Skip to main content
Erschienen in: American Journal of Clinical Dermatology 1/2003

01.01.2003 | Leading Article

Can Thermal Lasers Promote Skin Wound Healing?

verfasst von: Alexandre Capon, Dr Serge Mordon

Erschienen in: American Journal of Clinical Dermatology | Ausgabe 1/2003

Einloggen, um Zugang zu erhalten

Abstract

Lasers are now widely used for treating numerous cutaneous lesions, for scar revision (hypertrophic and keloid scars), for tissue welding, and for skin resurfacing and remodeling (wrinkle removal). In these procedures lasers are used to generate heat. The modulation of the effect (volatilization, coagulation, hyperthermia) of the laser is obtained by using different wavelengths and laser parameters.
The heat source obtained by conversion of light into heat can be very superficial, yet intense, if the laser light is well absorbed (far-infrared:CO2 or Erbium:Yttrium Aluminum Garnet [Er:YAG] lasers), or it can be much deeper and less intense if the laser light is less absorbed by the skin (visible or near-infrared). Lasers transfer energy, in the form of heat, to surrounding tissues and, regardless of the laser used, a 45–50°C temperature gradient will be obtained in the surrounding skin.
If a wound healing process exists, it is a result of live cells reacting to this low temperature increase. The generated supraphysiologic level of heat is able to induce a heat shock response (HSR), which can be defined as the temporary changes in cellular metabolism. These changes are rapid and transient, and are characterized by the production of a small family of proteins termed the heat shock proteins (HSP). Recent experimental studies have clearly demonstrated that HSP 70, which is over-expressed following laser irradiation, could play a role with a coordinated expression of other growth factors such as transforming growth factor (TGF)-ß. TGF-ß is known to be a key element in the inflammatory response and the fibrogenic process. In this process, the fibroblasts are the key cells since they produce collagen and extracellular matrix.
In conclusion, the analysis of the literature, and the fundamental considerations concerning the healing process when using thermal lasers, are in favor of a modification of the growth factors synthesis after laser irradiation, induced by an HSR. An extensive review of the different techniques and several clinical studies confirm that thermal lasers could effectively promote skin wound healing, if they are used in a controlled manner.
Literatur
1.
Zurück zum Zitat Goldman L., Rockwell Jr R.J. Laser systems and their applications in medicine and biology. Adv Biomed Eng Med Phys 1968; 1: 317–382PubMed Goldman L., Rockwell Jr R.J. Laser systems and their applications in medicine and biology. Adv Biomed Eng Med Phys 1968; 1: 317–382PubMed
2.
Zurück zum Zitat Ehrlich H.P., Kelley S.F. Hypertrophic scar: an interruption in the remodeling of repair: a laser Doppler blood flow study. Plast Reconstr Surg 1992; 90 (6): 993–998PubMedCrossRef Ehrlich H.P., Kelley S.F. Hypertrophic scar: an interruption in the remodeling of repair: a laser Doppler blood flow study. Plast Reconstr Surg 1992; 90 (6): 993–998PubMedCrossRef
3.
Zurück zum Zitat Alster T.S., Williams C.M. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 1995; 345 (8959): 1198–1200PubMedCrossRef Alster T.S., Williams C.M. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 1995; 345 (8959): 1198–1200PubMedCrossRef
4.
Zurück zum Zitat Sherman R., Rosenfeld H. Experience with the Nd:YAG laser in the treatment of keloid scars. Ann Plast Surg 1988; 21 (3): 231–235PubMedCrossRef Sherman R., Rosenfeld H. Experience with the Nd:YAG laser in the treatment of keloid scars. Ann Plast Surg 1988; 21 (3): 231–235PubMedCrossRef
5.
Zurück zum Zitat Alster T.S., West T.B. Resurfacing of atrophic facial acne scars with a high-energy, pulsed carbon dioxide laser. Dermatol Surg 1996; 22 (2): 151–154PubMedCrossRef Alster T.S., West T.B. Resurfacing of atrophic facial acne scars with a high-energy, pulsed carbon dioxide laser. Dermatol Surg 1996; 22 (2): 151–154PubMedCrossRef
6.
Zurück zum Zitat Abergel R.P., Lyons R., Dwyer R., et al. Use of lasers for closure of cutaneous wounds: experience with Nd:YAG, argon and CO2 lasers. J Dermatol Surg Oncol 1986; 12 (11): 1181–1185PubMed Abergel R.P., Lyons R., Dwyer R., et al. Use of lasers for closure of cutaneous wounds: experience with Nd:YAG, argon and CO2 lasers. J Dermatol Surg Oncol 1986; 12 (11): 1181–1185PubMed
7.
Zurück zum Zitat Abergel R.P., Lyons R.F., White R.A., et al. Skin closure by Nd:YAG laser welding. J Am Acad Dermatol 1986; 14 (5): 810–814PubMedCrossRef Abergel R.P., Lyons R.F., White R.A., et al. Skin closure by Nd:YAG laser welding. J Am Acad Dermatol 1986; 14 (5): 810–814PubMedCrossRef
8.
Zurück zum Zitat Spadoni D., Cain C.L. Facial resurfacing: using the carbon dioxide laser. AORN J 1989; 50 (5): 1007, 1009–1013PubMedCrossRef Spadoni D., Cain C.L. Facial resurfacing: using the carbon dioxide laser. AORN J 1989; 50 (5): 1007, 1009–1013PubMedCrossRef
9.
Zurück zum Zitat Oshiro T., Calderhead R.G. Laser dermatology: state of the art. In: Waidelich W.R., editor. Laser optoelectronics in medicine. Heidelberg: Springer-Verlag, 1988: 513–521CrossRef Oshiro T., Calderhead R.G. Laser dermatology: state of the art. In: Waidelich W.R., editor. Laser optoelectronics in medicine. Heidelberg: Springer-Verlag, 1988: 513–521CrossRef
10.
Zurück zum Zitat Sliney D., Wolbarsht M. Optical radiation hazards to the skin, in safety with lasers and other optical sources. New York: Plenum Press, 1980: 161–185 Sliney D., Wolbarsht M. Optical radiation hazards to the skin, in safety with lasers and other optical sources. New York: Plenum Press, 1980: 161–185
11.
Zurück zum Zitat Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med 2002; 30 (5): 381–388PubMedCrossRef Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med 2002; 30 (5): 381–388PubMedCrossRef
12.
Zurück zum Zitat Pearce J., Thomsen S. Rate process analysis of thermal damage. In: Gemert A.J.W.M.J.C.V., editor. Optical-thermal response of laser irradiated tissue. New York: Plenum Press, 1995: 561–606 Pearce J., Thomsen S. Rate process analysis of thermal damage. In: Gemert A.J.W.M.J.C.V., editor. Optical-thermal response of laser irradiated tissue. New York: Plenum Press, 1995: 561–606
13.
Zurück zum Zitat Moritz A., Henriques F. Studies of thermal injury II: the relative importance of time and surface temperature in the caucasian of cutaneous burns. Am J Pathol 1947; 23: 695–720PubMed Moritz A., Henriques F. Studies of thermal injury II: the relative importance of time and surface temperature in the caucasian of cutaneous burns. Am J Pathol 1947; 23: 695–720PubMed
14.
Zurück zum Zitat Perdizet G. The heat shock response. In: Perdrizet G.A., editor. Heat shock response and organ preservation: models of stress conditioning. Austin (TX): RG Landes Company, 1997: 27–69 Perdizet G. The heat shock response. In: Perdrizet G.A., editor. Heat shock response and organ preservation: models of stress conditioning. Austin (TX): RG Landes Company, 1997: 27–69
15.
Zurück zum Zitat Mainster M.A., Reichel E. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic Surg Lasers 2000; 31 (5): 359–373PubMed Mainster M.A., Reichel E. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic Surg Lasers 2000; 31 (5): 359–373PubMed
16.
Zurück zum Zitat Desmettre T., Maurage C.A., Mordon S. Heat shock protein hyperexpression on chorioretinal layers after transpupillary thermotherapy. Invest Ophthalmol Vis Sci 2001; 42 (12): 2976–2980PubMed Desmettre T., Maurage C.A., Mordon S. Heat shock protein hyperexpression on chorioretinal layers after transpupillary thermotherapy. Invest Ophthalmol Vis Sci 2001; 42 (12): 2976–2980PubMed
17.
Zurück zum Zitat Souil E., Capon A., Mordon S., et al. Treatment with 815-nm diode laser induces long-lasting expression of 72- kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144 (2): 260–266PubMedCrossRef Souil E., Capon A., Mordon S., et al. Treatment with 815-nm diode laser induces long-lasting expression of 72- kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144 (2): 260–266PubMedCrossRef
18.
Zurück zum Zitat Capon A., Mitchell V.A., Sumian C., et al. Laser-assisted skin closure (LASC) using a 815-nm diode laser system: determination of an optimal dose to accelerate wound healing. In: Bown S., editor. Thermal therapy, laser welding, and tissue interaction. Bellingham (WA): SPIE, 1998: 1–12 Capon A., Mitchell V.A., Sumian C., et al. Laser-assisted skin closure (LASC) using a 815-nm diode laser system: determination of an optimal dose to accelerate wound healing. In: Bown S., editor. Thermal therapy, laser welding, and tissue interaction. Bellingham (WA): SPIE, 1998: 1–12
19.
Zurück zum Zitat Capon A., Souil E., Gauthier B., et al. Laser assisted skin closure (LASC) by using a 815-nm diode-laser system accelerates and improves wound healing. Lasers Surg Med 2001; 28 (2): 168–175PubMedCrossRef Capon A., Souil E., Gauthier B., et al. Laser assisted skin closure (LASC) by using a 815-nm diode-laser system accelerates and improves wound healing. Lasers Surg Med 2001; 28 (2): 168–175PubMedCrossRef
20.
Zurück zum Zitat Cain C.P., Welch A.J. Measured and predicted laser-induced temperature rises in the rabbit fundus. Invest Ophthalmol 1974; 13 (1): 60–70PubMed Cain C.P., Welch A.J. Measured and predicted laser-induced temperature rises in the rabbit fundus. Invest Ophthalmol 1974; 13 (1): 60–70PubMed
21.
Zurück zum Zitat Priebe L.A., Cain C.P., Welch A.J. Temperature rise required for production of minimal lesions in the Macaca mulatta retina. Am J Ophthalmol 1975; 79 (3): 405–413PubMed Priebe L.A., Cain C.P., Welch A.J. Temperature rise required for production of minimal lesions in the Macaca mulatta retina. Am J Ophthalmol 1975; 79 (3): 405–413PubMed
22.
Zurück zum Zitat Law M.P. Induced thermal resistance in the mouse ear: the relationship between heating time and temperature. Int J Radiat Biol Relat Stud Phys Chem Med 1979; 35 (5): 481–485PubMed Law M.P. Induced thermal resistance in the mouse ear: the relationship between heating time and temperature. Int J Radiat Biol Relat Stud Phys Chem Med 1979; 35 (5): 481–485PubMed
23.
Zurück zum Zitat Law M.P. The induction of thermal resistance in the ear of the mouse by heating at temperatures ranging from 41.5 to 45.5 degrees C. Radiat Res 1981; 85 (1): 126–134PubMedCrossRef Law M.P. The induction of thermal resistance in the ear of the mouse by heating at temperatures ranging from 41.5 to 45.5 degrees C. Radiat Res 1981; 85 (1): 126–134PubMedCrossRef
24.
Zurück zum Zitat Rice L.C., Urano M., Maher J. The kinetics of thermotolerance in the mouse foot. Radiat Res 1982; 89 (2): 291–297PubMedCrossRef Rice L.C., Urano M., Maher J. The kinetics of thermotolerance in the mouse foot. Radiat Res 1982; 89 (2): 291–297PubMedCrossRef
25.
Zurück zum Zitat Hall R.R. The healing of tissues incised by a carbon-dioxide laser. Br J Surg 1971; 58 (3): 222–225PubMedCrossRef Hall R.R. The healing of tissues incised by a carbon-dioxide laser. Br J Surg 1971; 58 (3): 222–225PubMedCrossRef
26.
Zurück zum Zitat Durante E.J., Kriek N.P. Clinical and histological comparison of tissue damage and healing following incisions with the CO2-laser and stainless steel surgical blade in dogs. J S Afr Vet Assoc 1993; 64 (3): 116–120PubMed Durante E.J., Kriek N.P. Clinical and histological comparison of tissue damage and healing following incisions with the CO2-laser and stainless steel surgical blade in dogs. J S Afr Vet Assoc 1993; 64 (3): 116–120PubMed
27.
Zurück zum Zitat Molgat Y.M., Pollack S.V., Hurwitz J.J., et al. Comparative study of wound healing in porcine skin with CO2 laser and other surgical modalities: preliminary findings. Int J Dermatol 1995; 34 (1): 42–47PubMedCrossRef Molgat Y.M., Pollack S.V., Hurwitz J.J., et al. Comparative study of wound healing in porcine skin with CO2 laser and other surgical modalities: preliminary findings. Int J Dermatol 1995; 34 (1): 42–47PubMedCrossRef
28.
Zurück zum Zitat Pearlman N.W., Stiegmann G.V., Vance V., et al. A prospective study of incisional time, blood loss, pain, and healing with carbon dioxide laser, scalpel, and electrosurgery. Arch Surg 1991; 126 (8): 1018–1020PubMedCrossRef Pearlman N.W., Stiegmann G.V., Vance V., et al. A prospective study of incisional time, blood loss, pain, and healing with carbon dioxide laser, scalpel, and electrosurgery. Arch Surg 1991; 126 (8): 1018–1020PubMedCrossRef
29.
Zurück zum Zitat Arashiro D.S., Rapley J.W., Cobb C.M., et al. Histologic evaluation of porcine skin incisions produced by CO2 laser, electrosurgery, and scalpel. Int J Periodontics Restorative Dent 1996; 16 (5): 479–491PubMed Arashiro D.S., Rapley J.W., Cobb C.M., et al. Histologic evaluation of porcine skin incisions produced by CO2 laser, electrosurgery, and scalpel. Int J Periodontics Restorative Dent 1996; 16 (5): 479–491PubMed
30.
Zurück zum Zitat Buell B.R., Schuller D.E. Comparison of tensile strength in CO2 laser and scalpel skin incisions. Arch Otolaryngol 1983; 109 (7): 465–467PubMedCrossRef Buell B.R., Schuller D.E. Comparison of tensile strength in CO2 laser and scalpel skin incisions. Arch Otolaryngol 1983; 109 (7): 465–467PubMedCrossRef
31.
Zurück zum Zitat Taylor D.L., Schafer S.A., Nordquist R., et al. Comparison of a high power diode laser with the Nd:YAG laser using in situ wound strength analysis of healing cutaneous incisions. Lasers Surg Med 1997; 21 (3): 248–254PubMedCrossRef Taylor D.L., Schafer S.A., Nordquist R., et al. Comparison of a high power diode laser with the Nd:YAG laser using in situ wound strength analysis of healing cutaneous incisions. Lasers Surg Med 1997; 21 (3): 248–254PubMedCrossRef
32.
Zurück zum Zitat Finsterbush A., Rousso M., Ashur H.. Healing and tensile strength of CO2 laser incisions and scalpel wounds in rabbits. Plast Reconstr Surg 1982; 70 (3): 360–362PubMedCrossRef Finsterbush A., Rousso M., Ashur H.. Healing and tensile strength of CO2 laser incisions and scalpel wounds in rabbits. Plast Reconstr Surg 1982; 70 (3): 360–362PubMedCrossRef
33.
Zurück zum Zitat Norris C.W., Mullarky M.B. Experimental skin incision made with the carbon dioxide laser. Laryngoscope 1982; 92 (4): 416–419PubMedCrossRef Norris C.W., Mullarky M.B. Experimental skin incision made with the carbon dioxide laser. Laryngoscope 1982; 92 (4): 416–419PubMedCrossRef
34.
Zurück zum Zitat Nygaard I.E., Squatrito R.C. Abdominal incisions from creation to closure. Obstet Gynecol Surv 1996; 51 (7): 429–436PubMedCrossRef Nygaard I.E., Squatrito R.C. Abdominal incisions from creation to closure. Obstet Gynecol Surv 1996; 51 (7): 429–436PubMedCrossRef
35.
Zurück zum Zitat Romanos G.E., Pelekanos S., Strub J.R. A comparative histological study of wound healing following Nd:YAG laser with different energy parameters and conventional surgical incision in rat skin. J Clin Laser Med Surg 1995; 13 (1): 11–16PubMed Romanos G.E., Pelekanos S., Strub J.R. A comparative histological study of wound healing following Nd:YAG laser with different energy parameters and conventional surgical incision in rat skin. J Clin Laser Med Surg 1995; 13 (1): 11–16PubMed
36.
Zurück zum Zitat Reid R. Physical and surgical principles governing carbon dioxide laser surgery on the skin. Dermatol Clin 1991; 9 (2): 297–316PubMed Reid R. Physical and surgical principles governing carbon dioxide laser surgery on the skin. Dermatol Clin 1991; 9 (2): 297–316PubMed
37.
Zurück zum Zitat Brychta P., Francu M., Koupil J., et al. Our experience with transconjunctival, laser-assisted lower blepharoplasty. Acta Chir Plast 2000; 42 (4): 118–123PubMed Brychta P., Francu M., Koupil J., et al. Our experience with transconjunctival, laser-assisted lower blepharoplasty. Acta Chir Plast 2000; 42 (4): 118–123PubMed
38.
Zurück zum Zitat Seckel B.R., Kovanda C.J., Cetrulo Jr C.L., et al. Laser blepharoplasty with transconjunctival orbicularis muscle/septum tightening and periocular skin resurfacing: a safe and advantageous technique. Plast Reconstr Surg 2000; 106 (5): 1127–1141PubMedCrossRef Seckel B.R., Kovanda C.J., Cetrulo Jr C.L., et al. Laser blepharoplasty with transconjunctival orbicularis muscle/septum tightening and periocular skin resurfacing: a safe and advantageous technique. Plast Reconstr Surg 2000; 106 (5): 1127–1141PubMedCrossRef
39.
Zurück zum Zitat Henderson D., Cromwell T., Mes L. Argon and carbon dioxyde laser treatment of hypertrophic and keloid scars. Lasers Surg Med 1984; 3: 271–277PubMedCrossRef Henderson D., Cromwell T., Mes L. Argon and carbon dioxyde laser treatment of hypertrophic and keloid scars. Lasers Surg Med 1984; 3: 271–277PubMedCrossRef
40.
Zurück zum Zitat Brown Jr L.A., Pierce H.E. Keloids: scar revision. J Dermatol Surg Oncol 1986; 12 (1): 51–56PubMed Brown Jr L.A., Pierce H.E. Keloids: scar revision. J Dermatol Surg Oncol 1986; 12 (1): 51–56PubMed
41.
Zurück zum Zitat Alster T. Pulsed dye laser gives hope to scar patients. Clin Laser Mon 1993; 11 (10): 155–156PubMed Alster T. Pulsed dye laser gives hope to scar patients. Clin Laser Mon 1993; 11 (10): 155–156PubMed
42.
Zurück zum Zitat Alster TS. Improvement of erythematous and hypertrophic scars by the 585-nm flashlamp-pumped pulsed dye laser. Ann Plast Surg 1994; 32 (2): 186–190PubMedCrossRef Alster TS. Improvement of erythematous and hypertrophic scars by the 585-nm flashlamp-pumped pulsed dye laser. Ann Plast Surg 1994; 32 (2): 186–190PubMedCrossRef
43.
Zurück zum Zitat Berman B., Flores F. The treatment of hypertrophic scars and keloids. Eur J Dermatol 1998; 8 (8): 591–595PubMed Berman B., Flores F. The treatment of hypertrophic scars and keloids. Eur J Dermatol 1998; 8 (8): 591–595PubMed
44.
Zurück zum Zitat Reiken S.R., Wolfort S.F., Berthiaume F., et al. Control of hypertrophic scar growth using selective photothermolysis. Lasers Surg Med 1997; 21 (1): 7–12PubMedCrossRef Reiken S.R., Wolfort S.F., Berthiaume F., et al. Control of hypertrophic scar growth using selective photothermolysis. Lasers Surg Med 1997; 21 (1): 7–12PubMedCrossRef
45.
Zurück zum Zitat Alster T.S., Nanni C.A. Pulsed dye laser treatment of hypertrophic burn scars. Plast Reconstr Surg 1998; 102 (6): 2190–2195PubMedCrossRef Alster T.S., Nanni C.A. Pulsed dye laser treatment of hypertrophic burn scars. Plast Reconstr Surg 1998; 102 (6): 2190–2195PubMedCrossRef
46.
Zurück zum Zitat Alster T.S., McMeekin T.O. Improvement of facial acne scars by the 585 nm flashlamp-pumped pulsed dye laser. J Am Acad Dermatol 1996; 35 (1): 79–81PubMedCrossRef Alster T.S., McMeekin T.O. Improvement of facial acne scars by the 585 nm flashlamp-pumped pulsed dye laser. J Am Acad Dermatol 1996; 35 (1): 79–81PubMedCrossRef
47.
Zurück zum Zitat Alster T.S., Handrick C. Laser treatment of hypertrophic scars, keloids, and striae. Semin Cutan Med Surg 2000; 19 (4): 287–292PubMedCrossRef Alster T.S., Handrick C. Laser treatment of hypertrophic scars, keloids, and striae. Semin Cutan Med Surg 2000; 19 (4): 287–292PubMedCrossRef
48.
Zurück zum Zitat Alster T.S., Bettencourt M.S. Review of cutaneous lasers and their applications. South Med J 1998; 91 (9): 806–814PubMedCrossRef Alster T.S., Bettencourt M.S. Review of cutaneous lasers and their applications. South Med J 1998; 91 (9): 806–814PubMedCrossRef
49.
Zurück zum Zitat Alster T.S. Laser treatment of hypertrophic scars, keloids, and striae. Dermatol Clin 1997; 15 (3): 419–429PubMedCrossRef Alster T.S. Laser treatment of hypertrophic scars, keloids, and striae. Dermatol Clin 1997; 15 (3): 419–429PubMedCrossRef
50.
Zurück zum Zitat Gaston P., Humzah M.D., Quaba A.A. The pulsed tuneable dye laser as an aid in the management of postburn scarring. Burns 1996; 22 (3): 203–205PubMedCrossRef Gaston P., Humzah M.D., Quaba A.A. The pulsed tuneable dye laser as an aid in the management of postburn scarring. Burns 1996; 22 (3): 203–205PubMedCrossRef
51.
Zurück zum Zitat Dierickx C., Goldman M.P., Fitzpatrick R.E. Laser treatment of erythematous/hypertrophic and pigmented scars in 26 patients. Plast Reconstr Surg 1995; 95 (1): 84–90PubMedCrossRef Dierickx C., Goldman M.P., Fitzpatrick R.E. Laser treatment of erythematous/hypertrophic and pigmented scars in 26 patients. Plast Reconstr Surg 1995; 95 (1): 84–90PubMedCrossRef
52.
Zurück zum Zitat Goldman M.P., Fitzpatrick R.E. Laser treatment of scars. Dermatol Surg 1995; 21 (8): 685–687PubMed Goldman M.P., Fitzpatrick R.E. Laser treatment of scars. Dermatol Surg 1995; 21 (8): 685–687PubMed
53.
Zurück zum Zitat Shakespeare P.G., Tiernan E., Dewar A.E., et al. Using the pulsed dye laser to influence scar formation after breast reduction surgery: a preliminary report. Ann Plast Surg 2000; 45 (4): 357–368PubMedCrossRef Shakespeare P.G., Tiernan E., Dewar A.E., et al. Using the pulsed dye laser to influence scar formation after breast reduction surgery: a preliminary report. Ann Plast Surg 2000; 45 (4): 357–368PubMedCrossRef
54.
Zurück zum Zitat Nehal K.S., Levine V.J., Ross B., et al. Comparison of high-energy pulsed carbon dioxide laser resurfacing and dermabrasion in the revision of surgical scars. Dermatol Surg 1998; 24 (6): 647–650PubMedCrossRef Nehal K.S., Levine V.J., Ross B., et al. Comparison of high-energy pulsed carbon dioxide laser resurfacing and dermabrasion in the revision of surgical scars. Dermatol Surg 1998; 24 (6): 647–650PubMedCrossRef
55.
Zurück zum Zitat Bernstein L.J., Kauvar A.N., Grossman M.C., et al. Scar resurfacing with high-energy, short-pulsed and flashscanning carbon dioxide lasers. Dermatol Surg 1998; 24 (1): 101–107PubMedCrossRef Bernstein L.J., Kauvar A.N., Grossman M.C., et al. Scar resurfacing with high-energy, short-pulsed and flashscanning carbon dioxide lasers. Dermatol Surg 1998; 24 (1): 101–107PubMedCrossRef
56.
Zurück zum Zitat Goodman G.J. Management of post-acne scarring: what are the options for treatment? Am J Clin Dermatol 2000; 1 (1): 3–17PubMedCrossRef Goodman G.J. Management of post-acne scarring: what are the options for treatment? Am J Clin Dermatol 2000; 1 (1): 3–17PubMedCrossRef
57.
Zurück zum Zitat Kwon S.D., Kye Y.C. Treatment of scars with a pulsed Er:YAG laser. J Cutan Laser Ther 2000; 2 (1): 27–31PubMed Kwon S.D., Kye Y.C. Treatment of scars with a pulsed Er:YAG laser. J Cutan Laser Ther 2000; 2 (1): 27–31PubMed
58.
Zurück zum Zitat Mezzana P., Sonnino M., Madonna Terracina F.S., et al. Treatment of atrophic scars with Er:YAG laser: our experience. Acta Chir Plast 2001; 43 (1): 26–28PubMed Mezzana P., Sonnino M., Madonna Terracina F.S., et al. Treatment of atrophic scars with Er:YAG laser: our experience. Acta Chir Plast 2001; 43 (1): 26–28PubMed
59.
Zurück zum Zitat Paquet P., Hermanns J.F., Pierard G.E. Effect of the 585 nm flashlamp-pumped pulsed dye laser for the treatment of keloids. Dermatol Surg 2001; 27 (2): 171–174PubMedCrossRef Paquet P., Hermanns J.F., Pierard G.E. Effect of the 585 nm flashlamp-pumped pulsed dye laser for the treatment of keloids. Dermatol Surg 2001; 27 (2): 171–174PubMedCrossRef
60.
Zurück zum Zitat Wittenberg G.P., Fabian B.G., Bogomilsky J.L., et al. Prospective, single-blind, randomized, controlled study to assess the efficacy of the 585-nm flashlamppumped pulsed-dye laser and silicone gel sheeting in hypertrophic scar treatment. Arch Dermatol 1999; 135 (9): 1049–1055PubMedCrossRef Wittenberg G.P., Fabian B.G., Bogomilsky J.L., et al. Prospective, single-blind, randomized, controlled study to assess the efficacy of the 585-nm flashlamppumped pulsed-dye laser and silicone gel sheeting in hypertrophic scar treatment. Arch Dermatol 1999; 135 (9): 1049–1055PubMedCrossRef
61.
Zurück zum Zitat Bass L.S., Treat M.R. Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 1995; 17 (4): 315–349PubMedCrossRef Bass L.S., Treat M.R. Laser tissue welding: a comprehensive review of current and future clinical applications. Lasers Surg Med 1995; 17 (4): 315–349PubMedCrossRef
62.
Zurück zum Zitat Godlewski G., Prudhomme M., Tang J. Applications and mechanisms of laser tissue welding in 1995: review. In: Laffitte F., Hibst R., Reidenbach H.-D., et al., editors. Medical applications of lasers III. Bellingham (WA): SPIE, 1996: 334–341 Godlewski G., Prudhomme M., Tang J. Applications and mechanisms of laser tissue welding in 1995: review. In: Laffitte F., Hibst R., Reidenbach H.-D., et al., editors. Medical applications of lasers III. Bellingham (WA): SPIE, 1996: 334–341
63.
Zurück zum Zitat Garden J.M., Robinson J.K., Taute P.M., et al. The low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure. Lasers Surg Med 1986; 6 (1): 67–71PubMedCrossRef Garden J.M., Robinson J.K., Taute P.M., et al. The low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure. Lasers Surg Med 1986; 6 (1): 67–71PubMedCrossRef
64.
Zurück zum Zitat Lele P. Local tumor hyperthermia in the 1990s. In: Bicher H.I., McLaren I.R., Pigliucci G.M., editors. Consensus on hyperthermia in the 1990s. New York: Plenum Press, 1990: 37–46CrossRef Lele P. Local tumor hyperthermia in the 1990s. In: Bicher H.I., McLaren I.R., Pigliucci G.M., editors. Consensus on hyperthermia in the 1990s. New York: Plenum Press, 1990: 37–46CrossRef
65.
Zurück zum Zitat Murray L.W., Su L., Kopchok G.E., et al. Crosslinking of extracellular matrix proteins: a preliminary report on a possible mechanism of argon laser welding. Lasers Surg Med 1989; 9 (5): 490–496PubMedCrossRef Murray L.W., Su L., Kopchok G.E., et al. Crosslinking of extracellular matrix proteins: a preliminary report on a possible mechanism of argon laser welding. Lasers Surg Med 1989; 9 (5): 490–496PubMedCrossRef
66.
Zurück zum Zitat Tang J., Godlewski G., Rouy S., et al. Morphologic changes in collagen fibers after 830 nm diode laser welding. Lasers Surg Med 1997; 21 (5): 438–443PubMedCrossRef Tang J., Godlewski G., Rouy S., et al. Morphologic changes in collagen fibers after 830 nm diode laser welding. Lasers Surg Med 1997; 21 (5): 438–443PubMedCrossRef
67.
Zurück zum Zitat Poppas D.P., Schlossberg S.M., Richmond I.L., et al. Laser welding in urethral surgery: improved results with a protein solder. J Urol 1988; 139 (2): 415–417PubMed Poppas D.P., Schlossberg S.M., Richmond I.L., et al. Laser welding in urethral surgery: improved results with a protein solder. J Urol 1988; 139 (2): 415–417PubMed
68.
Zurück zum Zitat Wang S., Grubbs Jr P.E., Basu S., et al. Effect of blood bonding on bursting strength of laser-assisted microvascular anastomoses. Microsurgery 1988; 9 (1): 10–13PubMedCrossRef Wang S., Grubbs Jr P.E., Basu S., et al. Effect of blood bonding on bursting strength of laser-assisted microvascular anastomoses. Microsurgery 1988; 9 (1): 10–13PubMedCrossRef
69.
Zurück zum Zitat DeCoste S.D., Farinelli W., Flotte T., et al. Dye-enhanced laser welding for skin closure. Lasers Surg Med 1992; 12 (1): 25–32PubMedCrossRef DeCoste S.D., Farinelli W., Flotte T., et al. Dye-enhanced laser welding for skin closure. Lasers Surg Med 1992; 12 (1): 25–32PubMedCrossRef
70.
Zurück zum Zitat Poppas D.P., Massicotte J.M., Stewart R.B., et al. Human albumin solder supplemented with TGF-beta 1 accelerates healing following laser welded wound closure. Lasers Surg Med 1996; 19 (3): 360–368PubMedCrossRef Poppas D.P., Massicotte J.M., Stewart R.B., et al. Human albumin solder supplemented with TGF-beta 1 accelerates healing following laser welded wound closure. Lasers Surg Med 1996; 19 (3): 360–368PubMedCrossRef
71.
Zurück zum Zitat Kayton M.L., Libutti S.K., Bessler M., et al. Comparison of laser-activated tissue solders and thrombin-activated cryoprecipitate for wound closure. In: Ed R.R.A., editor. Laser surgery: advanced characterization, therapeutics, and systems IV. Bellingham (WA): SPIE, 1994: 527–531 Kayton M.L., Libutti S.K., Bessler M., et al. Comparison of laser-activated tissue solders and thrombin-activated cryoprecipitate for wound closure. In: Ed R.R.A., editor. Laser surgery: advanced characterization, therapeutics, and systems IV. Bellingham (WA): SPIE, 1994: 527–531
72.
Zurück zum Zitat Chiarugi C., Martini L., Borgognoni L., et al. Technical improvements in diode-laser-assisted skin welding. In: Laffitte F., Hibst R., Reidenbach H.-D., editors. Medical applications of lasers III. Bellingham (WA): SPIE, 1996: 407–411 Chiarugi C., Martini L., Borgognoni L., et al. Technical improvements in diode-laser-assisted skin welding. In: Laffitte F., Hibst R., Reidenbach H.-D., editors. Medical applications of lasers III. Bellingham (WA): SPIE, 1996: 407–411
73.
Zurück zum Zitat Reali U.M., Borgognoni L., Martini L., et al. Preliminary experiences on diode laser welding of skin. In: Bown S.G., Escourrou J., Frank K.H., et al., editors. Medical applications of lasers II. Bellingham (WA): SPIE, 1994: 211–215 Reali U.M., Borgognoni L., Martini L., et al. Preliminary experiences on diode laser welding of skin. In: Bown S.G., Escourrou J., Frank K.H., et al., editors. Medical applications of lasers II. Bellingham (WA): SPIE, 1994: 211–215
74.
Zurück zum Zitat Romanos G.E., Pelekanos S., Strub J.R. Effects of Nd:YAG laser on wound healing processes: clinical and immunohistochemical findings in rat skin. Lasers Surg Med 1995; 16 (4): 368–379PubMedCrossRef Romanos G.E., Pelekanos S., Strub J.R. Effects of Nd:YAG laser on wound healing processes: clinical and immunohistochemical findings in rat skin. Lasers Surg Med 1995; 16 (4): 368–379PubMedCrossRef
75.
Zurück zum Zitat Wider T.M., Libutti S.K., Greenwald D.P., et al. Skin closure with dye-enhanced laser welding and fibrinogen. Plast Reconstr Surg 1991; 88 (6): 1018–1025PubMedCrossRef Wider T.M., Libutti S.K., Greenwald D.P., et al. Skin closure with dye-enhanced laser welding and fibrinogen. Plast Reconstr Surg 1991; 88 (6): 1018–1025PubMedCrossRef
76.
Zurück zum Zitat McNally K.M., Sorg B.S., Welch A.J. Novel solid protein solder designs for laserassisted tissue repair. Lasers Surg Med 2000; 27 (2): 147–157PubMedCrossRef McNally K.M., Sorg B.S., Welch A.J. Novel solid protein solder designs for laserassisted tissue repair. Lasers Surg Med 2000; 27 (2): 147–157PubMedCrossRef
77.
Zurück zum Zitat Hodges D.E., McNally K.M., Welch A.J. Surgical adhesives for laser-assisted wound closure. J Biomed Opt 2001; 6 (4): 427–431PubMedCrossRef Hodges D.E., McNally K.M., Welch A.J. Surgical adhesives for laser-assisted wound closure. J Biomed Opt 2001; 6 (4): 427–431PubMedCrossRef
78.
Zurück zum Zitat Sorg B.S., McNally K.M., Welch A.J. Biodegradable polymer film reinforcement of an indocyanine green-doped liquid albumin solder for laser-assisted incision closure. Lasers Surg Med 2000; 27 (1): 73–81PubMedCrossRef Sorg B.S., McNally K.M., Welch A.J. Biodegradable polymer film reinforcement of an indocyanine green-doped liquid albumin solder for laser-assisted incision closure. Lasers Surg Med 2000; 27 (1): 73–81PubMedCrossRef
79.
Zurück zum Zitat Shah M., Foreman D.M., Ferguson M.W. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107 (5): 1137–1157PubMed Shah M., Foreman D.M., Ferguson M.W. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107 (5): 1137–1157PubMed
80.
Zurück zum Zitat Shah M., Foreman D.M., Ferguson M.W. Neutralisation of TGF-beta 1 and TGFbeta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108 (3): 985–1002PubMed Shah M., Foreman D.M., Ferguson M.W. Neutralisation of TGF-beta 1 and TGFbeta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108 (3): 985–1002PubMed
81.
Zurück zum Zitat Scheid A., Wenger R.H., Christina H., et al. Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair. Pediatr Surg Int 2000; 16 (4): 232–236PubMedCrossRef Scheid A., Wenger R.H., Christina H., et al. Hypoxia-regulated gene expression in fetal wound regeneration and adult wound repair. Pediatr Surg Int 2000; 16 (4): 232–236PubMedCrossRef
82.
Zurück zum Zitat Dallon J., Sherratt J., Maini P., et al. Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. IMA J Math Appl Med Biol 2000; 17 (4): 379–393PubMedCrossRef Dallon J., Sherratt J., Maini P., et al. Biological implications of a discrete mathematical model for collagen deposition and alignment in dermal wound repair. IMA J Math Appl Med Biol 2000; 17 (4): 379–393PubMedCrossRef
83.
Zurück zum Zitat Clark R.A. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 1993; 306 (1): 42–48PubMedCrossRef Clark R.A. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci 1993; 306 (1): 42–48PubMedCrossRef
84.
Zurück zum Zitat Desmouliere A., Badid C., Bochaton-Piallat M.L., et al. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol 1997; 29 (1): 19–30PubMedCrossRef Desmouliere A., Badid C., Bochaton-Piallat M.L., et al. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol 1997; 29 (1): 19–30PubMedCrossRef
85.
Zurück zum Zitat Ehrlich H.P., Rajaratnam J.B. Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 1990; 22 (4): 407–417PubMedCrossRef Ehrlich H.P., Rajaratnam J.B. Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 1990; 22 (4): 407–417PubMedCrossRef
86.
Zurück zum Zitat Gabbiani G., Ryan G.B., Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27 (5): 549–550PubMedCrossRef Gabbiani G., Ryan G.B., Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27 (5): 549–550PubMedCrossRef
87.
Zurück zum Zitat Stopak D., Harris A.K. Connective tissue morphogenesis by fibroblast traction I: tissue culture observations. Dev Biol 1982; 90 (2): 383–398PubMedCrossRef Stopak D., Harris A.K. Connective tissue morphogenesis by fibroblast traction I: tissue culture observations. Dev Biol 1982; 90 (2): 383–398PubMedCrossRef
88.
Zurück zum Zitat Ehrlich H.P. Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye 1988; 2 (2): 149–157PubMedCrossRef Ehrlich H.P. Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye 1988; 2 (2): 149–157PubMedCrossRef
89.
Zurück zum Zitat Welch M.P., Odland G.F., Clark R.A. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 1990; 110 (1): 133–145PubMedCrossRef Welch M.P., Odland G.F., Clark R.A. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 1990; 110 (1): 133–145PubMedCrossRef
90.
Zurück zum Zitat Singer I.I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 1979; 16 (3): 675–685PubMedCrossRef Singer I.I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 1979; 16 (3): 675–685PubMedCrossRef
91.
92.
Zurück zum Zitat Desmoulière A., Gabbiani G. The role of myofibroblast in wound healing and fibrocontractive diseases. In: Clark R.A.F., editor. The molecular and cellular biology of wound repair. New York: Plenum Press, 1996: 391–423 Desmoulière A., Gabbiani G. The role of myofibroblast in wound healing and fibrocontractive diseases. In: Clark R.A.F., editor. The molecular and cellular biology of wound repair. New York: Plenum Press, 1996: 391–423
93.
Zurück zum Zitat Olsen L., Sherratt J.A., Maini P.K. A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J Theor Biol 1995; 177 (2): 113–128PubMedCrossRef Olsen L., Sherratt J.A., Maini P.K. A mechanochemical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J Theor Biol 1995; 177 (2): 113–128PubMedCrossRef
94.
Zurück zum Zitat Darby I., Skalli O., Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63 (1): 21–29PubMed Darby I., Skalli O., Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63 (1): 21–29PubMed
95.
Zurück zum Zitat Hebda P.A., Collins M.A., Tharp M.D. Mast cell and myofibroblast in wound healing. Dermatol Clin 1993; 11 (4): 685–696PubMed Hebda P.A., Collins M.A., Tharp M.D. Mast cell and myofibroblast in wound healing. Dermatol Clin 1993; 11 (4): 685–696PubMed
96.
Zurück zum Zitat Mordon S., Capon A., Fleurisse L., et al. Granulation tissue exhibits differences in alpha-smooth muscle actin expression after laser assisted skin closure (LASC). In: Anderson R.R.B., Kenneth E., Bass L.S., et al., editors. Lasers in surgery: advanced characterization, therapeutics, and systems XI. Bellingham (WA): SPIE, 2001: 233–241 Mordon S., Capon A., Fleurisse L., et al. Granulation tissue exhibits differences in alpha-smooth muscle actin expression after laser assisted skin closure (LASC). In: Anderson R.R.B., Kenneth E., Bass L.S., et al., editors. Lasers in surgery: advanced characterization, therapeutics, and systems XI. Bellingham (WA): SPIE, 2001: 233–241
97.
Zurück zum Zitat Takenaka I.M., Hightower L.E. Transforming growth factor-beta 1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. J Cell Physiol 1992; 152 (3): 568–577PubMedCrossRef Takenaka I.M., Hightower L.E. Transforming growth factor-beta 1 rapidly induces Hsp70 and Hsp90 molecular chaperones in cultured chicken embryo cells. J Cell Physiol 1992; 152 (3): 568–577PubMedCrossRef
98.
Zurück zum Zitat Adzick N.S., Lorenz H.P. Cells, matrix, growth factors, and the surgeon: the biology of scarless fetal wound repair. Ann Surg 1994; 220 (1): 10–18PubMedCrossRef Adzick N.S., Lorenz H.P. Cells, matrix, growth factors, and the surgeon: the biology of scarless fetal wound repair. Ann Surg 1994; 220 (1): 10–18PubMedCrossRef
99.
Zurück zum Zitat Amenta P., Martinez-Hernandez A., Trelstad R. Repair and regeneration. In: Damjanov I., Linder J., editors. Anderson’s pathology. 10th ed. Philadelphia (PA): CV Mosby, 1996: 416–447 Amenta P., Martinez-Hernandez A., Trelstad R. Repair and regeneration. In: Damjanov I., Linder J., editors. Anderson’s pathology. 10th ed. Philadelphia (PA): CV Mosby, 1996: 416–447
100.
Zurück zum Zitat Cromack D.T., Porras-Reyes B., Purdy J.A., et al. Acceleration of tissue repair by transforming growth factor beta 1: identification of in vivo mechanism of action with radiotherapy-induced specific healing deficits. Surgery 1993; 113 (1): 36–42PubMed Cromack D.T., Porras-Reyes B., Purdy J.A., et al. Acceleration of tissue repair by transforming growth factor beta 1: identification of in vivo mechanism of action with radiotherapy-induced specific healing deficits. Surgery 1993; 113 (1): 36–42PubMed
101.
Zurück zum Zitat Lawrence D. Transforming growth factor-ß. In: Cavaillon J.M., editor. Les Cytokines.Paris: Masson, 1993 Lawrence D. Transforming growth factor-ß. In: Cavaillon J.M., editor. Les Cytokines.Paris: Masson, 1993
102.
Zurück zum Zitat Mustoe T.A., Pierce G.F., Thomason A., et al. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science 1987; 237 (4820): 1333–1336PubMedCrossRef Mustoe T.A., Pierce G.F., Thomason A., et al. Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science 1987; 237 (4820): 1333–1336PubMedCrossRef
103.
Zurück zum Zitat Pierce G.F., Tarpley J.E., Yanagihara D., et al. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing: neovessel and matrix formation and cessation of repair. Am J Pathol 1992; 140 (6): 1375–1388PubMed Pierce G.F., Tarpley J.E., Yanagihara D., et al. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing: neovessel and matrix formation and cessation of repair. Am J Pathol 1992; 140 (6): 1375–1388PubMed
104.
Zurück zum Zitat Rifkin D., Gleizes P., Harpel J. Plasminogen/plasminogen activator and growth factor activation. Novartis Foundation Symposium: plasminogen related growth factors. New York: John Wiley and Sons, 1997 Rifkin D., Gleizes P., Harpel J. Plasminogen/plasminogen activator and growth factor activation. Novartis Foundation Symposium: plasminogen related growth factors. New York: John Wiley and Sons, 1997
105.
Zurück zum Zitat Shukla A., Dubey M.P., Srivastava R., et al. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun 1998; 244 (2): 434–439PubMedCrossRef Shukla A., Dubey M.P., Srivastava R., et al. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun 1998; 244 (2): 434–439PubMedCrossRef
106.
Zurück zum Zitat Rayner T.E., Cowin A.J., Robertson J.G., et al. Mitogenic whey extract stimulates wound repair activity in vitro and promotes healing of rat incisional wounds. Am J Physiol Regul Integr Comp Physiol 2000; 278 (6): R1651–R1660PubMed Rayner T.E., Cowin A.J., Robertson J.G., et al. Mitogenic whey extract stimulates wound repair activity in vitro and promotes healing of rat incisional wounds. Am J Physiol Regul Integr Comp Physiol 2000; 278 (6): R1651–R1660PubMed
107.
Zurück zum Zitat Bennett N.T., Schultz G.S. Growth factors and wound healing II: role in normal and chronic wound healing. Am J Surg 1993; 166 (1): 74–81PubMedCrossRef Bennett N.T., Schultz G.S. Growth factors and wound healing II: role in normal and chronic wound healing. Am J Surg 1993; 166 (1): 74–81PubMedCrossRef
108.
Zurück zum Zitat Dallon J.C., Sherratt J.A., Maini P.K. Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration. J Theor Biol 1999; 199 (4): 449–471PubMedCrossRef Dallon J.C., Sherratt J.A., Maini P.K. Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration. J Theor Biol 1999; 199 (4): 449–471PubMedCrossRef
109.
Zurück zum Zitat Dallon J.C., Sherratt J.A., Maini P.K. Modeling the effects of transforming growth factor-beta on extracellular matrix alignment in dermal wound repair. Wound Repair Regen 2001; 9 (4): 278–286PubMedCrossRef Dallon J.C., Sherratt J.A., Maini P.K. Modeling the effects of transforming growth factor-beta on extracellular matrix alignment in dermal wound repair. Wound Repair Regen 2001; 9 (4): 278–286PubMedCrossRef
110.
Zurück zum Zitat Dallon J.C., Sherratt J.A. A mathematical model for fibroblast and collagen orientation. Bull Math Biol 1998; 60 (1): 101–129PubMedCrossRef Dallon J.C., Sherratt J.A. A mathematical model for fibroblast and collagen orientation. Bull Math Biol 1998; 60 (1): 101–129PubMedCrossRef
111.
Zurück zum Zitat Whitby D.J., Ferguson M.W. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 1991; 147 (1): 207–215PubMedCrossRef Whitby D.J., Ferguson M.W. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 1991; 147 (1): 207–215PubMedCrossRef
112.
Zurück zum Zitat Langsdon P.R., Milburn M., Yarber R. Comparison of the laser and phenol chemical peel in facial skin resurfacing. Arch Otolaryngol Head Neck Surg 2000; 126 (10): 1195–1199PubMed Langsdon P.R., Milburn M., Yarber R. Comparison of the laser and phenol chemical peel in facial skin resurfacing. Arch Otolaryngol Head Neck Surg 2000; 126 (10): 1195–1199PubMed
113.
Zurück zum Zitat Kauvar A.N., Dover J.S. Facial skin rejuvenation: laser resurfacing or chemical peel: choose your weapon. Dermatol Surg 2001; 27 (2): 209–212PubMedCrossRef Kauvar A.N., Dover J.S. Facial skin rejuvenation: laser resurfacing or chemical peel: choose your weapon. Dermatol Surg 2001; 27 (2): 209–212PubMedCrossRef
114.
115.
Zurück zum Zitat Holmkvist K.A., Rogers G.S. Treatment of perioral rhytides: a comparison of dermabrasion and superpulsed carbon dioxide laser. Arch Dermatol 2000; 136 (6): 725–731PubMedCrossRef Holmkvist K.A., Rogers G.S. Treatment of perioral rhytides: a comparison of dermabrasion and superpulsed carbon dioxide laser. Arch Dermatol 2000; 136 (6): 725–731PubMedCrossRef
116.
Zurück zum Zitat Kitzmiller W.J., Visscher M., D.A. Page, et al. A controlled evaluation of dermabrasion versus CO2 laser resurfacing for the treatment of perioral wrinkles. Plast Reconstr Surg 2000; 106 (6): 1366–1372PubMedCrossRef Kitzmiller W.J., Visscher M., D.A. Page, et al. A controlled evaluation of dermabrasion versus CO2 laser resurfacing for the treatment of perioral wrinkles. Plast Reconstr Surg 2000; 106 (6): 1366–1372PubMedCrossRef
117.
Zurück zum Zitat Abergel R.P., David L.M. Aging hands: a technique of hand rejuvenation by laser resurfacing and autologous fat transfer. J Dermatol Surg Oncol 1989; 15 (7): 725–728PubMed Abergel R.P., David L.M. Aging hands: a technique of hand rejuvenation by laser resurfacing and autologous fat transfer. J Dermatol Surg Oncol 1989; 15 (7): 725–728PubMed
118.
Zurück zum Zitat Spadoni D., Cain C. Facial resurfacing using the carbon dioxide laser. AORN J 1989; 50: 1007, 1009–1013 Spadoni D., Cain C. Facial resurfacing using the carbon dioxide laser. AORN J 1989; 50: 1007, 1009–1013
119.
Zurück zum Zitat David L.M. Laser vermilion ablation for actinic cheilitis. J Dermatol Surg Oncol 1985; 11 (6): 605–608PubMed David L.M. Laser vermilion ablation for actinic cheilitis. J Dermatol Surg Oncol 1985; 11 (6): 605–608PubMed
120.
Zurück zum Zitat Lask G., Keller G., Lowe N., et al. Laser skin resurfacing with the SilkTouch flashscanner for facial rhytides. Dermatol Surg 1995; 21 (12): 1021–1024PubMedCrossRef Lask G., Keller G., Lowe N., et al. Laser skin resurfacing with the SilkTouch flashscanner for facial rhytides. Dermatol Surg 1995; 21 (12): 1021–1024PubMedCrossRef
121.
122.
Zurück zum Zitat Fitzpatrick R.E., Goldman M.P., Satur N.M., et al. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol 1996; 132 (4): 395–402PubMedCrossRef Fitzpatrick R.E., Goldman M.P., Satur N.M., et al. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol 1996; 132 (4): 395–402PubMedCrossRef
123.
Zurück zum Zitat Ross E.V., Domankevitz Y., Skrobal M., et al. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing. Lasers Surg Med 1996; 19 (2): 123–129PubMedCrossRef Ross E.V., Domankevitz Y., Skrobal M., et al. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing. Lasers Surg Med 1996; 19 (2): 123–129PubMedCrossRef
124.
Zurück zum Zitat Apfelberg D.B. Ultrapulse carbon dioxide laser with CPG scanner for full-face resurfacing for rhytids, photoaging, and acne scars. Plast Reconstr Surg 1997; 99 (7): 1817–1825PubMedCrossRef Apfelberg D.B. Ultrapulse carbon dioxide laser with CPG scanner for full-face resurfacing for rhytids, photoaging, and acne scars. Plast Reconstr Surg 1997; 99 (7): 1817–1825PubMedCrossRef
125.
Zurück zum Zitat Grossman A.R., Majidian A.M., Grossman P.H. Thermal injuries as a result of CO2 laser resurfacing. Plast Reconstr Surg 1998; 102 (4): 1247–1252PubMedCrossRef Grossman A.R., Majidian A.M., Grossman P.H. Thermal injuries as a result of CO2 laser resurfacing. Plast Reconstr Surg 1998; 102 (4): 1247–1252PubMedCrossRef
126.
Zurück zum Zitat Adrian R.M. Pulsed carbon dioxide and erbium-YAG laser resurfacing: a comparative clinical and histologic study. J Cutan Laser Ther 1999; 1 (1): 29–35PubMed Adrian R.M. Pulsed carbon dioxide and erbium-YAG laser resurfacing: a comparative clinical and histologic study. J Cutan Laser Ther 1999; 1 (1): 29–35PubMed
127.
Zurück zum Zitat Jimenez G., Spencer J.M. Erbium:YAG laser resurfacing of the hands, arms, and neck. Dermatol Surg 1999; 25 (11): 831–834PubMedCrossRef Jimenez G., Spencer J.M. Erbium:YAG laser resurfacing of the hands, arms, and neck. Dermatol Surg 1999; 25 (11): 831–834PubMedCrossRef
128.
Zurück zum Zitat Khatri K.A., Ross V., Grevelink J.M., et al. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides. Arch Dermatol 1999; 135 (4): 391–397PubMedCrossRef Khatri K.A., Ross V., Grevelink J.M., et al. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides. Arch Dermatol 1999; 135 (4): 391–397PubMedCrossRef
129.
Zurück zum Zitat Schwartz R.J., Burns A.J., Rohrich R.J., et al. Long-term assessment of CO2 facial laser resurfacing: aesthetic results and complications. Plast Reconstr Surg 1999; 103 (2): 592–601PubMedCrossRef Schwartz R.J., Burns A.J., Rohrich R.J., et al. Long-term assessment of CO2 facial laser resurfacing: aesthetic results and complications. Plast Reconstr Surg 1999; 103 (2): 592–601PubMedCrossRef
130.
Zurück zum Zitat Trelles M.A., Garcia-Solana L., Calderhead R.G. Skin resurfacing improved with a new dual wavelength Er:YAG/CO2 laser system: a comparative study. J Clin Laser Med Surg 1999; 17 (3): 99–104PubMed Trelles M.A., Garcia-Solana L., Calderhead R.G. Skin resurfacing improved with a new dual wavelength Er:YAG/CO2 laser system: a comparative study. J Clin Laser Med Surg 1999; 17 (3): 99–104PubMed
131.
Zurück zum Zitat Behroozan D.S., Christian M.M., Moy R.L. Short-pulse carbon dioxide laser resurfacing of the neck. J Am Acad Dermatol 2000; 43 (1): 72–76PubMedCrossRef Behroozan D.S., Christian M.M., Moy R.L. Short-pulse carbon dioxide laser resurfacing of the neck. J Am Acad Dermatol 2000; 43 (1): 72–76PubMedCrossRef
132.
Zurück zum Zitat Fitzpatrick R.E., Rostan E.F., Marchell N. Collagen tightening induced by carbon dioxide laser versus erbium: YAG laser. Lasers Surg Med 2000; 27 (5): 395–403PubMedCrossRef Fitzpatrick R.E., Rostan E.F., Marchell N. Collagen tightening induced by carbon dioxide laser versus erbium: YAG laser. Lasers Surg Med 2000; 27 (5): 395–403PubMedCrossRef
133.
Zurück zum Zitat Goldman M.P., Marchell N., Fitzpatrick R.E. Laser skin resurfacing of the face with a combined CO2/Er:YAG laser. Dermatol Surg 2000; 26 (2): 102–104PubMedCrossRef Goldman M.P., Marchell N., Fitzpatrick R.E. Laser skin resurfacing of the face with a combined CO2/Er:YAG laser. Dermatol Surg 2000; 26 (2): 102–104PubMedCrossRef
134.
Zurück zum Zitat Price C.R., Carniol P.J., Glaser D.A. Skin resurfacing with the erbium:YAG laser. Facial Plast Surg Clin North Am 2001; 9 (2): 291–302PubMed Price C.R., Carniol P.J., Glaser D.A. Skin resurfacing with the erbium:YAG laser. Facial Plast Surg Clin North Am 2001; 9 (2): 291–302PubMed
135.
Zurück zum Zitat Rostan E.F., Fitzpatrick R.E., Goldman M.P. Laser resurfacing with a long pulse erbium:YAG laser compared to the 950 ms pulsed CO (2) laser. Lasers Surg Med 2001; 29 (2): 136–141PubMedCrossRef Rostan E.F., Fitzpatrick R.E., Goldman M.P. Laser resurfacing with a long pulse erbium:YAG laser compared to the 950 ms pulsed CO (2) laser. Lasers Surg Med 2001; 29 (2): 136–141PubMedCrossRef
136.
Zurück zum Zitat Fitzpatrick R.E., Berstein E. Histological findings associated with ultrapulse CO2 laser resurfacing: a case report [abstract]. Lasers Surg Med 1996; 18 (191 Suppl. 8): 34 Fitzpatrick R.E., Berstein E. Histological findings associated with ultrapulse CO2 laser resurfacing: a case report [abstract]. Lasers Surg Med 1996; 18 (191 Suppl. 8): 34
137.
Zurück zum Zitat Alster T.S., Lupton J.R. Prevention and treatment of side effects and complications of cutaneous laser resurfacing. Plast Reconstr Surg 2002 Jan; 109 (1): 308–316PubMedCrossRef Alster T.S., Lupton J.R. Prevention and treatment of side effects and complications of cutaneous laser resurfacing. Plast Reconstr Surg 2002 Jan; 109 (1): 308–316PubMedCrossRef
138.
Zurück zum Zitat Zelickson B.D., Kilmer S.L., Bernstein E., et al. Pulsed dye laser therapy for sun damaged skin. Lasers Surg Med 1999; 25 (3): 229–236PubMedCrossRef Zelickson B.D., Kilmer S.L., Bernstein E., et al. Pulsed dye laser therapy for sun damaged skin. Lasers Surg Med 1999; 25 (3): 229–236PubMedCrossRef
139.
Zurück zum Zitat Bjerring P., Clement M., Heickendorff L., et al. Selective non-ablative wrinkle reduction by laser. J Cutan Laser Ther 2000; 2: 9–15PubMed Bjerring P., Clement M., Heickendorff L., et al. Selective non-ablative wrinkle reduction by laser. J Cutan Laser Ther 2000; 2: 9–15PubMed
140.
Zurück zum Zitat Muccini Jr J.A., O’Donnell Jr F.E., Fuller T., et al. Laser treatment of solar elastosis with epithelial preservation. Lasers Surg Med 1998; 23 (3): 121–127PubMedCrossRef Muccini Jr J.A., O’Donnell Jr F.E., Fuller T., et al. Laser treatment of solar elastosis with epithelial preservation. Lasers Surg Med 1998; 23 (3): 121–127PubMedCrossRef
141.
Zurück zum Zitat Reinisch L., Muccini J.A., Fuller T., et al. Quantitative and qualitative evalution of skin laser [abstract]. Lasers Surg Med 1999; 24 (167 Suppl. 11): 41 Reinisch L., Muccini J.A., Fuller T., et al. Quantitative and qualitative evalution of skin laser [abstract]. Lasers Surg Med 1999; 24 (167 Suppl. 11): 41
142.
Zurück zum Zitat Kelly K.M., Nelson J.S., Lask G.P., et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol 1999; 135 (6): 691–694PubMedCrossRef Kelly K.M., Nelson J.S., Lask G.P., et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol 1999; 135 (6): 691–694PubMedCrossRef
143.
Zurück zum Zitat Lask G.P., Lee P.K., Seyfzadeh M., et al. Nonablative laser treatment of facial rhytides. In: Anderson R.R., Bartels K.E., Bass L.S., editors. Analysis of nonablative skin resurfacing. Bellingham (WA): SPIE, 1997: 338–349 Lask G.P., Lee P.K., Seyfzadeh M., et al. Nonablative laser treatment of facial rhytides. In: Anderson R.R., Bartels K.E., Bass L.S., editors. Analysis of nonablative skin resurfacing. Bellingham (WA): SPIE, 1997: 338–349
144.
Zurück zum Zitat Menaker G. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatol Surg 1999; 25: 440–444PubMedCrossRef Menaker G. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatol Surg 1999; 25: 440–444PubMedCrossRef
145.
Zurück zum Zitat Ross E.V., Sajben F.P., McKinlay J.R., et al. Non-ablative skin remodeling: selective dermal heating using an IR laser with surface cooling [abstract]. Lasers Surg Med 1999; 24 (100 Suppl. 11): 25–26 Ross E.V., Sajben F.P., McKinlay J.R., et al. Non-ablative skin remodeling: selective dermal heating using an IR laser with surface cooling [abstract]. Lasers Surg Med 1999; 24 (100 Suppl. 11): 25–26
146.
Zurück zum Zitat Mordon S., Capon A., Creusy C., et al. In vivo experimental evaluation of skin remodeling by using an Er:Glass laser with contact cooling. Lasers Surg Med 2000; 27 (1): 1–9PubMedCrossRef Mordon S., Capon A., Creusy C., et al. In vivo experimental evaluation of skin remodeling by using an Er:Glass laser with contact cooling. Lasers Surg Med 2000; 27 (1): 1–9PubMedCrossRef
147.
Zurück zum Zitat Fournier N., Dahan S., Barneon G., et al. Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evaluation of a 1540 nm Er:Glass laser. Dermatol Surg 2001; 27 (9): 799–806PubMedCrossRef Fournier N., Dahan S., Barneon G., et al. Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evaluation of a 1540 nm Er:Glass laser. Dermatol Surg 2001; 27 (9): 799–806PubMedCrossRef
148.
Zurück zum Zitat Goldberg D.J. Non-ablative subsurface remodeling: clinical and histologic evaluation of a 1320 nm Nd:YAG laser. J Cutan Laser Ther 1999; 1 (3): 153–157PubMed Goldberg D.J. Non-ablative subsurface remodeling: clinical and histologic evaluation of a 1320 nm Nd:YAG laser. J Cutan Laser Ther 1999; 1 (3): 153–157PubMed
149.
Zurück zum Zitat Mordon S., Souil E., A. Capo., et al. A possible role of heat shock protein (hsp) 70 in selective dermal remodeling [abstract]. Lasers Surg Med 2000; 26 Suppl. 12: 1CrossRef Mordon S., Souil E., A. Capo., et al. A possible role of heat shock protein (hsp) 70 in selective dermal remodeling [abstract]. Lasers Surg Med 2000; 26 Suppl. 12: 1CrossRef
Metadaten
Titel
Can Thermal Lasers Promote Skin Wound Healing?
verfasst von
Alexandre Capon
Dr Serge Mordon
Publikationsdatum
01.01.2003
Verlag
Springer International Publishing
Erschienen in
American Journal of Clinical Dermatology / Ausgabe 1/2003
Print ISSN: 1175-0561
Elektronische ISSN: 1179-1888
DOI
https://doi.org/10.2165/00128071-200304010-00001

Weitere Artikel der Ausgabe 1/2003

American Journal of Clinical Dermatology 1/2003 Zur Ausgabe

Adis Drug Evaluation

Terbinafine

Practical Dermatology

Drug-Induced Nail Abnormalities

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.