Skip to main content
Log in

Polymorphisms of the Dopamine Transporter Gene

Influence on Response to Methylphenidate in Attention Deficit-Hyperactivity Disorder

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Attention deficit-hyperactivity disorder (ADHD) is a very common and heterogeneous childhood-onset psychiatric disorder, affecting between 3% and 5% of school age children worldwide. Although the neurobiology of ADHD is not completely understood, imbalances in both dopaminergic and noradrenergic systems have been implicated in the origin and persistence of core symptoms, which include inattention, hyperactivity, and impulsivity. The role of a genetic component in its etiology is strongly supported by genetic studies, and several investigations have suggested that the dopamine transporter gene (DAT1; SLC6A3 locus) may be a small-effect susceptibility gene for ADHD.

Stimulant medication has a well-documented efficacy in reducing ADHD symptoms. Methylphenidate, the most prescribed stimulant, seems to act mainly by inhibiting the dopamine transporter protein and dopamine reuptake. In fact, its effect is probably related to an increase in extracellular levels of dopamine, especially in brain regions enriched in this protein (i.e. striatum). It is also important to note that dopamine transporter densities seem to be particularly elevated in the brain of ADHD patients, decreasing after treatment with methylphenidate. Altogether, these observations suggest that the dopamine transporter does play a major role in ADHD.

Among the several polymorphisms already described in the SLC6A3 locus, a 40 bp variable number of tandem repeats (VNTR) polymorphism has been extensively investigated in association studies with ADHD. Although there are some negative results, the findings from these reports indicate the allele with ten copies of the 40 bp sequence (10-repeat allele) as the risk allele for ADHD. Some investigations have suggested that this polymorphism can be implicated in dopamine transporter gene expression in vitro and dopamine transporter density in vivo, even though it is located in a non-coding region of the SLC6A3 locus. Despite all these data, few studies have addressed the relationship between genetic markers (specifically the VNTR) at the SLC6A3 locus and response to methylphenidate in ADHD patients. A significant effect of the 40 bp VNTR on response to methylphenidate has been detected in most of these reports. However, the findings are inconsistent regarding both the allele (or genotype) involved and the direction of this influence (better or worse response). Thus, further investigations are required to determine if genetic variation due to the VNTR in the dopamine transporter gene is able to predict different levels of clinical response and palatability to methylphenidate in patients with ADHD, and how this information would be useful in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Biederman J. Attention deficit hyperactivity disorder: a life span perspective. J Clin Psychiatry 1998; 59Suppl. 7: 4–16

    PubMed  Google Scholar 

  2. Rohde LA, Biederman J, Busnello EA, et al. ADHD in a school sample of Brazilian adolescents: a study of prevalence, comorbid conditions and impairments. J Am Acad Child Adolesc Psychiatry 1999; 38: 716–22

    Article  PubMed  CAS  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  4. Pliszka SR. Comorbidity of attention deficit hyperactivity disorder with psychiatric disorder: an overview. J Clin Psychiatry 1998; 59Suppl. 7: 50–8

    PubMed  Google Scholar 

  5. Jensen PS, Hinshaw SP, Kraemer HC, et al. ADHD comorbidity findings from the MTA study: comparing comorbid subgroups. J Am Acad Child Adolesc Psychiatry 2001; 40: 147–58

    Article  PubMed  CAS  Google Scholar 

  6. Mannuzza S, Klein RG, Bessler A, et al. Educational and occupational outcome of hyperactive boys grown up. J Am Acad Child Adolesc Psychiatry 1997; 36: 1222–7

    Article  PubMed  CAS  Google Scholar 

  7. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65–94

    Article  PubMed  CAS  Google Scholar 

  8. Levy F, Swanson JM. Timing, space and ADHD: the dopamine theory revisited. Aust N Z J Psychiatry 2001; 35: 504–11

    Article  PubMed  CAS  Google Scholar 

  9. Tannock R. Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiat 1998; 39: 65–99

    Article  PubMed  CAS  Google Scholar 

  10. Arnsten AF, Steere JC, Hunt RD. The contribution of alpha 2-noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance for attention deficit hyperactivity disorder. Arch Gen Psychiatry 1996; 53: 448–55

    Article  PubMed  CAS  Google Scholar 

  11. Pliszka SR, McCracken JT, Maas JW. Catecholamines in attention deficit hyperactivity disorder: current perspectives. J Am Acad Child Adolesc Psychiatry 1996; 35: 264–72

    Article  PubMed  CAS  Google Scholar 

  12. Szobot C, Ketzer C, Cunha RD, et al. The acute effect of methylphenidate on brain perfusion in male children and adolescents with ADHD: a randomized clinical trial. Eur J Nuclear Med 2003; 30: 423–6

    Article  CAS  Google Scholar 

  13. Quist JF, Kennedy JL. Genetics of childhood disorders: XXIII. ADHD: Pt 7. The serotonin system. J Am Acad Child Adolesc Psychiatry 2001; 40: 253–6

    Article  PubMed  CAS  Google Scholar 

  14. Rohde LA, Roman T, Szobot C, et al. Dopamine transporter gene, response to methylphenidate and cerebral blood flow in ADHD. Synapse 2003; 48: 87–9

    Article  PubMed  CAS  Google Scholar 

  15. Thapar A, Holmes J, Poulton K, et al. Genetic basis of attention deficit and hyperactivity. Br J Psychiary 1999; 174: 105–11

    Article  CAS  Google Scholar 

  16. Milberger S, Faraone SV, Biederman J, et al. New phenotype definition of attention deficit hyperactivity disorder in relatives for genetic analyses. Am J Med Genet (Neuropsychiatr Genet) 1996; 67: 369–77

    Article  CAS  Google Scholar 

  17. Faraone SV, Biederman J. Neurobiology of attention deficit hyperactivity disorder. Biol Psychiatry 1998; 44: 951–8

    Article  PubMed  CAS  Google Scholar 

  18. Faraone SV, Doyle AE. The nature and heritability of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 2001; 10: 299–316

    PubMed  CAS  Google Scholar 

  19. Sprich S, Biederman J, Crawford MH, et al. Adoptive and biological families of children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2000; 39: 1432–7

    Article  PubMed  CAS  Google Scholar 

  20. Smalley SL. Genetic influences in childhood-onset psychiatric disorders: autism and attention deficit hyperactivity disorder. Am J Hum Genet 1997; 60: 1276–82

    Article  PubMed  CAS  Google Scholar 

  21. Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust N Z J Psychiatry 1991; 25: 277–83

    Article  PubMed  CAS  Google Scholar 

  22. Castellanos FX. Toward a pathophysiology of attention deficit hyperactivity disorder. Clin Pediatr 1997; 36: 381–93

    Article  CAS  Google Scholar 

  23. Kirley A, Hawi Z, Daly G, et al. Dopaminergic system genes in ADHD: toward a biological hypothesis. Neuropsychopharmacology 2002; 27: 607–19

    PubMed  CAS  Google Scholar 

  24. DiMaio S, Grizenko N, Joober R. Dopamine genes and attention deficit hyperactivity disorder: a review. J Psychiatry Neurosci 2003; 28: 27–38

    PubMed  Google Scholar 

  25. Hawi Z, Dring M, Kirley A, et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT1B receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 2002; 7: 718–25

    Article  PubMed  CAS  Google Scholar 

  26. Mill J, Curran S, Kent L, et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet (Neuropsychiatr Genet) 2002; 11: 269–71

    Article  Google Scholar 

  27. Roman T, Schmitz M, Polanczyk GV, et al. Is the α-2a adrenergic receptor gene (ADRA2A) associated with attention deficit hyperactivity disorder? Am J Med Genet (Neuropsychiatr Genet) 2003; 120B: 116–20

    Article  Google Scholar 

  28. Todd RD, Lobos EA, Sun L-W, et al. Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 2003; 8: 103–8

    Article  PubMed  CAS  Google Scholar 

  29. Kent L, Doerry U, Hardy E, et al. Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit/hyperactivity disorder (ADHD): analysis and pooled analysis. Mol Psychiatry 2002; 7: 908–12

    Article  PubMed  CAS  Google Scholar 

  30. Biederman J, Spencer T. Attention deficit hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999; 46: 1234–42

    Article  PubMed  CAS  Google Scholar 

  31. Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J Am Acad Child Adolesc Psychiatry 1996; 35: 409–28

    Article  PubMed  CAS  Google Scholar 

  32. The MTA Cooperative Group. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 1999; 56: 1073–86

    Article  Google Scholar 

  33. Szobot C, Ketzer C, Parente MA, et al. Acute effect of methylphenidate in Brazilian male children and adolescents with ADHD: a randomized clinical trial. J Attent Disorders. In press

  34. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998; 94: 127–52

    Article  PubMed  CAS  Google Scholar 

  35. Masellis M, Basile VS, Muglia P, et al. Psychiatric pharmacogenetics: personalizing psychostimulant therapy in attention deficit hyperactivity disorder. Behav Brain Res 2002; 130: 85–90

    Article  PubMed  Google Scholar 

  36. Volkow ND, Wang G-J, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21: (RC21): 1–5

    Google Scholar 

  37. Seeman P, Madras BK. Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry 1998; 3: 386–96

    Article  PubMed  CAS  Google Scholar 

  38. Volkow ND, Ding Y-S, Fowler JS, et al. Is methylphenidate like cocaine? Arch Gen Psychiatry 1995; 52: 456–63

    Article  PubMed  CAS  Google Scholar 

  39. Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998; 95: 14494–9

    Article  PubMed  CAS  Google Scholar 

  40. Krause KH, Dresel SH, Krause J, et al. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2000; 285: 107–10

    Article  PubMed  CAS  Google Scholar 

  41. Madras BK, Miller GM, Fischman AJ. The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD). Behav Brain Res 2002; 130: 57–63

    Article  PubMed  CAS  Google Scholar 

  42. Dougherty DD, Bonab AA, Spencer TJ, et al. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999; 354: 2132–3

    Article  PubMed  CAS  Google Scholar 

  43. Dresel S, Krause J, Krause KH, et al. Attention deficit hyperactivity disorder: binding of [99mTc] TROD AT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000; 27: 1518–24

    Article  PubMed  CAS  Google Scholar 

  44. Cheon KA, Ryu YH, Kim YK, et al. Dopamine transporter density in the basal ganglia assessed with [(123)I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 2003; 30: 306–11

    Article  PubMed  CAS  Google Scholar 

  45. Giros B, el Mestikawy S, Godinot N, et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 1992; 42: 383–90

    PubMed  CAS  Google Scholar 

  46. Vandenbergh DJ, Persico AM, Hawkins AL, et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–6

    Article  PubMed  CAS  Google Scholar 

  47. Bannon MJ, Michelhaugh SK, Wang J, et al. The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 2001; 11: 449–55

    Article  PubMed  CAS  Google Scholar 

  48. Sano A, Kondoh K, Kakimoto Y, et al. A 40-nucleotide repeat polymorphism in the human dopamine transporter gene. Hum Genet 1993; 91: 405–6

    Article  PubMed  CAS  Google Scholar 

  49. Min Kang A, Palmatier MA, Kidd KK. Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 1999; 46: 151–60

    Article  Google Scholar 

  50. Mill J, Asherson P, Browes C, et al. Expression of the dopamine transporter gene is regulated by the 3′UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet (Neuropsychiatr Genet) 2002; 114: 975–9

    Article  Google Scholar 

  51. Nakamura Y, Koyama K, Matsushima M. VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J Hum Genet 1998; 43: 149–52

    Article  PubMed  CAS  Google Scholar 

  52. Miller GM, Madras BK. Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7(1): 44–55

    Article  PubMed  CAS  Google Scholar 

  53. Michelhaugh SK, Fiskerstrand C, Lovejoy E, et al. The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 2001; 79: 1033–8

    Article  PubMed  CAS  Google Scholar 

  54. Fuke S, Suo S, Takahashi N, et al. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001; 1: 152–6

    Article  PubMed  CAS  Google Scholar 

  55. Heinz A, Goldman D, Jones DW, et al. Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000; 22: 133–9

    Article  PubMed  CAS  Google Scholar 

  56. Jacobsen LK, Staley JK, Zoghbi SS, et al. Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 2000; 157: 1700–3

    Article  PubMed  CAS  Google Scholar 

  57. Martinez D, Gelernter J, Abi-Dargham A, et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001; 24: 553–60

    Article  PubMed  CAS  Google Scholar 

  58. Hawi Z, Lowe N, Kirley A, et al. Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci. Mol Psychiatry 2003; 8: 299–308

    Article  PubMed  CAS  Google Scholar 

  59. Miller GM, De La Garza II R, Novak MA, et al. Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders. Mol Psychiatry 2001; 6: 50–8

    Article  PubMed  CAS  Google Scholar 

  60. Muglia P, Jain U, Inkster B, et al. A quantitative trait locus analysis of the dopamine transporter gene in adults with ADHD. Neuropsychopharmacology 2002; 27: 655–62

    PubMed  CAS  Google Scholar 

  61. Cook EH, Stein MA, Krasowski MD, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–8

    PubMed  CAS  Google Scholar 

  62. Maher BS, Marazita ML, Ferrell RE, et al. Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet 2002; 12: 207–15

    Article  PubMed  Google Scholar 

  63. Crowe RR. Candidate genes in psychiatry: an epidemiological perspective. Am J Med Genet 1993; 15: 74–7

    Article  Google Scholar 

  64. Suarez BK, Hampe CL, Van Eerdewegh P. Problems of replicating linkage claims in psychiatry. In: Gershon ES, Cloninger CR, Barret JE, editors. Genetic approaches in mental disorders. Washington, DC: American Psychiatric Press, 1994: 23–46

    Google Scholar 

  65. Barr CL, Xu C, Kroft J, et al. Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention deficit hyperactivity disorder. Biol Psychiatry 2001; 49: 333–9

    Article  PubMed  CAS  Google Scholar 

  66. Gill M, Daly G, Heron S, et al. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 1997; 2: 311–3

    Article  PubMed  CAS  Google Scholar 

  67. Waldman ID, Rowe DC, Abramowitz A, et al. Association and linkage of the dopamine transporter gene (DAT1) and attention deficit hyperactivity disorder in children. Am J Hum Genet 1998; 63: 1767–76

    Article  PubMed  CAS  Google Scholar 

  68. Daly G, Hawi Z, Fitzgerald M, et al. Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children. Mol Psychiatry 1999; 4: 192–6

    Article  PubMed  CAS  Google Scholar 

  69. Palmer CGS, Bailey JN, Ramsey C, et al. No evidence of linkage or linkage disequilibrium between DAT1 and attention deficit hyperactivity disorder in a large sample. Psychiatr Genet 1999; 9: 157–60

    Article  PubMed  CAS  Google Scholar 

  70. Holmes J, Payton A, Barret JH, et al. A family-based and case-control association study of the dopamine D4 receptor gene and dopamine transporter gene in attention deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 523–30

    Article  PubMed  CAS  Google Scholar 

  71. Swanson JM, Flodman P, Kennedy J, et al. Dopamine genes and ADHD. Neurosci Biobehav Rev 2000; 24: 21–5

    Article  PubMed  CAS  Google Scholar 

  72. Curran S, Mill J, Tahir E, et al. Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples. Mol Psychiatry 2001; 6: 425–8

    Article  PubMed  CAS  Google Scholar 

  73. Roman T, Schmitz M, Polanczyk G, et al. Attention deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet (Neuropsychiatr Genet) 2001; 105: 471–8

    Article  CAS  Google Scholar 

  74. Rowe DC, Stever C, Chase D, et al. Two dopamine genes related to reports of childhood retrospective inattention and conduct disorder symptoms. Mol Psychiatry 2001; 6: 429–33

    Article  PubMed  CAS  Google Scholar 

  75. Todd RD, Jong Y-JI, Lobos EA, et al. No association of the dopamine transporter gene 3′ polymorphism with ADHD subtypes in a population sample of twins. Am J Med Genet (Neuropsychiatr Genet) 2001; 105: 745–8

    Article  CAS  Google Scholar 

  76. Payton A, Holmes J, Barret JH, et al. Susceptibility genes for a trait measure of attention deficit hyperactivity disorder: a pilot study in a non-clinical sample of twins. Psychiatry Res 2001; 105: 273–8

    Article  PubMed  CAS  Google Scholar 

  77. Smith KM, Daly M, Fischer M, et al. Association of the dopamine beta hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study. Am J Med Genet (Neuropsychiatr Genet) 2003; 119B: 77–85

    Article  Google Scholar 

  78. Chen C-K, Chen S-L, Mill J, et al. The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample. Mol Psychiatry 2003; 8: 393–6

    Article  PubMed  CAS  Google Scholar 

  79. Rohde LA, Roman T, Hutz MH. Attention deficit hyperactivity disorder: current aspects on pharmacogenetics. Pharmacogenomics J 2003; 3: 11–3

    Article  PubMed  CAS  Google Scholar 

  80. Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 1999; 38: 1474–7

    Article  PubMed  CAS  Google Scholar 

  81. Conners CK, Barkley RA. Rating scales and checklists for child psychopharmacology. Psychopharmacol Bull 1985; 21: 809–43

    PubMed  CAS  Google Scholar 

  82. Stein MA, Sarampote C, Waldman I, et al. Dopamine transporter genotype affects stimulants response according to parent ratings. The Scientific Proceedings of the 49th Annual Meeting of the American Academy of Child and Adolescent Psychiatry; 2002 Oct 23–26; San Francisco

  83. Roman T, Martins S, Szobot C, et al. Dopamine transporter gene and response to methylphenidate in ADHD. Pharmacogenetics 2002; 12: 497–9

    Article  PubMed  CAS  Google Scholar 

  84. Hamarman S. ADHD children with DRD4 7-repeat allele require higher stimulant doses. The Scientific Proceedings of the 49th Annual Meeting of the American Academy of Child and Adolescent Psychiatry; 2002 Oct 23–26; San Francisco

  85. Kirley A, Lowe N, Hawi Z, et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet (Neuropsychiatr Genet) 2003; 121B: 50–4

    Article  Google Scholar 

  86. Volkow N, Wang GJ, Fowler JS, et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 2002; 43: 181–7

    Article  PubMed  CAS  Google Scholar 

  87. Tribut O, Lessard Y, Reymann J-M, et al. Pharmacogenetics. Med Sci Monit 2002; 8: RA152–63

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Roman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, T., Rohde, L.A. & Hutz, M.H. Polymorphisms of the Dopamine Transporter Gene. Am J Pharmacogenomics 4, 83–92 (2004). https://doi.org/10.2165/00129785-200404020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200404020-00003

Keywords

Navigation