Skip to main content
Erschienen in: BioDrugs 3/2008

01.05.2008 | Novel Therapeutic Strategies

Peptide Inhibition of HIV-1

Current Status and Future Potential

verfasst von: Dr Neerja Kaushik-Basu, Amartya Basu, Dylan Harris

Erschienen in: BioDrugs | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Literatur
3.
Zurück zum Zitat Advancing HIV prevention: new strategies for a changing epidemic. Morb Mortal Wkly Rep 2003; 52: 329-32 Advancing HIV prevention: new strategies for a changing epidemic. Morb Mortal Wkly Rep 2003; 52: 329-32
4.
Zurück zum Zitat Golden MR, Brewer DD, Kurth A, et al. Importance of sex partner HIV status in HIV risk assessment among men who have sex with men. J Acquir Immune Defic Syndr 2004; 36(2): 734–42PubMedCrossRef Golden MR, Brewer DD, Kurth A, et al. Importance of sex partner HIV status in HIV risk assessment among men who have sex with men. J Acquir Immune Defic Syndr 2004; 36(2): 734–42PubMedCrossRef
5.
Zurück zum Zitat Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988; 242(4882): 1168–71PubMedCrossRef Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science 1988; 242(4882): 1168–71PubMedCrossRef
6.
Zurück zum Zitat Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242(4882): 1171–3PubMedCrossRef Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242(4882): 1171–3PubMedCrossRef
7.
Zurück zum Zitat Hammer SM, Saag MS, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society — USA panel. Top HIV Med 2006; 14(3): 827–43PubMed Hammer SM, Saag MS, Schechter M, et al. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society — USA panel. Top HIV Med 2006; 14(3): 827–43PubMed
8.
Zurück zum Zitat Briz V, Poveda E, Soriano V. HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother 2006; 57(4): 619–27PubMedCrossRef Briz V, Poveda E, Soriano V. HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother 2006; 57(4): 619–27PubMedCrossRef
9.
Zurück zum Zitat Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gpl20 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393(6686): 648–59PubMedCrossRef Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gpl20 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393(6686): 648–59PubMedCrossRef
10.
Zurück zum Zitat Zhou T, Xu L, Dey B, et al. Structural definition of a conserved neutralization epitope on HIV-1 gpl20. Nature 2007; 445(7129): 732–7PubMedCrossRef Zhou T, Xu L, Dey B, et al. Structural definition of a conserved neutralization epitope on HIV-1 gpl20. Nature 2007; 445(7129): 732–7PubMedCrossRef
11.
Zurück zum Zitat Galanakis PA, Spyroulias GA, Rizos A, et al. Conformational properties of HIV-1 gp120/V3 immunogenic domains. Curr Med Chem 2005; 12(13): 1551–68PubMedCrossRef Galanakis PA, Spyroulias GA, Rizos A, et al. Conformational properties of HIV-1 gp120/V3 immunogenic domains. Curr Med Chem 2005; 12(13): 1551–68PubMedCrossRef
12.
Zurück zum Zitat Moore JP, Cao Y, Conley AJ, et al. Studies with monoclonal antibodies to the V3 region of HIV-1 gp120 reveal limitations to the utility of solid-phase peptide binding assays. J Acquir Immune Defic Syndr 1994; 7(4): 332–9PubMed Moore JP, Cao Y, Conley AJ, et al. Studies with monoclonal antibodies to the V3 region of HIV-1 gp120 reveal limitations to the utility of solid-phase peptide binding assays. J Acquir Immune Defic Syndr 1994; 7(4): 332–9PubMed
13.
Zurück zum Zitat Moore JP, Cao Y, Ho DD, et al. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol 1994; 68(8): 5142–55PubMed Moore JP, Cao Y, Ho DD, et al. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J Virol 1994; 68(8): 5142–55PubMed
14.
Zurück zum Zitat Moore JP, Sodroski J. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J Virol 1996; 70(3): 1863–72PubMed Moore JP, Sodroski J. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J Virol 1996; 70(3): 1863–72PubMed
15.
Zurück zum Zitat Sodroski J, Wyatt R, Olshevsky U, et al. Conformation of the HIV-1 gp120 envelope glycoprotein. Antibiotics Chemother 1996; 48: 184–7 Sodroski J, Wyatt R, Olshevsky U, et al. Conformation of the HIV-1 gp120 envelope glycoprotein. Antibiotics Chemother 1996; 48: 184–7
16.
Zurück zum Zitat Ferrer M, Harrison SC. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol 1999; 73(7): 5795–802PubMed Ferrer M, Harrison SC. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol 1999; 73(7): 5795–802PubMed
17.
Zurück zum Zitat Biorn AC, Cocklin S, Madani N, et al. Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry 2004; 43(7): 1928–38PubMedCrossRef Biorn AC, Cocklin S, Madani N, et al. Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions. Biochemistry 2004; 43(7): 1928–38PubMedCrossRef
18.
Zurück zum Zitat Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41(7): 1521–30PubMed Boyd MR, Gustafson KR, McMahon JB, et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 1997; 41(7): 1521–30PubMed
19.
Zurück zum Zitat McFadden K, Cocklin S, Gopi H, et al. A recombinant allosteric lectin antagonist of HIV-1 envelope gp120 interactions. Proteins 2007; 67(3): 617–29PubMedCrossRef McFadden K, Cocklin S, Gopi H, et al. A recombinant allosteric lectin antagonist of HIV-1 envelope gp120 interactions. Proteins 2007; 67(3): 617–29PubMedCrossRef
20.
Zurück zum Zitat Cocklin S, Gopi H, Querido B, et al. Broad-spectrum anti-human immunodeficiency virus (HIV) potential of a peptide HIV type 1 entry inhibitor. J Virol 2007; 81(7): 3645–8PubMedCrossRef Cocklin S, Gopi H, Querido B, et al. Broad-spectrum anti-human immunodeficiency virus (HIV) potential of a peptide HIV type 1 entry inhibitor. J Virol 2007; 81(7): 3645–8PubMedCrossRef
21.
Zurück zum Zitat Boggiano C, Jiang S, Lu H, et al. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor. Biochem Biophys Res Commun 2006; 347(4): 909–15PubMedCrossRef Boggiano C, Jiang S, Lu H, et al. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor. Biochem Biophys Res Commun 2006; 347(4): 909–15PubMedCrossRef
22.
Zurück zum Zitat Zhou Y, Kurihara T, Ryseck RP, et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol 1998; 160: 4018–25PubMed Zhou Y, Kurihara T, Ryseck RP, et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol 1998; 160: 4018–25PubMed
23.
Zurück zum Zitat Thapa M, Kuziel WA, Carr DJ. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J Virol 2007; 81: 3704–13PubMedCrossRef Thapa M, Kuziel WA, Carr DJ. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J Virol 2007; 81: 3704–13PubMedCrossRef
24.
Zurück zum Zitat Ajuebor MN, Wondimu Z, Hogaboam CM, et al. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am J Pathol 2007; 170: 1975–88PubMedCrossRef Ajuebor MN, Wondimu Z, Hogaboam CM, et al. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am J Pathol 2007; 170: 1975–88PubMedCrossRef
25.
Zurück zum Zitat Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73PubMedCrossRef Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73PubMedCrossRef
26.
Zurück zum Zitat Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–77PubMedCrossRef Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–77PubMedCrossRef
27.
Zurück zum Zitat Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–5PubMedCrossRef Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–5PubMedCrossRef
28.
Zurück zum Zitat Pasi KJ, Sabin CA, Jenkins PV, et al. The effects of the 32-bp CCR-5 deletion on HIV transmission and HIV disease progression in individuals with haemophilia. Br J Haematol 2000; 111: 136–42PubMedCrossRef Pasi KJ, Sabin CA, Jenkins PV, et al. The effects of the 32-bp CCR-5 deletion on HIV transmission and HIV disease progression in individuals with haemophilia. Br J Haematol 2000; 111: 136–42PubMedCrossRef
29.
Zurück zum Zitat Taylor JM, Wang Y, Ahdieh L, et al. Causal pathways for CCR5 genotype and HIV progression. J Acquir Immune Defic Syndr 2000; 23: 160–71PubMed Taylor JM, Wang Y, Ahdieh L, et al. Causal pathways for CCR5 genotype and HIV progression. J Acquir Immune Defic Syndr 2000; 23: 160–71PubMed
30.
Zurück zum Zitat Hunt PW, Harrigan PR, Huang W, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006; 194(7): 926–30PubMedCrossRef Hunt PW, Harrigan PR, Huang W, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006; 194(7): 926–30PubMedCrossRef
31.
Zurück zum Zitat Marozsan AJ, Kuhmann SE, Morgan T, et al. Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D). Virology 2005; 338(1): 182–99PubMedCrossRef Marozsan AJ, Kuhmann SE, Morgan T, et al. Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D). Virology 2005; 338(1): 182–99PubMedCrossRef
32.
Zurück zum Zitat Kuhmann SE, Pugach P, Kunstman KJ, et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78(6): 2790–807PubMedCrossRef Kuhmann SE, Pugach P, Kunstman KJ, et al. Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78(6): 2790–807PubMedCrossRef
33.
Zurück zum Zitat Westby M, van der Ryst E. CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother 2005; 16(6): 339–54PubMed Westby M, van der Ryst E. CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection. Antivir Chem Chemother 2005; 16(6): 339–54PubMed
34.
Zurück zum Zitat Pastore C, Ramos A, Mosier DE. Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J Virol 2004; 78(14): 7565–74PubMedCrossRef Pastore C, Ramos A, Mosier DE. Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J Virol 2004; 78(14): 7565–74PubMedCrossRef
35.
Zurück zum Zitat Agrawal L, VanHorn-Ali Z, Berger EA, et al. Specific inhibition of HIV-1 coreceptor activity by synthetic peptides corresponding to the predicted extracellular loops of CCR5. Blood 2004; 103(4): 1211–7PubMedCrossRef Agrawal L, VanHorn-Ali Z, Berger EA, et al. Specific inhibition of HIV-1 coreceptor activity by synthetic peptides corresponding to the predicted extracellular loops of CCR5. Blood 2004; 103(4): 1211–7PubMedCrossRef
36.
Zurück zum Zitat Imai M, Baranyi L, Okada N, et al. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments. Biochem Biophys Res Commun 2007; 353(4): 851–6PubMedCrossRef Imai M, Baranyi L, Okada N, et al. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments. Biochem Biophys Res Commun 2007; 353(4): 851–6PubMedCrossRef
37.
Zurück zum Zitat Zhou N, Luo Z, Luo J, et al. A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II. Biochemistry 2000; 39(13): 3782–7PubMedCrossRef Zhou N, Luo Z, Luo J, et al. A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II. Biochemistry 2000; 39(13): 3782–7PubMedCrossRef
38.
Zurück zum Zitat Luo Z, Fan X, Zhou N, et al. Structure-function study and anti-HIV activity of synthetic peptide analogues derived from viral chemokine vMIP-II. Biochemistry 2000; 39(44): 13545–50PubMedCrossRef Luo Z, Fan X, Zhou N, et al. Structure-function study and anti-HIV activity of synthetic peptide analogues derived from viral chemokine vMIP-II. Biochemistry 2000; 39(44): 13545–50PubMedCrossRef
39.
Zurück zum Zitat Tamamura H, Araki T, Ueda S, et al. Identification of novel low molecular weight CXCR4 antagonists by structural tuning of cyclic tetrapeptide scaffolds. J Med Chem 2005; 48(9): 3280–9PubMedCrossRef Tamamura H, Araki T, Ueda S, et al. Identification of novel low molecular weight CXCR4 antagonists by structural tuning of cyclic tetrapeptide scaffolds. J Med Chem 2005; 48(9): 3280–9PubMedCrossRef
40.
Zurück zum Zitat Tamamura H, Mizumoto M, Hiramatsu K, et al. Topochemical exploration of potent compounds using retro-enantiomer libraries of cyclic pentapeptides. Org Biomol Chem 2004; 2(8): 1255–7PubMedCrossRef Tamamura H, Mizumoto M, Hiramatsu K, et al. Topochemical exploration of potent compounds using retro-enantiomer libraries of cyclic pentapeptides. Org Biomol Chem 2004; 2(8): 1255–7PubMedCrossRef
41.
Zurück zum Zitat Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89(2): 263–73PubMedCrossRef Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89(2): 263–73PubMedCrossRef
42.
Zurück zum Zitat Kliger Y, Gallo SA, Peisajovich SG, et al. Mode of action of an antiviral peptide from HIV-1: inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276(2): 1391–7PubMedCrossRef Kliger Y, Gallo SA, Peisajovich SG, et al. Mode of action of an antiviral peptide from HIV-1: inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276(2): 1391–7PubMedCrossRef
43.
Zurück zum Zitat Murakami T, Zhang TY, Koyanagi Y, et al. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J Virol 1999; 73(9): 7489–96PubMed Murakami T, Zhang TY, Koyanagi Y, et al. Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. J Virol 1999; 73(9): 7489–96PubMed
44.
Zurück zum Zitat Arakaki R, Tamamura H, Premanathan M, et al. T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 1999; 73(2): 1719–23PubMed Arakaki R, Tamamura H, Premanathan M, et al. T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol 1999; 73(2): 1719–23PubMed
45.
Zurück zum Zitat Murakami T, Nakajima T, Koyanagi Y, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186(8): 1389–93PubMedCrossRef Murakami T, Nakajima T, Koyanagi Y, et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 1997; 186(8): 1389–93PubMedCrossRef
46.
Zurück zum Zitat Nakashima H, Masuda M, Murakami T, et al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agents Chemother 1992; 36(6): 1249–55PubMedCrossRef Nakashima H, Masuda M, Murakami T, et al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agents Chemother 1992; 36(6): 1249–55PubMedCrossRef
47.
Zurück zum Zitat Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91(21): 9770–4PubMedCrossRef Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91(21): 9770–4PubMedCrossRef
48.
Zurück zum Zitat Shu W, Liu J, Ji H, et al. Helical interactions in the HIV-1 gp41 core reveal structural basis for the inhibitory activity of gp41 peptides. Biochemistry 2000; 39(7): 1634–42PubMedCrossRef Shu W, Liu J, Ji H, et al. Helical interactions in the HIV-1 gp41 core reveal structural basis for the inhibitory activity of gp41 peptides. Biochemistry 2000; 39(7): 1634–42PubMedCrossRef
49.
50.
Zurück zum Zitat Maggi P, Ladisa N, Cinori E, et al. Cutaneous injection site reactions to long-term therapy with enfuvirtide. J Antimicrob Chemother 2004; 53(4): 678–81PubMedCrossRef Maggi P, Ladisa N, Cinori E, et al. Cutaneous injection site reactions to long-term therapy with enfuvirtide. J Antimicrob Chemother 2004; 53(4): 678–81PubMedCrossRef
51.
Zurück zum Zitat Lalezari JP, DeJesus E, Northfelt DW, et al. A controlled phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther 2003; 8(4): 279–87PubMed Lalezari JP, DeJesus E, Northfelt DW, et al. A controlled phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther 2003; 8(4): 279–87PubMed
52.
Zurück zum Zitat Lalezari JP, Eron JJ, Carlson M, et al. A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS 2003; 17(5): 691–8PubMedCrossRef Lalezari JP, Eron JJ, Carlson M, et al. A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS 2003; 17(5): 691–8PubMedCrossRef
53.
Zurück zum Zitat Kilby JM, Lalezari JP, Eron JJ, et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 2002; 18(10): 685–93PubMedCrossRef Kilby JM, Lalezari JP, Eron JJ, et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 2002; 18(10): 685–93PubMedCrossRef
54.
Zurück zum Zitat Wei X, Decker JM, Liu H, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46(6): 1896–905PubMedCrossRef Wei X, Decker JM, Liu H, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46(6): 1896–905PubMedCrossRef
55.
Zurück zum Zitat Poveda E, Briz V, Soriano V. Enfuvirtide, the first fusion inhibitor to treat HIV infection. AIDS Rev 2005; 7(3): 139–47PubMed Poveda E, Briz V, Soriano V. Enfuvirtide, the first fusion inhibitor to treat HIV infection. AIDS Rev 2005; 7(3): 139–47PubMed
56.
Zurück zum Zitat Clotet B, Raffi F, Cooper D, et al. Clinical management of treatment-experienced, HIV-infected patients with the fusion inhibitor enfuvirtide: consensus recommendations. AIDS 2004; 18(8): 1137–46PubMedCrossRef Clotet B, Raffi F, Cooper D, et al. Clinical management of treatment-experienced, HIV-infected patients with the fusion inhibitor enfuvirtide: consensus recommendations. AIDS 2004; 18(8): 1137–46PubMedCrossRef
57.
Zurück zum Zitat Yeni PG, Hammer SM, Hirsch MS, et al. Treatment for adult HIV infection: 2004 recommendations of the International AIDS Society — USA Panel. JAMA 2004; 292(2): 251–65PubMedCrossRef Yeni PG, Hammer SM, Hirsch MS, et al. Treatment for adult HIV infection: 2004 recommendations of the International AIDS Society — USA Panel. JAMA 2004; 292(2): 251–65PubMedCrossRef
58.
Zurück zum Zitat Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78: 4628–37PubMedCrossRef Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78: 4628–37PubMedCrossRef
59.
Zurück zum Zitat Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 2005; 79: 4991–9PubMedCrossRef Reeves JD, Lee FH, Miamidian JL, et al. Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 2005; 79: 4991–9PubMedCrossRef
60.
Zurück zum Zitat Lalezari JP, Beilos NC, Sathasivam K, et al. T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvir-tide-containing treatment regimen. J Infect Dis 2005; 191(7): 1155–63PubMedCrossRef Lalezari JP, Beilos NC, Sathasivam K, et al. T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvir-tide-containing treatment regimen. J Infect Dis 2005; 191(7): 1155–63PubMedCrossRef
62.
Zurück zum Zitat Ray N, Harrison JE, Blackburn LA, et al. Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. J Virol 2007; 81(7): 3240–50PubMedCrossRef Ray N, Harrison JE, Blackburn LA, et al. Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. J Virol 2007; 81(7): 3240–50PubMedCrossRef
63.
Zurück zum Zitat Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189(6): 1075–83PubMedCrossRef Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189(6): 1075–83PubMedCrossRef
64.
Zurück zum Zitat Martin-Carbonero L. Discontinuation of the clinical development of fusion inhibitor T-1249. AIDS Rev 2004; 6(1): 61PubMed Martin-Carbonero L. Discontinuation of the clinical development of fusion inhibitor T-1249. AIDS Rev 2004; 6(1): 61PubMed
65.
Zurück zum Zitat Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75(18): 8605–14PubMedCrossRef Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75(18): 8605–14PubMedCrossRef
66.
Zurück zum Zitat Heil ML, Decker JM, Sfakianos JN, et al. Determinants of human immunodeficiency virus type 1 baseline susceptibility to the fusion inhibitors enfuvirtide and T-649 reside outside the peptide interaction site. J Virol 2004; 78(14): 7582–9PubMedCrossRef Heil ML, Decker JM, Sfakianos JN, et al. Determinants of human immunodeficiency virus type 1 baseline susceptibility to the fusion inhibitors enfuvirtide and T-649 reside outside the peptide interaction site. J Virol 2004; 78(14): 7582–9PubMedCrossRef
67.
Zurück zum Zitat Egelhofer M, Brandenburg G, Martinius H, et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–75PubMedCrossRef Egelhofer M, Brandenburg G, Martinius H, et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–75PubMedCrossRef
68.
Zurück zum Zitat Dervillez X, Huther A, Schuhmacher J, et al. Stable expression of soluble therapeutic peptides in eukaryotic cells by multimerisation: application to the HIV-1 fusion inhibitory peptide C46. Chem Med Chem 2006; 1: 330–9PubMed Dervillez X, Huther A, Schuhmacher J, et al. Stable expression of soluble therapeutic peptides in eukaryotic cells by multimerisation: application to the HIV-1 fusion inhibitory peptide C46. Chem Med Chem 2006; 1: 330–9PubMed
69.
Zurück zum Zitat Munch J, Standker L, Adermann K, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007; 129(2): 263–75PubMedCrossRef Munch J, Standker L, Adermann K, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007; 129(2): 263–75PubMedCrossRef
70.
Zurück zum Zitat Wang J, Smerdon SJ, Jager J, et al. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci U S A 1994; 91(15): 7242–6PubMedCrossRef Wang J, Smerdon SJ, Jager J, et al. Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci U S A 1994; 91(15): 7242–6PubMedCrossRef
71.
Zurück zum Zitat Le Grice SF, Naas T, Wohlgensinger B, et al. Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J 1991; 10(12): 3905–11PubMed Le Grice SF, Naas T, Wohlgensinger B, et al. Subunit-selective mutagenesis indicates minimal polymerase activity in heterodimer-associated p51 HIV-1 reverse transcriptase. EMBO J 1991; 10(12): 3905–11PubMed
72.
Zurück zum Zitat Muller B, Restle T, Weiss S, et al. Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli. J Biol Chem 1989; 264(24): 13975–8PubMed Muller B, Restle T, Weiss S, et al. Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli. J Biol Chem 1989; 264(24): 13975–8PubMed
73.
Zurück zum Zitat Baillon JG, Nashed NT, Kumar A, et al. A leucine zipper-like motif may mediate HIV reverse transcriptase subunit binding. New Biol 1991; 3(10): 1015–9PubMed Baillon JG, Nashed NT, Kumar A, et al. A leucine zipper-like motif may mediate HIV reverse transcriptase subunit binding. New Biol 1991; 3(10): 1015–9PubMed
74.
Zurück zum Zitat Harris D, Lee R, Misra HS, et al. The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Biochemistry 1998; 37(17): 5903–8PubMedCrossRef Harris D, Lee R, Misra HS, et al. The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. Biochemistry 1998; 37(17): 5903–8PubMedCrossRef
75.
Zurück zum Zitat Divita G, Restle T, Goody RS, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem 1994; 269(18): 13080–3PubMed Divita G, Restle T, Goody RS, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem 1994; 269(18): 13080–3PubMed
76.
Zurück zum Zitat Divita G, Rittinger K, Geourjon C, et al. Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 1995; 245(5): 508–21PubMedCrossRef Divita G, Rittinger K, Geourjon C, et al. Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 1995; 245(5): 508–21PubMedCrossRef
77.
Zurück zum Zitat Morris MC, Robert-Hebmann V, Chaloin L, et al. A new potent HIV-1 reverse transcriptase inhibitor: a synthetic peptide derived from the interface subunit domains. J Biol Chem 1999; 274(35): 24941–6PubMedCrossRef Morris MC, Robert-Hebmann V, Chaloin L, et al. A new potent HIV-1 reverse transcriptase inhibitor: a synthetic peptide derived from the interface subunit domains. J Biol Chem 1999; 274(35): 24941–6PubMedCrossRef
78.
Zurück zum Zitat Depollier J, Hourdou ML, Aldrian-Herrada G, et al. Insight into the mechanism of a peptide inhibitor of HIV reverse transcriptase dimerization. Biochemistry 2005; 44(6): 1909–18PubMedCrossRef Depollier J, Hourdou ML, Aldrian-Herrada G, et al. Insight into the mechanism of a peptide inhibitor of HIV reverse transcriptase dimerization. Biochemistry 2005; 44(6): 1909–18PubMedCrossRef
79.
Zurück zum Zitat Oz Gleenberg I, Herschhorn A, Goldgur Y, et al. Inhibition of human immunodeficiency virus type-1 reverse transcriptase by a novel peptide derived from the viral integrase. Arch Biochem Biophys 2007; 458(2): 202–12CrossRef Oz Gleenberg I, Herschhorn A, Goldgur Y, et al. Inhibition of human immunodeficiency virus type-1 reverse transcriptase by a novel peptide derived from the viral integrase. Arch Biochem Biophys 2007; 458(2): 202–12CrossRef
80.
Zurück zum Zitat Gleenberg IO, Herschhorn A, Hizi A. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). J Mol Biol 2007; 369(5): 1230–43PubMedCrossRef Gleenberg IO, Herschhorn A, Hizi A. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). J Mol Biol 2007; 369(5): 1230–43PubMedCrossRef
81.
Zurück zum Zitat Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007 Mar; 28(3): 560–5PubMedCrossRef Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 2007 Mar; 28(3): 560–5PubMedCrossRef
82.
Zurück zum Zitat Oroszlan S, Luftig RB. Retroviral proteinases. Curr Top Microbiol Immunol 1990; 157: 153–85PubMedCrossRef Oroszlan S, Luftig RB. Retroviral proteinases. Curr Top Microbiol Immunol 1990; 157: 153–85PubMedCrossRef
83.
Zurück zum Zitat Pearl LH, Taylor WR. A structural model for the retroviral proteases. Nature 1987; 329(6137): 351–4PubMedCrossRef Pearl LH, Taylor WR. A structural model for the retroviral proteases. Nature 1987; 329(6137): 351–4PubMedCrossRef
84.
Zurück zum Zitat Wlodawer A, Miller M, Jaskolski M, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989; 245(4918): 616–21PubMedCrossRef Wlodawer A, Miller M, Jaskolski M, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989; 245(4918): 616–21PubMedCrossRef
85.
Zurück zum Zitat Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998; 27: 249–84PubMedCrossRef Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998; 27: 249–84PubMedCrossRef
86.
Zurück zum Zitat Carrillo A, Stewart KD, Sham HL, et al. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J Virol 1998; 72(9): 7532–41PubMed Carrillo A, Stewart KD, Sham HL, et al. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J Virol 1998; 72(9): 7532–41PubMed
87.
Zurück zum Zitat Marciniszyn Jr J, Hartsuck JA, Tang J. Mode of inhibition of acid proteases by pepstatin. J Biol Chem 1976; 251(22): 7088–94PubMed Marciniszyn Jr J, Hartsuck JA, Tang J. Mode of inhibition of acid proteases by pepstatin. J Biol Chem 1976; 251(22): 7088–94PubMed
88.
Zurück zum Zitat Marciniszyn Jr J, Hartsuck JA, Tang J. Pepstatin inhibition mechanism. Adv Exp Med Biol 1977; 95: 199–210PubMed Marciniszyn Jr J, Hartsuck JA, Tang J. Pepstatin inhibition mechanism. Adv Exp Med Biol 1977; 95: 199–210PubMed
89.
Zurück zum Zitat Agarwal NS, Rich DH. Inhibition of cathepsin D by substrate analogues containing statine and by analogues of pepstatin. J Med Chem 1986; 29(12): 2519–24PubMedCrossRef Agarwal NS, Rich DH. Inhibition of cathepsin D by substrate analogues containing statine and by analogues of pepstatin. J Med Chem 1986; 29(12): 2519–24PubMedCrossRef
90.
Zurück zum Zitat Kay J, Afting EG, Aoyagi T, et al. The effects of lactoyl-pepstatin and the pepsin inhibitor peptide on pig cathepsin D. Biochem J 1982; 203(3): 795–7PubMed Kay J, Afting EG, Aoyagi T, et al. The effects of lactoyl-pepstatin and the pepsin inhibitor peptide on pig cathepsin D. Biochem J 1982; 203(3): 795–7PubMed
91.
Zurück zum Zitat Fitzgerald PM, McKeever BM, VanMiddlesworth JF, et al. Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution. J Biol Chem 1990; 265(24): 14209–19PubMed Fitzgerald PM, McKeever BM, VanMiddlesworth JF, et al. Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution. J Biol Chem 1990; 265(24): 14209–19PubMed
92.
Zurück zum Zitat Copeland TD, Wondrak EM, Tozser J, et al. Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor. Biochem Biophys Res Commun 1990; 169(1): 310–4PubMedCrossRef Copeland TD, Wondrak EM, Tozser J, et al. Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor. Biochem Biophys Res Commun 1990; 169(1): 310–4PubMedCrossRef
93.
Zurück zum Zitat Young SD, Payne LS, Thompson WJ, et al. HIV-1 protease inhibitors based on hydroxyethylene dipeptide isosteres: an investigation into the role of the P1′ side chain on structure-activity. J Med Chem 1992; 35(10): 1702–9PubMedCrossRef Young SD, Payne LS, Thompson WJ, et al. HIV-1 protease inhibitors based on hydroxyethylene dipeptide isosteres: an investigation into the role of the P1′ side chain on structure-activity. J Med Chem 1992; 35(10): 1702–9PubMedCrossRef
94.
Zurück zum Zitat Thompson WJ, Fitzgerald PM, Holloway MK, et al. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1′ phenyl substituents: x-ray crystal structure assisted design. J Med Chem 1992; 35(10): 1685–701PubMedCrossRef Thompson WJ, Fitzgerald PM, Holloway MK, et al. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1′ phenyl substituents: x-ray crystal structure assisted design. J Med Chem 1992; 35(10): 1685–701PubMedCrossRef
95.
Zurück zum Zitat Weber IT, Wu J, Adomat J, et al. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate: interactions with frequently occurring glutamic acid residue at P2′ position of substrates. Eur J Biochem 1997; 249(2): 523–30PubMedCrossRef Weber IT, Wu J, Adomat J, et al. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate: interactions with frequently occurring glutamic acid residue at P2′ position of substrates. Eur J Biochem 1997; 249(2): 523–30PubMedCrossRef
96.
Zurück zum Zitat Miller M, Schneider J, Sathyanarayana BK, et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3Å resolution. Science 1989; 246(4934): 1149–52PubMedCrossRef Miller M, Schneider J, Sathyanarayana BK, et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3Å resolution. Science 1989; 246(4934): 1149–52PubMedCrossRef
97.
Zurück zum Zitat Grobelny D, Wondrak EM, Galardy RE, et al. Selective phosphinate transition-state analogue inhibitors of the protease of human immunodeficiency virus. Biochem Biophys Res Commun 1990; 169(3): 1111–6PubMedCrossRef Grobelny D, Wondrak EM, Galardy RE, et al. Selective phosphinate transition-state analogue inhibitors of the protease of human immunodeficiency virus. Biochem Biophys Res Commun 1990; 169(3): 1111–6PubMedCrossRef
98.
Zurück zum Zitat Ghosh AK, Thompson WJ, Holloway MK, et al. Potent HIV protease inhibitors: the development of tetrahydrofuranylglycines as novel P2-ligands and pyrazine amides as P3-ligands. J Med Chem 1993; 36(16): 2300–10PubMedCrossRef Ghosh AK, Thompson WJ, Holloway MK, et al. Potent HIV protease inhibitors: the development of tetrahydrofuranylglycines as novel P2-ligands and pyrazine amides as P3-ligands. J Med Chem 1993; 36(16): 2300–10PubMedCrossRef
99.
Zurück zum Zitat Qasmi D, de Rosny E, Rene L, et al. Synthesis of N-glyoxylyl peptides and their in vitro evaluation as HIV-1 protease inhibitors. Bioorg Med Chem 1997; 5(4): 707–14PubMedCrossRef Qasmi D, de Rosny E, Rene L, et al. Synthesis of N-glyoxylyl peptides and their in vitro evaluation as HIV-1 protease inhibitors. Bioorg Med Chem 1997; 5(4): 707–14PubMedCrossRef
100.
Zurück zum Zitat Jaskolski M, Tomasselli AG, Sawyer TK, et al. Structure at 2.5-A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry 1991; 30(6): 1600–9PubMedCrossRef Jaskolski M, Tomasselli AG, Sawyer TK, et al. Structure at 2.5-A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry 1991; 30(6): 1600–9PubMedCrossRef
101.
Zurück zum Zitat Jaskolski M, Miller M, Rao JK, et al. Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2-A resolution. Biochemistry 1990; 29(25): 5889–98PubMedCrossRef Jaskolski M, Miller M, Rao JK, et al. Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2-A resolution. Biochemistry 1990; 29(25): 5889–98PubMedCrossRef
102.
Zurück zum Zitat Murthy KH, Winborne EL, Minnich MD, et al. The crystal structures at 2.2-A resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations. J Biol Chem 1992; 267(32): 22770–8PubMed Murthy KH, Winborne EL, Minnich MD, et al. The crystal structures at 2.2-A resolution of hydroxyethylene-based inhibitors bound to human immunodeficiency virus type 1 protease show that the inhibitors are present in two distinct orientations. J Biol Chem 1992; 267(32): 22770–8PubMed
103.
Zurück zum Zitat Dukes CS, Matthews TJ, Lambert DM, et al. Potent inhibition of HIV type 1 infection of mononuclear phagocytes by synthetic peptide analogs of HIV type 1 protease substrates. AIDS Res Hum Retroviruses 1996; 12(9): 777–82PubMedCrossRef Dukes CS, Matthews TJ, Lambert DM, et al. Potent inhibition of HIV type 1 infection of mononuclear phagocytes by synthetic peptide analogs of HIV type 1 protease substrates. AIDS Res Hum Retroviruses 1996; 12(9): 777–82PubMedCrossRef
104.
Zurück zum Zitat Alteri E, Bold G, Cozens R, et al. CGP 53437, an orally bioavailable inhibitor of human immunodeficiency virus type 1 protease with potent antiviral activity. Antimicrob Agents Chemother 1993; 37(10): 2087–92PubMedCrossRef Alteri E, Bold G, Cozens R, et al. CGP 53437, an orally bioavailable inhibitor of human immunodeficiency virus type 1 protease with potent antiviral activity. Antimicrob Agents Chemother 1993; 37(10): 2087–92PubMedCrossRef
105.
Zurück zum Zitat Sakurai M, Higashida S, Sugano M, et al. Studies of HIV-1 protease inhibitors: II, incorporation of four types of hydroxyethylene dipeptide isosteres at the scissile site of substrate sequences. Chem Pharm Bull (Tokyo) 1993; 41(8): 1378–86CrossRef Sakurai M, Higashida S, Sugano M, et al. Studies of HIV-1 protease inhibitors: II, incorporation of four types of hydroxyethylene dipeptide isosteres at the scissile site of substrate sequences. Chem Pharm Bull (Tokyo) 1993; 41(8): 1378–86CrossRef
106.
Zurück zum Zitat Robinson BS, Riccardi KA, Gong YF, et al. BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob Agents Chemother 2000; 44(8): 2093–9PubMedCrossRef Robinson BS, Riccardi KA, Gong YF, et al. BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob Agents Chemother 2000; 44(8): 2093–9PubMedCrossRef
107.
Zurück zum Zitat Engstrom K, Henry R, Hollis LS, et al. An efficient, stereoselective synthesis of the hydroxyethylene dipeptide isostere core for the HIV protease inhibitor A-792611. J Org Chem 2006; 71(14): 5369–72PubMedCrossRef Engstrom K, Henry R, Hollis LS, et al. An efficient, stereoselective synthesis of the hydroxyethylene dipeptide isostere core for the HIV protease inhibitor A-792611. J Org Chem 2006; 71(14): 5369–72PubMedCrossRef
108.
Zurück zum Zitat Jungheim LN, Shepherd TA, Baxter AJ, et al. Potent human immunodeficiency virus type 1 protease inhibitors that utilize noncoded D-amino acids as P2/P3 ligands. J Med Chem 1996; 39(1): 96–108PubMedCrossRef Jungheim LN, Shepherd TA, Baxter AJ, et al. Potent human immunodeficiency virus type 1 protease inhibitors that utilize noncoded D-amino acids as P2/P3 ligands. J Med Chem 1996; 39(1): 96–108PubMedCrossRef
109.
Zurück zum Zitat Kiso Y, Matsumoto H, Mizumoto S, et al. Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic. Biopolymers 1999; 51(1): 59–68PubMedCrossRef Kiso Y, Matsumoto H, Mizumoto S, et al. Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic. Biopolymers 1999; 51(1): 59–68PubMedCrossRef
110.
Zurück zum Zitat Yoshimura K, Feldman R, Kodama E, et al. In vitro induction of human immunodeficiency virus type 1 variants resistant to phosphoralaninate prodrugs of Z-methylene cyclopropane nucleoside analogues. Antimicrob Agents Chemother 1999; 43(10): 2479–83PubMed Yoshimura K, Feldman R, Kodama E, et al. In vitro induction of human immunodeficiency virus type 1 variants resistant to phosphoralaninate prodrugs of Z-methylene cyclopropane nucleoside analogues. Antimicrob Agents Chemother 1999; 43(10): 2479–83PubMed
111.
Zurück zum Zitat Mimoto T, Hattori N, Takaku H, et al. Structure-activity relationship of orally potent tripeptide-based HIV protease inhibitors containing hydroxymethyl carbonyl isostere. Chem Pharm Bull (Tokyo) 2000; 48(9): 1310–26CrossRef Mimoto T, Hattori N, Takaku H, et al. Structure-activity relationship of orally potent tripeptide-based HIV protease inhibitors containing hydroxymethyl carbonyl isostere. Chem Pharm Bull (Tokyo) 2000; 48(9): 1310–26CrossRef
112.
Zurück zum Zitat Baldwin ET, Bhat TN, Gulnik S, et al. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure 1995; 3(6): 581–90PubMedCrossRef Baldwin ET, Bhat TN, Gulnik S, et al. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure 1995; 3(6): 581–90PubMedCrossRef
113.
Zurück zum Zitat Baldwin ET, Bhat TN, Gulnik S, et al. Structure of HIV-1 protease with KNI-272: a transition state mimetic inhibitor containing allophenylnorstatine. Adv Exp Med Biol 1995; 362: 445–9PubMedCrossRef Baldwin ET, Bhat TN, Gulnik S, et al. Structure of HIV-1 protease with KNI-272: a transition state mimetic inhibitor containing allophenylnorstatine. Adv Exp Med Biol 1995; 362: 445–9PubMedCrossRef
114.
Zurück zum Zitat Velazquez-Campoy A, Luque I, Todd MJ, et al. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci 2000; 9(9): 1801–9PubMedCrossRef Velazquez-Campoy A, Luque I, Todd MJ, et al. Thermodynamic dissection of the binding energetics of KNI-272, a potent HIV-1 protease inhibitor. Protein Sci 2000; 9(9): 1801–9PubMedCrossRef
115.
Zurück zum Zitat Sheha MM, Mahfouz NM, Hassan HY, et al. Synthesis of di- and tripeptide analogues containing alpha-ketoamide as a new core structure for inhibition of HIV-1 protease. Eur J Med Chem 2000; 35(10): 887–94PubMedCrossRef Sheha MM, Mahfouz NM, Hassan HY, et al. Synthesis of di- and tripeptide analogues containing alpha-ketoamide as a new core structure for inhibition of HIV-1 protease. Eur J Med Chem 2000; 35(10): 887–94PubMedCrossRef
116.
Zurück zum Zitat Mimoto T, Terashima K, Nojima S, et al. Structure-activity and structure-metabolism relationships of HIV protease inhibitors containing the 3-hydroxy-2-methylbenzoyl-allophenylnorstatine structure. Bioorg Med Chem 2004; 12(1): 281–93PubMedCrossRef Mimoto T, Terashima K, Nojima S, et al. Structure-activity and structure-metabolism relationships of HIV protease inhibitors containing the 3-hydroxy-2-methylbenzoyl-allophenylnorstatine structure. Bioorg Med Chem 2004; 12(1): 281–93PubMedCrossRef
117.
Zurück zum Zitat Chellappan S, Kiran Kumar Reddy GS, Ali A, et al. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem Biol Drug Des 2007; 69(5): 298–313PubMedCrossRef Chellappan S, Kiran Kumar Reddy GS, Ali A, et al. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem Biol Drug Des 2007; 69(5): 298–313PubMedCrossRef
118.
Zurück zum Zitat Chellappan S, Kairys V, Fernandes MX, et al. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease. Proteins 2007; 68(2): 561–7PubMedCrossRef Chellappan S, Kairys V, Fernandes MX, et al. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease. Proteins 2007; 68(2): 561–7PubMedCrossRef
119.
Zurück zum Zitat Kotier M, Simm M, Zhao YS, et al. Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. J Virol 1997; 71(8): 5774–81 Kotier M, Simm M, Zhao YS, et al. Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. J Virol 1997; 71(8): 5774–81
120.
Zurück zum Zitat Potash MJ, Bentsman G, Muir T, et al. Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proc Natl Acad Sci U S A 1998; 95(23): 13865–8PubMedCrossRef Potash MJ, Bentsman G, Muir T, et al. Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proc Natl Acad Sci U S A 1998; 95(23): 13865–8PubMedCrossRef
121.
Zurück zum Zitat Baraz L, Friedler A, Blumenzweig I, et al. Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Lett 1998; 441(3): 419–26PubMedCrossRef Baraz L, Friedler A, Blumenzweig I, et al. Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Lett 1998; 441(3): 419–26PubMedCrossRef
122.
Zurück zum Zitat Friedler A, Blumenzweig I, Baraz L, et al. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors. J Mol Biol 1999; 287(1): 93–101PubMedCrossRef Friedler A, Blumenzweig I, Baraz L, et al. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors. J Mol Biol 1999; 287(1): 93–101PubMedCrossRef
123.
Zurück zum Zitat Blumenzweig I, Baraz L, Friedler A, et al. HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochem Biophys Res Commun 2002; 292(4): 832–40PubMedCrossRef Blumenzweig I, Baraz L, Friedler A, et al. HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochem Biophys Res Commun 2002; 292(4): 832–40PubMedCrossRef
124.
Zurück zum Zitat Sluis-Cremer N, Tachedjian G. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Eur J Biochem 2002; 269(21): 5103–11PubMedCrossRef Sluis-Cremer N, Tachedjian G. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Eur J Biochem 2002; 269(21): 5103–11PubMedCrossRef
125.
Zurück zum Zitat Camarasa MJ, Velazquez S, San-Felix A, et al. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes. Antiviral Res 2006; 71(2-3): 260–7PubMedCrossRef Camarasa MJ, Velazquez S, San-Felix A, et al. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes. Antiviral Res 2006; 71(2-3): 260–7PubMedCrossRef
126.
Zurück zum Zitat Zhang ZY, Poorman RA, Maggiora LL, et al. Dissociative inhibition of dimeric enzymes: kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem 1991; 266(24): 15591–4PubMed Zhang ZY, Poorman RA, Maggiora LL, et al. Dissociative inhibition of dimeric enzymes: kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem 1991; 266(24): 15591–4PubMed
127.
Zurück zum Zitat Babe LM, Rose J, Craik CS. Synthetic “interface” peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci 1992; (10): 1244–53CrossRef Babe LM, Rose J, Craik CS. Synthetic “interface” peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Sci 1992; (10): 1244–53CrossRef
128.
Zurück zum Zitat Schramm HJ, Nakashima H, Schramm W, et al. HIV-1 reproduction is inhibited by peptides derived from the N- and C-termini of HIV-1 protease. Biochem Biophys Res Commun 1991; 179(2): 847–51PubMedCrossRef Schramm HJ, Nakashima H, Schramm W, et al. HIV-1 reproduction is inhibited by peptides derived from the N- and C-termini of HIV-1 protease. Biochem Biophys Res Commun 1991; 179(2): 847–51PubMedCrossRef
129.
Zurück zum Zitat Schramm HJ, Billich A, Jaeger E, et al. The inhibition of HIV-1 protease by interface peptides. Biochem Biophys Res Commun 1993; 194(2): 595–600PubMedCrossRef Schramm HJ, Billich A, Jaeger E, et al. The inhibition of HIV-1 protease by interface peptides. Biochem Biophys Res Commun 1993; 194(2): 595–600PubMedCrossRef
130.
Zurück zum Zitat Schramm HJ, Boetzel J, Buttner J, et al. The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Res 1996; 30(2–3): 155–70PubMedCrossRef Schramm HJ, Boetzel J, Buttner J, et al. The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Res 1996; 30(2–3): 155–70PubMedCrossRef
131.
Zurück zum Zitat Franciskovich J, Houseman K, Mueller R, et al. A systematic evaluation of the inhibition of HIV-1 protease by its C- and N-terminal peptides. Bioorg Med Chem Lett 1993; 3(4): 765–8CrossRef Franciskovich J, Houseman K, Mueller R, et al. A systematic evaluation of the inhibition of HIV-1 protease by its C- and N-terminal peptides. Bioorg Med Chem Lett 1993; 3(4): 765–8CrossRef
132.
Zurück zum Zitat Schramm HJ, Breipohl G, Hansen J, et al. Inhibition of HIV-1 protease by short peptides derived from the terminal segments of the protease. Biochem Biophys Res Commun 1992; 184(2): 980–5PubMedCrossRef Schramm HJ, Breipohl G, Hansen J, et al. Inhibition of HIV-1 protease by short peptides derived from the terminal segments of the protease. Biochem Biophys Res Commun 1992; 184(2): 980–5PubMedCrossRef
133.
Zurück zum Zitat Schramm HJ, de Rosny E, Reboud-Ravaux M, et al. Lipopeptides as dimerization inhibitors of HIV-1 protease. Biol Chem 1999; 380(5): 593–6PubMedCrossRef Schramm HJ, de Rosny E, Reboud-Ravaux M, et al. Lipopeptides as dimerization inhibitors of HIV-1 protease. Biol Chem 1999; 380(5): 593–6PubMedCrossRef
134.
Zurück zum Zitat Dumond J, Boggetto N, Schramm HJ, et al. Thyroxine-derivatives of lipopeptides: bifunctional dimerization inhibitors of human immunodeficiency virus-1 protease. Biochem Pharmacol 2003; 65(7): 1097–102PubMedCrossRef Dumond J, Boggetto N, Schramm HJ, et al. Thyroxine-derivatives of lipopeptides: bifunctional dimerization inhibitors of human immunodeficiency virus-1 protease. Biochem Pharmacol 2003; 65(7): 1097–102PubMedCrossRef
135.
Zurück zum Zitat Misumi S, Kudo A, Azuma R, et al. The p2gag peptide, AEAMSQVTNTATIM, processed from HIV-1 Pr55gag was found to be a suicide inhibitor of HIV-1 protease. Biochem Biophys Res Commun 1997; 241(2): 275–80PubMedCrossRef Misumi S, Kudo A, Azuma R, et al. The p2gag peptide, AEAMSQVTNTATIM, processed from HIV-1 Pr55gag was found to be a suicide inhibitor of HIV-1 protease. Biochem Biophys Res Commun 1997; 241(2): 275–80PubMedCrossRef
136.
Zurück zum Zitat Misumi S, Morikawa Y, Tomonaga M, et al. Blocking of human immunodeficiency virus type-1 virion autolysis by autologous p2(gag) peptide. J Biochem (Tokyo) 2004; 135(3): 447–53CrossRef Misumi S, Morikawa Y, Tomonaga M, et al. Blocking of human immunodeficiency virus type-1 virion autolysis by autologous p2(gag) peptide. J Biochem (Tokyo) 2004; 135(3): 447–53CrossRef
137.
Zurück zum Zitat Bouras A, Boggetto N, Benatalah Z, et al. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization. J Med Chem 1999; 42(6): 957–62PubMedCrossRef Bouras A, Boggetto N, Benatalah Z, et al. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization. J Med Chem 1999; 42(6): 957–62PubMedCrossRef
138.
Zurück zum Zitat Merabet N, Dumond J, Collinet B, et al. New constrained “molecular tongs” designed to dissociate HIV-1 protease dimer. J Med Chem 2004; 47(25): 6392–400PubMedCrossRef Merabet N, Dumond J, Collinet B, et al. New constrained “molecular tongs” designed to dissociate HIV-1 protease dimer. J Med Chem 2004; 47(25): 6392–400PubMedCrossRef
139.
Zurück zum Zitat Bannwarth L, Kessler A, Pethe S, et al. Molecular tongs containing amino acid mimetic fragments: new inhibitors of wild-type and mutated HIV-1 protease dimerization. J Med Chem 2006; 49(15): 4657–64PubMedCrossRef Bannwarth L, Kessler A, Pethe S, et al. Molecular tongs containing amino acid mimetic fragments: new inhibitors of wild-type and mutated HIV-1 protease dimerization. J Med Chem 2006; 49(15): 4657–64PubMedCrossRef
140.
Zurück zum Zitat Broglia RA, Tiana G, Sutto L, et al. Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers. Protein Sci 2005; 14(10): 2668–81PubMedCrossRef Broglia RA, Tiana G, Sutto L, et al. Design of HIV-1-PR inhibitors that do not create resistance: blocking the folding of single monomers. Protein Sci 2005; 14(10): 2668–81PubMedCrossRef
141.
Zurück zum Zitat Dyda F, Hickman AB, Jenkins TM, et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 1994; 266(5193): 1981–6PubMedCrossRef Dyda F, Hickman AB, Jenkins TM, et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 1994; 266(5193): 1981–6PubMedCrossRef
142.
Zurück zum Zitat Engelman A, Bushman FD, Craigie R. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J 1993; 12(8): 3269–75PubMed Engelman A, Bushman FD, Craigie R. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J 1993; 12(8): 3269–75PubMed
143.
Zurück zum Zitat Engelman A, Liu Y, Chen H, et al. Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. J Virol 1997; 71(5): 3507–14PubMed Engelman A, Liu Y, Chen H, et al. Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. J Virol 1997; 71(5): 3507–14PubMed
144.
Zurück zum Zitat Engelman A, Englund G, Orenstein JM, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 1995; 69(5): 2729–36PubMed Engelman A, Englund G, Orenstein JM, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 1995; 69(5): 2729–36PubMed
145.
Zurück zum Zitat Hickman AB, Palmer I, Engelman A, et al. Biophysical and enzymatic properties of the catalytic domain of HIV-1 integrase. J Biol Chem 1994; 269(46): 29279–87PubMed Hickman AB, Palmer I, Engelman A, et al. Biophysical and enzymatic properties of the catalytic domain of HIV-1 integrase. J Biol Chem 1994; 269(46): 29279–87PubMed
146.
Zurück zum Zitat Grinsztejn B, Nguyen BY, Katlama C, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 2007; 369(9569): 1261–9PubMedCrossRef Grinsztejn B, Nguyen BY, Katlama C, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 2007; 369(9569): 1261–9PubMedCrossRef
147.
Zurück zum Zitat DeJesus E, Berger D, Markowitz M, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J Acquir Immune Defic Syndr 2006; 43(1): 1–5PubMedCrossRef DeJesus E, Berger D, Markowitz M, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J Acquir Immune Defic Syndr 2006; 43(1): 1–5PubMedCrossRef
148.
Zurück zum Zitat Maroun RG, Gayet S, Benleulmi MS, et al. Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers. Biochemistry 2001; 40(46): 13840–8PubMedCrossRef Maroun RG, Gayet S, Benleulmi MS, et al. Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers. Biochemistry 2001; 40(46): 13840–8PubMedCrossRef
149.
Zurück zum Zitat de Soultrait VR, Caumont A, Parissi V, et al. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. J Mol Biol 2002; 318(1): 45–58PubMedCrossRef de Soultrait VR, Caumont A, Parissi V, et al. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. J Mol Biol 2002; 318(1): 45–58PubMedCrossRef
150.
Zurück zum Zitat Desjobert C, de Soultrait VR, Faure A, et al. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry 2004; 43(41): 13097–105PubMedCrossRef Desjobert C, de Soultrait VR, Faure A, et al. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry 2004; 43(41): 13097–105PubMedCrossRef
151.
Zurück zum Zitat Hehl EA, Joshi P, Kalpana GV, et al. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol 2004; 78(10): 5056–67PubMedCrossRef Hehl EA, Joshi P, Kalpana GV, et al. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol 2004; 78(10): 5056–67PubMedCrossRef
152.
Zurück zum Zitat Wu X, Liu H, Xiao H, et al. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J Virol 1999; 73(3): 2126–35PubMed Wu X, Liu H, Xiao H, et al. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J Virol 1999; 73(3): 2126–35PubMed
153.
Zurück zum Zitat Hutoran M, Britan E, Baraz L, et al. Abrogation of Vif function by peptide derived from the N-terminal region of the human immunodeficiency virus type 1 (HIV-1) protease. Virology 2004; 330(1): 261–70PubMedCrossRef Hutoran M, Britan E, Baraz L, et al. Abrogation of Vif function by peptide derived from the N-terminal region of the human immunodeficiency virus type 1 (HIV-1) protease. Virology 2004; 330(1): 261–70PubMedCrossRef
154.
Zurück zum Zitat Oz Gleenberg I, Avidan O, Goldgur Y,et al. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. J Biol Chem 2005; 280(23): 21987–96PubMedCrossRef Oz Gleenberg I, Avidan O, Goldgur Y,et al. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. J Biol Chem 2005; 280(23): 21987–96PubMedCrossRef
155.
Zurück zum Zitat Zawahir Z, Neamati N. Inhibition of HIV-1 integrase activity by synthetic peptides derived from the HIV-1 HXB2 Pol region of the viral genome. Bioorg Med Chem Lett 2006; 16(19): 5199–202PubMedCrossRef Zawahir Z, Neamati N. Inhibition of HIV-1 integrase activity by synthetic peptides derived from the HIV-1 HXB2 Pol region of the viral genome. Bioorg Med Chem Lett 2006; 16(19): 5199–202PubMedCrossRef
156.
Zurück zum Zitat Rosenbluh J, Hayouka Z, Loya S, et al. Interaction between HIV-1 Rev and integrase proteins: a basis for the development of anti-HIV peptides. J Biol Chem 2007; 282(21): 15743–53PubMedCrossRef Rosenbluh J, Hayouka Z, Loya S, et al. Interaction between HIV-1 Rev and integrase proteins: a basis for the development of anti-HIV peptides. J Biol Chem 2007; 282(21): 15743–53PubMedCrossRef
157.
Zurück zum Zitat von Schwedler UK, Stuchell M, Muller B, et al. The protein network of HIV budding. Cell 2003; 114(6): 701–13CrossRef von Schwedler UK, Stuchell M, Muller B, et al. The protein network of HIV budding. Cell 2003; 114(6): 701–13CrossRef
158.
Zurück zum Zitat Garzon MT, Lidon-Moya MC, Barrera FN, et al. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization. Protein Sci 2004; 13(6): 1512–23PubMedCrossRef Garzon MT, Lidon-Moya MC, Barrera FN, et al. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization. Protein Sci 2004; 13(6): 1512–23PubMedCrossRef
159.
Zurück zum Zitat Hoglund S, Su J, Reneby SS, et al. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob Agents Chemother 2002; 46(11): 3597–605PubMedCrossRef Hoglund S, Su J, Reneby SS, et al. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob Agents Chemother 2002; 46(11): 3597–605PubMedCrossRef
160.
Zurück zum Zitat Niedrig M, Gelderblom HR, Pauli G, et al. Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides. J Gen Virol 1994; 75 (Pt 6): 1469–74PubMedCrossRef Niedrig M, Gelderblom HR, Pauli G, et al. Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides. J Gen Virol 1994; 75 (Pt 6): 1469–74PubMedCrossRef
161.
Zurück zum Zitat Sticht J, Humbert M, Findlow S, et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005; 12(8): 671–7PubMedCrossRef Sticht J, Humbert M, Findlow S, et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005; 12(8): 671–7PubMedCrossRef
162.
Zurück zum Zitat Martin-Serrano J, Zang T, Bieniasz PD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 2001; 7(12): 1313–9PubMedCrossRef Martin-Serrano J, Zang T, Bieniasz PD. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 2001; 7(12): 1313–9PubMedCrossRef
163.
Zurück zum Zitat Strack B, Calistri A, Craig S, et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003; 114(6): 689–99PubMedCrossRef Strack B, Calistri A, Craig S, et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003; 114(6): 689–99PubMedCrossRef
164.
Zurück zum Zitat Martin-Serrano J, Perez-Caballero D, Bieniasz PD. Context-dependent effects of L domains and ubiquitination on viral budding. J Virol 2004; 78(11): 5554–63PubMedCrossRef Martin-Serrano J, Perez-Caballero D, Bieniasz PD. Context-dependent effects of L domains and ubiquitination on viral budding. J Virol 2004; 78(11): 5554–63PubMedCrossRef
165.
Zurück zum Zitat Goila-Gaur R, Demirov DG, Orenstein JM, et al. Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 over-expression. J Virol 2003; 77(11): 6507–19PubMedCrossRef Goila-Gaur R, Demirov DG, Orenstein JM, et al. Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 over-expression. J Virol 2003; 77(11): 6507–19PubMedCrossRef
166.
Zurück zum Zitat Demirov DG, Ono A, Orenstein JM, et al. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 2002; 99(2): 955–60PubMedCrossRef Demirov DG, Ono A, Orenstein JM, et al. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 2002; 99(2): 955–60PubMedCrossRef
167.
Zurück zum Zitat Bouamr F, Houck-Loomis BR, De Los Santos M, et al. The C-terminal portion of the Hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 Gag particle production. J Virol 2007; 81(6): 2909–22PubMedCrossRef Bouamr F, Houck-Loomis BR, De Los Santos M, et al. The C-terminal portion of the Hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 Gag particle production. J Virol 2007; 81(6): 2909–22PubMedCrossRef
168.
Zurück zum Zitat Munshi UM, Kim J, Nagashima K, et al. An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J Biol Chem 2007; 282(6): 3847–55PubMedCrossRef Munshi UM, Kim J, Nagashima K, et al. An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J Biol Chem 2007; 282(6): 3847–55PubMedCrossRef
169.
Zurück zum Zitat Usami Y, Popov S, Gottlinger HG. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 2007; 81(12): 6614–22PubMedCrossRef Usami Y, Popov S, Gottlinger HG. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 2007; 81(12): 6614–22PubMedCrossRef
170.
Zurück zum Zitat Lee S, Joshi A, Nagashima K, et al. Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 2007; 14(3): 194–9PubMedCrossRef Lee S, Joshi A, Nagashima K, et al. Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 2007; 14(3): 194–9PubMedCrossRef
171.
Zurück zum Zitat Fisher RD, Chung HY, Zhai Q, et al. Structural and biochemical studies of ALIX/ AIP1 and its role in retrovirus budding. Cell 2007; 128(5): 841–52PubMedCrossRef Fisher RD, Chung HY, Zhai Q, et al. Structural and biochemical studies of ALIX/ AIP1 and its role in retrovirus budding. Cell 2007; 128(5): 841–52PubMedCrossRef
172.
Zurück zum Zitat Demidov V, Frank-Kamenetskii MD, Egholm M, et al. Sequence selective double stand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res 1993; 21(9): 2103–7PubMedCrossRef Demidov V, Frank-Kamenetskii MD, Egholm M, et al. Sequence selective double stand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res 1993; 21(9): 2103–7PubMedCrossRef
173.
Zurück zum Zitat Nielsen PE, Egholm M, Berg RH, et al. Sequence-selective recognition of DNA by stand displacement with a thymine-substituted polyamide. Science 1991; 254(5037): 1497–500PubMedCrossRef Nielsen PE, Egholm M, Berg RH, et al. Sequence-selective recognition of DNA by stand displacement with a thymine-substituted polyamide. Science 1991; 254(5037): 1497–500PubMedCrossRef
174.
Zurück zum Zitat Nielsen PE, Egholm M, Berg RH, et al. Peptide nucleic acids (PNAs): potential antisense and anti-gene agents. Anticancer Drug Des 1993; 8(1): 53–63PubMed Nielsen PE, Egholm M, Berg RH, et al. Peptide nucleic acids (PNAs): potential antisense and anti-gene agents. Anticancer Drug Des 1993; 8(1): 53–63PubMed
175.
Zurück zum Zitat Kaushik N, Pandey VN. PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3(Lys) in the virions and inhibits HIV-1 replication. Virology 2002; 303(2): 297–308PubMedCrossRef Kaushik N, Pandey VN. PNA targeting the PBS and A-loop sequences of HIV-1 genome destabilizes packaged tRNA3(Lys) in the virions and inhibits HIV-1 replication. Virology 2002; 303(2): 297–308PubMedCrossRef
176.
Zurück zum Zitat Mayhood T, Kaushik N, Pandey PK, et al. Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 2000; 39(38): 11532–9PubMedCrossRef Mayhood T, Kaushik N, Pandey PK, et al. Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 2000; 39(38): 11532–9PubMedCrossRef
177.
Zurück zum Zitat Boutimah-Hamoudi F, Leforestier E, Senamaud-Beaufort C, et al. Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tact (PPT) containing RNA. Nucleic Acids Res 2007; 35(12): 3907–17PubMedCrossRef Boutimah-Hamoudi F, Leforestier E, Senamaud-Beaufort C, et al. Cellular antisense activity of peptide nucleic acid (PNAs) targeted to HIV-1 polypurine tact (PPT) containing RNA. Nucleic Acids Res 2007; 35(12): 3907–17PubMedCrossRef
178.
Zurück zum Zitat Tripathi S, Chaubey B, Ganguly S, et al. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid conjugated with various membrane transducing peptides. Nucleic Acids Res 2005; 33(13): 4345–56PubMedCrossRef Tripathi S, Chaubey B, Ganguly S, et al. Anti-HIV-1 activity of anti-TAR polyamide nucleic acid conjugated with various membrane transducing peptides. Nucleic Acids Res 2005; 33(13): 4345–56PubMedCrossRef
179.
Zurück zum Zitat Chaubey B, Tripathi S, Ganguly S, et al. A PNA-tansportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005; 331(2): 418–28PubMedCrossRef Chaubey B, Tripathi S, Ganguly S, et al. A PNA-tansportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 2005; 331(2): 418–28PubMedCrossRef
180.
Zurück zum Zitat Tisne C, Dardel F. Optimisation of a peptide library for screening specific RNA ligands by flow-injection NMR. Comb Chem High Throughput Screen 2002; 5(7): 523–9PubMedCrossRef Tisne C, Dardel F. Optimisation of a peptide library for screening specific RNA ligands by flow-injection NMR. Comb Chem High Throughput Screen 2002; 5(7): 523–9PubMedCrossRef
181.
Zurück zum Zitat Tisne C, Guilliere F, Dardel F. NMR-based identification of peptides that specifically recognize the d-arm of tRNA. Biochimie 2005; 87(9–10): 885–8PubMedCrossRef Tisne C, Guilliere F, Dardel F. NMR-based identification of peptides that specifically recognize the d-arm of tRNA. Biochimie 2005; 87(9–10): 885–8PubMedCrossRef
182.
Zurück zum Zitat Chaloin L, Smagulova F, Hariton-Gazal E, et al. Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif. J Biomed Sci 2007; 14(5): 565–84PubMedCrossRef Chaloin L, Smagulova F, Hariton-Gazal E, et al. Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif. J Biomed Sci 2007; 14(5): 565–84PubMedCrossRef
183.
Zurück zum Zitat Baraz L, Hutoran M, Blumenzweig I, et al. Human immunodeficiency virus type 1 Vif binds the viral protease by interaction with its N-terminal region. J Gen Virol 2002; 83 (Pt 9): 2225–30PubMed Baraz L, Hutoran M, Blumenzweig I, et al. Human immunodeficiency virus type 1 Vif binds the viral protease by interaction with its N-terminal region. J Gen Virol 2002; 83 (Pt 9): 2225–30PubMed
184.
Zurück zum Zitat Balzarini J, Van Damme L. Microbicide drug candidates to prevent HIV infection. Lancet 2007; 369: 787–97PubMedCrossRef Balzarini J, Van Damme L. Microbicide drug candidates to prevent HIV infection. Lancet 2007; 369: 787–97PubMedCrossRef
185.
Zurück zum Zitat Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2003; 2(7): 587–93PubMedCrossRef Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2003; 2(7): 587–93PubMedCrossRef
186.
Zurück zum Zitat Condra JH, Holder DJ, Schleif WA, et al. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 1996; 70(12): 8270–6PubMed Condra JH, Holder DJ, Schleif WA, et al. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 1996; 70(12): 8270–6PubMed
187.
Zurück zum Zitat Jacobsen H, Yasargil K, Winslow DL, et al. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology 1995; 206(1): 527–34PubMedCrossRef Jacobsen H, Yasargil K, Winslow DL, et al. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology 1995; 206(1): 527–34PubMedCrossRef
188.
Zurück zum Zitat Molla A, Korneyeva M, Gao Q, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 1996; 2(7): 760–6PubMedCrossRef Molla A, Korneyeva M, Gao Q, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 1996; 2(7): 760–6PubMedCrossRef
189.
Zurück zum Zitat Schmit JC, Ruiz L, Clotet B, et al. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). AIDS 1996; 10(9): 995–9PubMedCrossRef Schmit JC, Ruiz L, Clotet B, et al. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). AIDS 1996; 10(9): 995–9PubMedCrossRef
190.
Zurück zum Zitat Khurana S, Kennedy M, King LR, et al. Identification of a linear peptide recognized by monoclonal antibody 2D7 capable of generating CCR5-specific antibodies with human immunodeficiency virus-neutralizing activity. J Virol 2005; 79(11): 6791–800PubMedCrossRef Khurana S, Kennedy M, King LR, et al. Identification of a linear peptide recognized by monoclonal antibody 2D7 capable of generating CCR5-specific antibodies with human immunodeficiency virus-neutralizing activity. J Virol 2005; 79(11): 6791–800PubMedCrossRef
191.
Zurück zum Zitat Chackerian B, Briglio L, Albert PS, et al. Induction of autoantibodies to CCR5 in macaques and subsequent effects upon challenge with an R5-tropic simian/ human immunodeficiency virus. J Virol 2004; 78: 4037–47PubMedCrossRef Chackerian B, Briglio L, Albert PS, et al. Induction of autoantibodies to CCR5 in macaques and subsequent effects upon challenge with an R5-tropic simian/ human immunodeficiency virus. J Virol 2004; 78: 4037–47PubMedCrossRef
192.
Zurück zum Zitat Dorfman T, Moore MJ, Guth AC, et al. A tyrosine-sulfated peptide derived from the heavy-chain CDR3 region of an HIV-1-neutralizing antibody binds gp120 and inhibits HIV-1 infection. J Biol Chem 2006; 281(39): 28529–35PubMedCrossRef Dorfman T, Moore MJ, Guth AC, et al. A tyrosine-sulfated peptide derived from the heavy-chain CDR3 region of an HIV-1-neutralizing antibody binds gp120 and inhibits HIV-1 infection. J Biol Chem 2006; 281(39): 28529–35PubMedCrossRef
193.
Zurück zum Zitat Zhang MY, Choudhry V, Sidorov IA, et al. Selection of a novel gp41-specific HIV-1 neutralizing human antibody by competitive antigen panning. J Immunol Methods 2006; 317: 21–30PubMedCrossRef Zhang MY, Choudhry V, Sidorov IA, et al. Selection of a novel gp41-specific HIV-1 neutralizing human antibody by competitive antigen panning. J Immunol Methods 2006; 317: 21–30PubMedCrossRef
194.
Zurück zum Zitat Okazaki T, Terabe M, Catanzaro AT, et al. Possible therapeutic vaccine strategy against human immunodeficiency virus escape from reverse tanscriptase inhibitors studied in HLA-A2 tansgenic mice. J Virol 2006; 80(21): 10645–51PubMedCrossRef Okazaki T, Terabe M, Catanzaro AT, et al. Possible therapeutic vaccine strategy against human immunodeficiency virus escape from reverse tanscriptase inhibitors studied in HLA-A2 tansgenic mice. J Virol 2006; 80(21): 10645–51PubMedCrossRef
195.
Zurück zum Zitat Hamburger AE, Kim S, Welch BD, et al. Steric accessibility of the HIV-1 gp41 N-trimer region. J Biol Chem 2005; 280(13): 12567–72PubMedCrossRef Hamburger AE, Kim S, Welch BD, et al. Steric accessibility of the HIV-1 gp41 N-trimer region. J Biol Chem 2005; 280(13): 12567–72PubMedCrossRef
196.
Zurück zum Zitat He Y, Vassell R, Zaitseva M, et al. Peptides tap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 2003; 77(3): 1666–71PubMedCrossRef He Y, Vassell R, Zaitseva M, et al. Peptides tap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 2003; 77(3): 1666–71PubMedCrossRef
197.
Zurück zum Zitat Gahery-Segard H, Pialoux G, Figueiredo S, et al. Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. J Virol 2003; 77(20): 11220–31PubMedCrossRef Gahery-Segard H, Pialoux G, Figueiredo S, et al. Long-term specific immune responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine: characterization of CD8+-T-cell epitopes recognized. J Virol 2003; 77(20): 11220–31PubMedCrossRef
198.
Zurück zum Zitat Kran AM, Sorensen B, Nyhus J, et al. HLA- and dose-dependent immunogenicity of a peptide-based HIV-1 immunotherapy candidate (Vacc-4x). AIDS 2004; 18(14): 1875–83PubMedCrossRef Kran AM, Sorensen B, Nyhus J, et al. HLA- and dose-dependent immunogenicity of a peptide-based HIV-1 immunotherapy candidate (Vacc-4x). AIDS 2004; 18(14): 1875–83PubMedCrossRef
199.
Zurück zum Zitat Pinto LA, Berzofsky JA, Fowke KR, et al. HIV-specific immunity following immunization with HIV synthetic envelope peptides in asymptomatic HIV-infected patients. AIDS 1999; 13(15): 2003–12PubMedCrossRef Pinto LA, Berzofsky JA, Fowke KR, et al. HIV-specific immunity following immunization with HIV synthetic envelope peptides in asymptomatic HIV-infected patients. AIDS 1999; 13(15): 2003–12PubMedCrossRef
200.
Zurück zum Zitat Duerr A, Wasserheit JN, Corey L. HIV vaccines: new frontiers in vaccine development. Clin Infect Dis 2006; 43(4): 500–11PubMedCrossRef Duerr A, Wasserheit JN, Corey L. HIV vaccines: new frontiers in vaccine development. Clin Infect Dis 2006; 43(4): 500–11PubMedCrossRef
201.
Zurück zum Zitat Nagashima KA, Thompson DA, Rosenfield SI, et al. Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183: 1121–5PubMedCrossRef Nagashima KA, Thompson DA, Rosenfield SI, et al. Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183: 1121–5PubMedCrossRef
202.
Zurück zum Zitat Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11: 533–9PubMedCrossRef Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11: 533–9PubMedCrossRef
203.
Zurück zum Zitat Zhang XQ, Sorensen M, Fung M, et al. Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Chemother 2006; 50: 2231–3PubMedCrossRef Zhang XQ, Sorensen M, Fung M, et al. Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Chemother 2006; 50: 2231–3PubMedCrossRef
204.
Zurück zum Zitat Moore JP, Sattentau QJ, Klasse PJ, et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992; 66: 4784–93PubMed Moore JP, Sattentau QJ, Klasse PJ, et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 1992; 66: 4784–93PubMed
205.
Zurück zum Zitat Trkola A, Ketas TJ, Nagashima KA, et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 2001; 75: 579–88PubMedCrossRef Trkola A, Ketas TJ, Nagashima KA, et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 2001; 75: 579–88PubMedCrossRef
206.
Zurück zum Zitat Yoshimura K, Shibata J, Kimura T, et al. Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors. AIDS 2005; 20: 2065–73CrossRef Yoshimura K, Shibata J, Kimura T, et al. Resistance profile of a neutralizing anti-HIV monoclonal antibody, KD-247, that shows favourable synergism with anti-CCR5 inhibitors. AIDS 2005; 20: 2065–73CrossRef
Metadaten
Titel
Peptide Inhibition of HIV-1
Current Status and Future Potential
verfasst von
Dr Neerja Kaushik-Basu
Amartya Basu
Dylan Harris
Publikationsdatum
01.05.2008
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 3/2008
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200822030-00003

Weitere Artikel der Ausgabe 3/2008

BioDrugs 3/2008 Zur Ausgabe

Adis Drug Profile

Mecasermin

Adis Drug Evaluation

Omalizumab