; 16(6): 654–9PubMedCrossRef
12.
Zurück zum Zitat Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy: results following a single administration of PDGF/IGF-I. J Periodontol 1994 Dec; 65(12): 1158–68PubMedCrossRef Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy: results following a single administration of PDGF/IGF-I. J Periodontol 1994 Dec; 65(12): 1158–68PubMedCrossRef
13.
Zurück zum Zitat Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002 Dec; 84-A(12): 2123–34PubMed Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002 Dec; 84-A(12): 2123–34PubMed
14.
Zurück zum Zitat Ma Q, Mao T, Liu B, et al. Vascular osteomuscular autograft prefabrication using coral, type I collagen and recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000 Oct; 38(5): 561–4PubMedCrossRef Ma Q, Mao T, Liu B, et al. Vascular osteomuscular autograft prefabrication using coral, type I collagen and recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000 Oct; 38(5): 561–4PubMedCrossRef
15.
Zurück zum Zitat Peter SJ, Lu L, Kim DJ, et al. Effects of transforming growth factor betal released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000 Jun; 50(3): 452–62PubMedCrossRef Peter SJ, Lu L, Kim DJ, et al. Effects of transforming growth factor betal released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res 2000 Jun; 50(3): 452–62PubMedCrossRef
16.
17.
Zurück zum Zitat Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971 Nov–Dec; 50(6): 1392–406PubMedCrossRef Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971 Nov–Dec; 50(6): 1392–406PubMedCrossRef
18.
Zurück zum Zitat Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 1998 Jan; 346: 26–37PubMed Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop 1998 Jan; 346: 26–37PubMed
19.
Zurück zum Zitat Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002 Dec; 23(6): 787–823PubMedCrossRef Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002 Dec; 23(6): 787–823PubMedCrossRef
20.
Zurück zum Zitat Bostrom MP, Lane JM, Berberian WS, et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 1995 May; 13(3): 357–67PubMedCrossRef Bostrom MP, Lane JM, Berberian WS, et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 1995 May; 13(3): 357–67PubMedCrossRef
21.
Zurück zum Zitat Yu Y, Yang JL, Chapman-Sheath PJ, et al. TGF-beta, BMPs, and their signal transducing mediators, Smads, in rat fracture healing. J Biomed Mater Res 2002 Jun; 60(3): 392–7PubMedCrossRef Yu Y, Yang JL, Chapman-Sheath PJ, et al. TGF-beta, BMPs, and their signal transducing mediators, Smads, in rat fracture healing. J Biomed Mater Res 2002 Jun; 60(3): 392–7PubMedCrossRef
22.
Zurück zum Zitat Wang EA, Rosen V, Cordes P, et al. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A 1988 Dec; 85(24): 9484–8PubMedCrossRef Wang EA, Rosen V, Cordes P, et al. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci U S A 1988 Dec; 85(24): 9484–8PubMedCrossRef
23.
Zurück zum Zitat Wang EA, Rosen V, D’Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990 Mar; 87(6): 2220–4PubMedCrossRef Wang EA, Rosen V, D’Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 1990 Mar; 87(6): 2220–4PubMedCrossRef
24.
Zurück zum Zitat Khan SN, Sandhu HS, Lane JM, et al. Bone morphogenetic proteins: relevance in spine surgery. Orthop Clin North Am 2002 Apr; 33(2): 447–63PubMedCrossRef Khan SN, Sandhu HS, Lane JM, et al. Bone morphogenetic proteins: relevance in spine surgery. Orthop Clin North Am 2002 Apr; 33(2): 447–63PubMedCrossRef
25.
Zurück zum Zitat Bouxsein ML, Turek TJ, Blake CA, et al. Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J Bone Joint Surg Am 2001 Aug; 83-A(8): 1219–30PubMed Bouxsein ML, Turek TJ, Blake CA, et al. Recombinant human bone morphogenetic protein-2 accelerates healing in a rabbit ulnar osteotomy model. J Bone Joint Surg Am 2001 Aug; 83-A(8): 1219–30PubMed
26.
Zurück zum Zitat Sciadini MF, Johnson KD. Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res 2000 Mar; 18(2): 289–302PubMedCrossRef Sciadini MF, Johnson KD. Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res 2000 Mar; 18(2): 289–302PubMedCrossRef
27.
Zurück zum Zitat Gerhart TN, Kirker-Head CA, Kriz MJ, et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993 Aug; 293: 317–26PubMed Gerhart TN, Kirker-Head CA, Kriz MJ, et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop 1993 Aug; 293: 317–26PubMed
28.
Zurück zum Zitat Kusumoto K, Bessho K, Fujimura K, et al. Osteoinduction by recombinant human bone morphogenetic protein-2 in muscles of non-human primates. J Int Med Res 2002 May–Jun; 30(3): 251–9PubMed Kusumoto K, Bessho K, Fujimura K, et al. Osteoinduction by recombinant human bone morphogenetic protein-2 in muscles of non-human primates. J Int Med Res 2002 May–Jun; 30(3): 251–9PubMed
29.
Zurück zum Zitat Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992 Oct; 267(28): 20352–62PubMed Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992 Oct; 267(28): 20352–62PubMed
30.
Zurück zum Zitat Cook SD, Baffes GC, Wolfe MW, et al. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg Am 1994 Jun; 76(6): 827–38PubMed Cook SD, Baffes GC, Wolfe MW, et al. The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg Am 1994 Jun; 76(6): 827–38PubMed
31.
Zurück zum Zitat Cook SD, Baffes GC, Wolfe MW, et al. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 1994 Apr; 301: 302–12PubMed Cook SD, Baffes GC, Wolfe MW, et al. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 1994 Apr; 301: 302–12PubMed
32.
Zurück zum Zitat Cook SD, Wolfe MW, Salkeld SL, et al. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am 1995 May; 77(5): 734–50PubMed Cook SD, Wolfe MW, Salkeld SL, et al. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am 1995 May; 77(5): 734–50PubMed
33.
Zurück zum Zitat Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-ASuppl. 1 (Pt 2): S151–8PubMed Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-ASuppl. 1 (Pt 2): S151–8PubMed
34.
Zurück zum Zitat Jeppsson C, Bostrom M, Aspenberg P. Intraosseous BMP implants in rabbits: inhibitory effect on bone formation. Acta Orthop Scand 1999 Feb; 70(1): 77–83PubMedCrossRef Jeppsson C, Bostrom M, Aspenberg P. Intraosseous BMP implants in rabbits: inhibitory effect on bone formation. Acta Orthop Scand 1999 Feb; 70(1): 77–83PubMedCrossRef
35.
Zurück zum Zitat Kujala S, Raatikainen T, Ryhanen J, et al. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions: a preliminary study. Scand J Surg 2002; 91(2): 186–90PubMed Kujala S, Raatikainen T, Ryhanen J, et al. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions: a preliminary study. Scand J Surg 2002; 91(2): 186–90PubMed
36.
Zurück zum Zitat Wurzler KK, DeWeese TL, Sebald W, et al. Radiation-induced impairment of bone healing can be overcome by recombinant human bone morphogenetic protein-2. J Craniofac Surg 1998 Mar; 9(2): 131–7PubMedCrossRef Wurzler KK, DeWeese TL, Sebald W, et al. Radiation-induced impairment of bone healing can be overcome by recombinant human bone morphogenetic protein-2. J Craniofac Surg 1998 Mar; 9(2): 131–7PubMedCrossRef
37.
Zurück zum Zitat Luppen CA, Blake CA, Ammirati KM, et al. Recombinant human bone morphogenetic protein-2 enhances osteotomy healing in glucocorticoid-treated rabbits. J Bone Miner Res 2002 Feb; 17(2): 301–10PubMedCrossRef Luppen CA, Blake CA, Ammirati KM, et al. Recombinant human bone morphogenetic protein-2 enhances osteotomy healing in glucocorticoid-treated rabbits. J Bone Miner Res 2002 Feb; 17(2): 301–10PubMedCrossRef
38.
Zurück zum Zitat Chen X, Kidder LS, Lew WD. Osteogenic protein-1 induced bone formation in an infected segmental defect in the rat femur. J Orthop Res 2002 Jan; 20(1): 142–50PubMedCrossRef Chen X, Kidder LS, Lew WD. Osteogenic protein-1 induced bone formation in an infected segmental defect in the rat femur. J Orthop Res 2002 Jan; 20(1): 142–50PubMedCrossRef
40.
Zurück zum Zitat Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop 1990 Jan; 250: 261–76PubMed Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop 1990 Jan; 250: 261–76PubMed
41.
Zurück zum Zitat Joyce ME, Jingushi S, Bolander ME. Transforming growth factor-beta in the regulation of fracture repair. Orthop Clin North Am 1990 Jan; 21(1): 199–209PubMed Joyce ME, Jingushi S, Bolander ME. Transforming growth factor-beta in the regulation of fracture repair. Orthop Clin North Am 1990 Jan; 21(1): 199–209PubMed
42.
Zurück zum Zitat Bourque WT, Gross M, Hall BK. Expression of four growth factors during fracture repair. Int J Dev Biol 1993 Dec; 37(4): 573–9PubMed Bourque WT, Gross M, Hall BK. Expression of four growth factors during fracture repair. Int J Dev Biol 1993 Dec; 37(4): 573–9PubMed
43.
Zurück zum Zitat Kasperk CH, Wergedal JE, Mohan S, et al. Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 1990; 3(2): 147–58PubMedCrossRef Kasperk CH, Wergedal JE, Mohan S, et al. Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 1990; 3(2): 147–58PubMedCrossRef
44.
Zurück zum Zitat Noda M, Rodan GA. Type-beta transforming growth factor inhibits proliferation and expression of alkaline phosphatase in murine osteoblast-like cells. Biochem Biophys Res Commun 1986 Oct 15; 140(1): 56–65PubMedCrossRef Noda M, Rodan GA. Type-beta transforming growth factor inhibits proliferation and expression of alkaline phosphatase in murine osteoblast-like cells. Biochem Biophys Res Commun 1986 Oct 15; 140(1): 56–65PubMedCrossRef
45.
Zurück zum Zitat Iba K, Sawada N, Nuka S, et al. Phase-dependent effects of transforming growth factor beta 1 on osteoblastic markers of human osteoblastic cell line sV-HFO during mineralization. Bone 1996 Oct; 19(4): 363–9PubMedCrossRef Iba K, Sawada N, Nuka S, et al. Phase-dependent effects of transforming growth factor beta 1 on osteoblastic markers of human osteoblastic cell line sV-HFO during mineralization. Bone 1996 Oct; 19(4): 363–9PubMedCrossRef
46.
Zurück zum Zitat Zellin G, Beck S, Hardwick R, et al. Opposite effects of recombinant human transforming growth factor-betal on bone regeneration in vivo: effects of exclusion of periosteal cells by microporous membrane. Bone 1998 Jun; 22(6): 613–20PubMedCrossRef Zellin G, Beck S, Hardwick R, et al. Opposite effects of recombinant human transforming growth factor-betal on bone regeneration in vivo: effects of exclusion of periosteal cells by microporous membrane. Bone 1998 Jun; 22(6): 613–20PubMedCrossRef
47.
Zurück zum Zitat Beck LS, Deguzman L, Lee WP, et al. TGF-beta 1 induces bone closure of skull defects. J Bone Miner Res 1991 Nov; 6(11): 1257–65PubMedCrossRef Beck LS, Deguzman L, Lee WP, et al. TGF-beta 1 induces bone closure of skull defects. J Bone Miner Res 1991 Nov; 6(11): 1257–65PubMedCrossRef
48.
Zurück zum Zitat Sumner DR, Turner TM, Purchio AF, et al. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am 1995 Aug; 77(8): 1135–47PubMed Sumner DR, Turner TM, Purchio AF, et al. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am 1995 Aug; 77(8): 1135–47PubMed
49.
Zurück zum Zitat Lind M, Overgaard S, Nguyen T, et al. Transforming growth factor-beta stimulates bone ongrowth: hydroxyapatite-coated implants studied in dogs. Acta Orthop Scand 1996 Dec; 67(6): 611–6PubMedCrossRef Lind M, Overgaard S, Nguyen T, et al. Transforming growth factor-beta stimulates bone ongrowth: hydroxyapatite-coated implants studied in dogs. Acta Orthop Scand 1996 Dec; 67(6): 611–6PubMedCrossRef
50.
Zurück zum Zitat Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhTGF-β2 enhances bone ingrowth and bone regeneration at local and remote sites of skeletal injury. J Orthop Res 2001 Jan; 19(1): 85–94PubMedCrossRef Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhTGF-β2 enhances bone ingrowth and bone regeneration at local and remote sites of skeletal injury. J Orthop Res 2001 Jan; 19(1): 85–94PubMedCrossRef
51.
Zurück zum Zitat Ripamonti U, Duneas N, Van Den Heever B, et al. Recombinant transforming growth factor-betal induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation. J Bone Miner Res 1997 Oct; 12(10): 1584–95PubMedCrossRef Ripamonti U, Duneas N, Van Den Heever B, et al. Recombinant transforming growth factor-betal induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation. J Bone Miner Res 1997 Oct; 12(10): 1584–95PubMedCrossRef
52.
Zurück zum Zitat Lind M, Schumacker B, Soballe K, et al. Transforming growth factor-beta enhances fracture healing in rabbit tibiae. Acta Orthop Scand 1993 Oct; 64(5): 553–6PubMedCrossRef Lind M, Schumacker B, Soballe K, et al. Transforming growth factor-beta enhances fracture healing in rabbit tibiae. Acta Orthop Scand 1993 Oct; 64(5): 553–6PubMedCrossRef
53.
Zurück zum Zitat Critchlow MA, Bland YS, Ashhurst DE. The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 1995 May; 16(5): 521–7PubMedCrossRef Critchlow MA, Bland YS, Ashhurst DE. The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit. Bone 1995 May; 16(5): 521–7PubMedCrossRef
54.
Zurück zum Zitat Heckman JD, Ehler W, Brooks BP, et al. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer. J Bone Joint Surg Am 1999 Dec; 81(12): 1717–29PubMed Heckman JD, Ehler W, Brooks BP, et al. Bone morphogenetic protein but not transforming growth factor-beta enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer. J Bone Joint Surg Am 1999 Dec; 81(12): 1717–29PubMed
55.
Zurück zum Zitat Finkelman RD, Mohan S, Jennings JC, et al. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res 1990 Jul; 5(7): 717–23PubMedCrossRef Finkelman RD, Mohan S, Jennings JC, et al. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res 1990 Jul; 5(7): 717–23PubMedCrossRef
56.
Zurück zum Zitat Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms. J Endocrinol 2002 Oct; 175(1): 19–31PubMedCrossRef Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms. J Endocrinol 2002 Oct; 175(1): 19–31PubMedCrossRef
57.
Zurück zum Zitat Andrew JG, Hoyland J, Freemont AJ, et al. Insulin-like growth factor gene expression in human fracture callus. Calcif Tissue Int 1993 Aug; 53(2): 97–102PubMedCrossRef Andrew JG, Hoyland J, Freemont AJ, et al. Insulin-like growth factor gene expression in human fracture callus. Calcif Tissue Int 1993 Aug; 53(2): 97–102PubMedCrossRef
58.
Zurück zum Zitat Scheven BA, Hamilton NJ, Fakkeldij TM, et al. Effects of recombinant human insulin-like growth factor I and II (IGF-I/-II) and growth hormone (GH) on the growth of normal adult human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1991 Dec; 1(4): 160–7PubMed Scheven BA, Hamilton NJ, Fakkeldij TM, et al. Effects of recombinant human insulin-like growth factor I and II (IGF-I/-II) and growth hormone (GH) on the growth of normal adult human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1991 Dec; 1(4): 160–7PubMed
59.
Zurück zum Zitat Pfeilschifter J, Oechsner M, Naumann A, et al. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology 1990 Jul; 127(1): 69–75PubMedCrossRef Pfeilschifter J, Oechsner M, Naumann A, et al. Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor beta. Endocrinology 1990 Jul; 127(1): 69–75PubMedCrossRef
60.
Zurück zum Zitat McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1989 Jan; 124(1): 301–9PubMedCrossRef McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1989 Jan; 124(1): 301–9PubMedCrossRef
61.
Zurück zum Zitat Spencer EM, Liu CC, Si EC, et al. In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 1991; 12(1): 21–6PubMedCrossRef Spencer EM, Liu CC, Si EC, et al. In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 1991; 12(1): 21–6PubMedCrossRef
62.
Zurück zum Zitat Aspenberg P, Albrektsson T, Thorngren KG. Local application of growth-factor IGF-1 to healing bone: experiments with a titanium chamber in rabbits. Acta Orthop Scand 1989 Oct; 60(5): 607–10PubMedCrossRef Aspenberg P, Albrektsson T, Thorngren KG. Local application of growth-factor IGF-1 to healing bone: experiments with a titanium chamber in rabbits. Acta Orthop Scand 1989 Oct; 60(5): 607–10PubMedCrossRef
63.
Zurück zum Zitat Thaller SR, Lee TJ, Armstrong M, et al. Effect of insulin-like growth factor type 1 on critical-size defects in diabetic rats. J Craniofac Surg 1995 May; 6(3): 218–23PubMedCrossRef Thaller SR, Lee TJ, Armstrong M, et al. Effect of insulin-like growth factor type 1 on critical-size defects in diabetic rats. J Craniofac Surg 1995 May; 6(3): 218–23PubMedCrossRef
64.
Zurück zum Zitat Thaller SR, Salzhauer MA, Rubinstein AJ, et al. Effect of insulin-like growth factor type I on critical size calvarial bone defects in irradiated rats. J Craniofac Surg 1998 Mar; 9(2): 138–41PubMedCrossRef Thaller SR, Salzhauer MA, Rubinstein AJ, et al. Effect of insulin-like growth factor type I on critical size calvarial bone defects in irradiated rats. J Craniofac Surg 1998 Mar; 9(2): 138–41PubMedCrossRef
65.
Zurück zum Zitat Zhang L, Leeman E, Carnes DC, et al. Human osteoblasts synthesize and respond to platelet-derived growth factor. Am J Physiol 1991 Aug; 261: C348–54PubMed Zhang L, Leeman E, Carnes DC, et al. Human osteoblasts synthesize and respond to platelet-derived growth factor. Am J Physiol 1991 Aug; 261: C348–54PubMed
66.
Zurück zum Zitat Centrella M, McCarthy TL, Kusmik WF, et al. Relative binding and biochemical effects of heterodimeric and homodimeric isoforms of platelet-derived growth factor in osteoblast-enriched cultures from fetal rat bone. J Cell Physiol 1991 Jun; 147(3): 420–6PubMedCrossRef Centrella M, McCarthy TL, Kusmik WF, et al. Relative binding and biochemical effects of heterodimeric and homodimeric isoforms of platelet-derived growth factor in osteoblast-enriched cultures from fetal rat bone. J Cell Physiol 1991 Jun; 147(3): 420–6PubMedCrossRef
67.
Zurück zum Zitat Andrew JG, Hoyland JA, Freemont AJ, et al. Platelet-derived growth factor expression in normally healing human fractures. Bone 1995 Apr; 16(4): 455–60PubMed Andrew JG, Hoyland JA, Freemont AJ, et al. Platelet-derived growth factor expression in normally healing human fractures. Bone 1995 Apr; 16(4): 455–60PubMed
68.
Zurück zum Zitat Hughes FJ, Aubin JE, Heersche JN. Differential chemotactic responses of different populations of fetal rat calvaria cells to platelet-derived growth factor and transforming growth factor beta. Bone Miner 1992 Oct; 19(1): 63–74PubMedCrossRef Hughes FJ, Aubin JE, Heersche JN. Differential chemotactic responses of different populations of fetal rat calvaria cells to platelet-derived growth factor and transforming growth factor beta. Bone Miner 1992 Oct; 19(1): 63–74PubMedCrossRef
69.
Zurück zum Zitat Canalis E, Varghese S, McCarthy TL, et al. Role of platelet derived growth factor in bone cell function. Growth Regul 1992 Dec; 2(4): 151–5PubMed Canalis E, Varghese S, McCarthy TL, et al. Role of platelet derived growth factor in bone cell function. Growth Regul 1992 Dec; 2(4): 151–5PubMed
70.
Zurück zum Zitat Canalis E, McCarthy TL, Centrella M. Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 1989 Sep; 140(3): 530–7PubMedCrossRef Canalis E, McCarthy TL, Centrella M. Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 1989 Sep; 140(3): 530–7PubMedCrossRef
71.
Zurück zum Zitat Zhang Z, Chen J, Jin D. Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 1998 Oct 9; 251(1): 190–4PubMedCrossRef Zhang Z, Chen J, Jin D. Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 1998 Oct 9; 251(1): 190–4PubMedCrossRef
72.
Zurück zum Zitat Nash TJ, Howlett CR, Martin C, et al. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994 Mar–Apr; 15(2): 203–8PubMedCrossRef Nash TJ, Howlett CR, Martin C, et al. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994 Mar–Apr; 15(2): 203–8PubMedCrossRef
73.
Zurück zum Zitat Vikjaer D, Blom S, Hjorting-Hansen E, et al. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits. Eur J Oral Sci 1997 Feb; 105(1): 59–66PubMedCrossRef Vikjaer D, Blom S, Hjorting-Hansen E, et al. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits. Eur J Oral Sci 1997 Feb; 105(1): 59–66PubMedCrossRef
74.
Zurück zum Zitat Arm DM, Tencer AF, Bain SD, et al. Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrowth. Biomaterials 1996 Apr; 17(7): 703–9PubMedCrossRef Arm DM, Tencer AF, Bain SD, et al. Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrowth. Biomaterials 1996 Apr; 17(7): 703–9PubMedCrossRef
75.
Zurück zum Zitat Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000 Feb; 22(2): 108–12PubMedCrossRef Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000 Feb; 22(2): 108–12PubMedCrossRef
76.
Zurück zum Zitat McCarthy TL, Centrella M, Canalis E. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 1989 Oct; 125(4): 2118–26PubMedCrossRef McCarthy TL, Centrella M, Canalis E. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bone cells. Endocrinology 1989 Oct; 125(4): 2118–26PubMedCrossRef
77.
Zurück zum Zitat Nakamura T, Hara Y, Tagawa M, et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 1998 Jun; 13(6): 942–9PubMedCrossRef Nakamura T, Hara Y, Tagawa M, et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 1998 Jun; 13(6): 942–9PubMedCrossRef
78.
Zurück zum Zitat Radomsky ML, Aufdemorte TB, Swain LD, et al. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 1999 Jul; 17(4): 607–14PubMedCrossRef Radomsky ML, Aufdemorte TB, Swain LD, et al. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 1999 Jul; 17(4): 607–14PubMedCrossRef
79.
Zurück zum Zitat Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab 2001 Feb; 86(2): 875–80PubMedCrossRef Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab 2001 Feb; 86(2): 875–80PubMedCrossRef
80.
Zurück zum Zitat Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999 Jun; 14(6): 960–8PubMedCrossRef Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999 Jun; 14(6): 960–8PubMedCrossRef
81.
Zurück zum Zitat Holzer G, Majeska RJ, Lundy MW, et al. Parathyroid hormone enhances fracture healing: a preliminary report. Clin Orthop 1999 Sep; 366: 258–63PubMedCrossRef Holzer G, Majeska RJ, Lundy MW, et al. Parathyroid hormone enhances fracture healing: a preliminary report. Clin Orthop 1999 Sep; 366: 258–63PubMedCrossRef
82.
Zurück zum Zitat Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 2001 Jun; 72(3): 304–7PubMedCrossRef Andreassen TT, Fledelius C, Ejersted C, et al. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 2001 Jun; 72(3): 304–7PubMedCrossRef
83.
Zurück zum Zitat Jahng JS, Kim HW. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Orthopedics 2000 Oct; 23(10): 1089–94PubMed Jahng JS, Kim HW. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Orthopedics 2000 Oct; 23(10): 1089–94PubMed
84.
Zurück zum Zitat Crandall C. Parathyroid hormone for treatment of osteoporosis. Arch Intern Med 2002 Nov 11; 162(20): 2297–309PubMedCrossRef Crandall C. Parathyroid hormone for treatment of osteoporosis. Arch Intern Med 2002 Nov 11; 162(20): 2297–309PubMedCrossRef
85.
Zurück zum Zitat Howell TH, Fiorellini JP, Paquette DW, et al. A phase I/II clinical trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Periodontol 1997 Dec; 68(12): 1186–93PubMedCrossRef Howell TH, Fiorellini JP, Paquette DW, et al. A phase I/II clinical trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Periodontol 1997 Dec; 68(12): 1186–93PubMedCrossRef
86.
Zurück zum Zitat Takita H, Tsuruga E, Ono I, et al. Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats. Eur J Oral Sci 1997 Dec; 105(6): 588–92PubMedCrossRef Takita H, Tsuruga E, Ono I, et al. Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats. Eur J Oral Sci 1997 Dec; 105(6): 588–92PubMedCrossRef
87.
Zurück zum Zitat Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-betal) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 2001 Apr; 28(4): 341–50PubMedCrossRef Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-betal) from a biodegradable poly(D,L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone 2001 Apr; 28(4): 341–50PubMedCrossRef
88.
Zurück zum Zitat Raschke M, Wildemann B, Inden P, et al. Insulin-like growth factor-1 and transforming growth factor-betal accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone 2002 Jan; 30(1): 144–51PubMedCrossRef Raschke M, Wildemann B, Inden P, et al. Insulin-like growth factor-1 and transforming growth factor-betal accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone 2002 Jan; 30(1): 144–51PubMedCrossRef
89.
Zurück zum Zitat Blumenfeld I, Srouji S, Lanir Y, et al. Enhancement of bone defect healing in old rats by TGF-beta and IGF-1. Exp Gerontol 2002 Apr; 37(4): 553–65PubMedCrossRef Blumenfeld I, Srouji S, Lanir Y, et al. Enhancement of bone defect healing in old rats by TGF-beta and IGF-1. Exp Gerontol 2002 Apr; 37(4): 553–65PubMedCrossRef
90.
Zurück zum Zitat Marden LJ, Fan RS, Pierce GF, et al. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J Clin Invest 1993 Dec; 92(6): 2897–905PubMedCrossRef Marden LJ, Fan RS, Pierce GF, et al. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J Clin Invest 1993 Dec; 92(6): 2897–905PubMedCrossRef
91.
Zurück zum Zitat Agha-Mohammadi S, Lotze MT. Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000 May; 105(9): 1177–83PubMedCrossRef Agha-Mohammadi S, Lotze MT. Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000 May; 105(9): 1177–83PubMedCrossRef
92.
Zurück zum Zitat Musgrave DS, Bosch P, Ghivizzani S, et al. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 1999 Jun; 24(6): 541–7PubMedCrossRef Musgrave DS, Bosch P, Ghivizzani S, et al. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 1999 Jun; 24(6): 541–7PubMedCrossRef
93.
Zurück zum Zitat Okubo Y, Bessho K, Fujimura K, et al. The time course study of osteoinduction by bone morphogenetic protein-2 via adenoviral vector. Life Sci 2001 Dec 7; 70(3): 325–36PubMedCrossRef Okubo Y, Bessho K, Fujimura K, et al. The time course study of osteoinduction by bone morphogenetic protein-2 via adenoviral vector. Life Sci 2001 Dec 7; 70(3): 325–36PubMedCrossRef
94.
Zurück zum Zitat Franceschi RT, Wang D, Krebsbach PH, et al. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000 Jun 6; 78(3): 476–86PubMedCrossRef Franceschi RT, Wang D, Krebsbach PH, et al. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000 Jun 6; 78(3): 476–86PubMedCrossRef
95.
Zurück zum Zitat Niyibizi C, Baltzer A, Lattermann C, et al. Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop 1998 Oct; 355 Suppl.: S148–53PubMed Niyibizi C, Baltzer A, Lattermann C, et al. Potential role for gene therapy in the enhancement of fracture healing. Clin Orthop 1998 Oct; 355 Suppl.: S148–53PubMed
96.
Zurück zum Zitat van Griensven M, Lobenhoffer P, Barke A, et al. Adenoviral gene transfer in a rat fracture model. Lab Anim 2002 Oct; 36(4): 455–61PubMedCrossRef van Griensven M, Lobenhoffer P, Barke A, et al. Adenoviral gene transfer in a rat fracture model. Lab Anim 2002 Oct; 36(4): 455–61PubMedCrossRef
97.
Zurück zum Zitat Baltzer AW, Lattermann C, Whalen JD, et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop 2000 Oct; 379 Suppl.: S120–5PubMedCrossRef Baltzer AW, Lattermann C, Whalen JD, et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop 2000 Oct; 379 Suppl.: S120–5PubMedCrossRef
98.
Zurück zum Zitat Fang J, Zhu YY, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A 1996 Jun; 93(12): 5753–8PubMedCrossRef Fang J, Zhu YY, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A 1996 Jun; 93(12): 5753–8PubMedCrossRef
99.
Zurück zum Zitat Bonadio J, Smiley E, Patil P, et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999 Jul; 5(7): 753–9PubMedCrossRef Bonadio J, Smiley E, Patil P, et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 1999 Jul; 5(7): 753–9PubMedCrossRef
100.
Zurück zum Zitat Fibbe WE. Mesenchymal stem cells: a potential source for skeletal repair. Ann Rheum Dis 2002 Nov; 61 Suppl. 2: ii29–31 Fibbe WE. Mesenchymal stem cells: a potential source for skeletal repair. Ann Rheum Dis 2002 Nov; 61 Suppl. 2: ii29–31
101.
Zurück zum Zitat Muschler GF, Nitto H, Boehm CA, et al. Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001 Jan; 19(1): 117–25PubMedCrossRef Muschler GF, Nitto H, Boehm CA, et al. Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001 Jan; 19(1): 117–25PubMedCrossRef
102.
Zurück zum Zitat Caplan AI. The mesengenic process. Clin Plast Surg 1994 Jul; 21(3): 429–35PubMed Caplan AI. The mesengenic process. Clin Plast Surg 1994 Jul; 21(3): 429–35PubMed
103.
Zurück zum Zitat Bosch P, Musgrave DS, Lee JY, et al. Osteoprogenitor cells within skeletal muscle. J Orthop Res 2000 Nov; 18(6): 933–44PubMedCrossRef Bosch P, Musgrave DS, Lee JY, et al. Osteoprogenitor cells within skeletal muscle. J Orthop Res 2000 Nov; 18(6): 933–44PubMedCrossRef
104.
Zurück zum Zitat Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002 Dec; 13(12): 4279–95PubMedCrossRef Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002 Dec; 13(12): 4279–95PubMedCrossRef
105.
Zurück zum Zitat Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000 Apr; 109(1): 235–42PubMedCrossRef Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000 Apr; 109(1): 235–42PubMedCrossRef
106.
Zurück zum Zitat Connolly JF, Guse R, Tiedeman J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop 1991 May; 266: 259–70PubMed Connolly JF, Guse R, Tiedeman J, et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop 1991 May; 266: 259–70PubMed
107.
Zurück zum Zitat Connolly J, Guse R, Lippiello L, et al. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am 1989 Jun; 71(5): 684–91PubMed Connolly J, Guse R, Lippiello L, et al. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am 1989 Jun; 71(5): 684–91PubMed
108.
Zurück zum Zitat Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997 Feb; 64(2): 278–94PubMedCrossRef Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997 Feb; 64(2): 278–94PubMedCrossRef
109.
Zurück zum Zitat Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001 Jun; 7(6): 259–64PubMedCrossRef Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001 Jun; 7(6): 259–64PubMedCrossRef
110.
Zurück zum Zitat Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 1997 Jul; 36(1): 1–8PubMedCrossRef Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res 1997 Jul; 36(1): 1–8PubMedCrossRef
111.
Zurück zum Zitat Solchaga LA, Dennis JE, Goldberg VM, et al. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 1999 Mar; 17(2): 205–13PubMedCrossRef Solchaga LA, Dennis JE, Goldberg VM, et al. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 1999 Mar; 17(2): 205–13PubMedCrossRef
112.
Zurück zum Zitat Boo JS, Yamada Y, Okazaki Y, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 2002 Mar; 13(2): 231–9PubMedCrossRef Boo JS, Yamada Y, Okazaki Y, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 2002 Mar; 13(2): 231–9PubMedCrossRef
113.
Zurück zum Zitat Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002 Nov; 23(22): 4315–23PubMedCrossRef Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002 Nov; 23(22): 4315–23PubMedCrossRef
114.
Zurück zum Zitat Payne RG, Yaszemski MJ, Yasko AW, et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1: encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 2002 Nov; 23(22): 4359–71PubMedCrossRef Payne RG, Yaszemski MJ, Yasko AW, et al. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1: encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 2002 Nov; 23(22): 4359–71PubMedCrossRef
115.
Zurück zum Zitat Lieberman JR, Le LQ, Wu L, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 1998 May; 16(3): 330–9PubMedCrossRef Lieberman JR, Le LQ, Wu L, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res 1998 May; 16(3): 330–9PubMedCrossRef
116.
Zurück zum Zitat Turgeman G, Pittman DD, Muller R, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001 May–Jun; 3(3): 240–51PubMedCrossRef Turgeman G, Pittman DD, Muller R, et al. Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 2001 May–Jun; 3(3): 240–51PubMedCrossRef
117.
Zurück zum Zitat Wright V, Peng H, Usas A, et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 2002 Aug; 6(2): 169–78PubMedCrossRef Wright V, Peng H, Usas A, et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 2002 Aug; 6(2): 169–78PubMedCrossRef
118.
Zurück zum Zitat Rutherford RB, Moalli M, Franceschi RT, et al. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2002 Jul; 8(3): 441–52PubMedCrossRef Rutherford RB, Moalli M, Franceschi RT, et al. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 2002 Jul; 8(3): 441–52PubMedCrossRef
119.
Zurück zum Zitat Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998 Dec 1; 23(23): 2486–92PubMedCrossRef Boden SD, Titus L, Hair G, et al. Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 1998 Dec 1; 23(23): 2486–92PubMedCrossRef
120.
Zurück zum Zitat Peng H, Wright V, Usas A, et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002 Sep; 110(6): 751–9PubMed Peng H, Wright V, Usas A, et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 2002 Sep; 110(6): 751–9PubMed
121.
Zurück zum Zitat Johnson EE, Urist MR, Finerman GA. Repair of segmentai defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein: a preliminary report. Clin Orthop 1988 Nov; 236: 249–57PubMed Johnson EE, Urist MR, Finerman GA. Repair of segmentai defects of the tibia with cancellous bone grafts augmented with human bone morphogenetic protein: a preliminary report. Clin Orthop 1988 Nov; 236: 249–57PubMed
122.
Zurück zum Zitat Johnson EE, Urist MR, Finerman GA. Distal metaphyseal tibial non-union: deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (hBMP). Clin Orthop 1990 Jan; 250: 234–40PubMed Johnson EE, Urist MR, Finerman GA. Distal metaphyseal tibial non-union: deformity and bone loss treated by open reduction, internal fixation, and human bone morphogenetic protein (hBMP). Clin Orthop 1990 Jan; 250: 234–40PubMed
123.
Zurück zum Zitat Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones: treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-extracted, allogeneic (AAA) bone. Clin Orthop 1992 Apr; 277: 229–37PubMed Johnson EE, Urist MR, Finerman GA. Resistant nonunions and partial or complete segmental defects of long bones: treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-extracted, allogeneic (AAA) bone. Clin Orthop 1992 Apr; 277: 229–37PubMed
124.
Zurück zum Zitat McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 2002 Aug 15; 27(16 Suppl. 1): S66–85PubMedCrossRef McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 2002 Aug 15; 27(16 Suppl. 1): S66–85PubMedCrossRef
125.
Zurück zum Zitat Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 2001 Jul; 19(7): 255–65PubMedCrossRef Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 2001 Jul; 19(7): 255–65PubMedCrossRef
126.
Zurück zum Zitat Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988 Dec 16; 242(4885): 1528–34PubMedCrossRef Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988 Dec 16; 242(4885): 1528–34PubMedCrossRef
Metadaten
Titel
Biotherapeutics in Orthopaedic Medicine
Accelerating the Healing Process?
verfasst von
Dr David A. Puleo
Publikationsdatum
01.09.2003
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 5/2003
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200317050-00001

Weitere Artikel der Ausgabe 5/2003

BioDrugs 5/2003 Zur Ausgabe

Original Research Article

Ribosomal Immunostimulation

Adis R&D Profile

CPH 82