Skip to main content
Log in

γ-Hydroxybutyric Acid

Neurobiology and Toxicology of a Recreational Drug

  • GHB Symposium
  • Published:
Toxicological Reviews

Abstract

γ-Hydroxybutyric acid (GHB) is a short-chain fatty acid that occurs naturally in mammalian brain where it is derived metabolically from γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. GHB was synthesised over 40 years ago and its presence in the brain and a number of aspects of its biological, pharmacological and toxicological properties have been elucidated over the last 20–30 years. However, widespread interest in this compound has arisen only in the past 5–10 years, primarily as a result of the emergence of GHB as a major recreational drug and public health problem in the US. There is considerable evidence that GHB may be a neuromodulator in the brain. GHB has multiple neuronal mechanisms including activation of both the γ-aminobutyric acid type B (GABAB) receptor, and a separate GHB-specific receptor. This complex GHB-GABAB receptor interaction is probably responsible for the protean pharmacological, electroencephalographic, behavioural and toxicological effects of GHB, as well as the perturbations of learning and memory associated with supra-physiological concentrations of GHB in the brain that result from the exogenous administration of this drug in the clinical context of GHB abuse, addiction and withdrawal. Investigation of the inborn error of metabolism succinic semialdehyde deficiency (SSADH) and the murine model of this disorder (SSADH knockout mice), in which GHB plays a major role, may help dissect out GHB- and GABAB receptor-mediated mechanisms. In particular, the mechanisms that are operative in the molecular pathogenesis of GHB addiction and withdrawal as well as the absence seizures observed in the GHB-treated animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Table I.
Table II.

Similar content being viewed by others

References

  1. Roth RH, Giarman NJ. Natural occurrence of gamma hydroxybutyrate in mammalian brain. Biochem Pharmacol 1970; 19: 1087–93

    Article  CAS  Google Scholar 

  2. Doherty JD, Hattox SE, Snead OC, et al. Identification of endogenous γ-hydroxybutyrate in human and bovine brain and its regional distribution in human, guinea pig, and rhesus monkey brain. J Pharmacol Exp Ther 1978; 207: 130–9

    PubMed  CAS  Google Scholar 

  3. Rubin BA, Giarman NJ. The therapy of experimental influenza in mice with antibiotic lactones and related compounds. Yale J Biol Med 1947; 19: 1017–22

    PubMed  CAS  Google Scholar 

  4. Laborit H. Sodium 4-hydroxybutyrate. Int J Neuropharmacol 1964; 3: 433–52

    Article  PubMed  CAS  Google Scholar 

  5. Roth RH, Delgado JMR, Giarman NJ. γ-Hydroxybutyric acid and γ-butyrolactone II: the metabolically active form. Int J Neuropharmacol 1966; 5: 421–8

    Article  PubMed  CAS  Google Scholar 

  6. Guidotti A, Ballotti PL. Relationship between pharmacological effects and blood and brain levels of gamma butyrolactone and gamma hydroxybutyrate. Biochem Pharmacol 1970; 19: 883–94

    Article  PubMed  CAS  Google Scholar 

  7. Snead OC. The γ-hydroxybutyrate model of absence seizures: correlation of regional brain levels of γ-hydroxybutyric acid and γ-butyrolactone with spike-wave discharges. Neuropharmacology 1991; 30: 161–7

    Article  PubMed  CAS  Google Scholar 

  8. Roth RH, Giarman NJ. γ-Butyrolactone and γ-hydroxybutyric acid, I: distribution and metabolism. Biochem Pharmacol 1966; 15: 1331–48

    Article  Google Scholar 

  9. Roth RH, Levy R, Giarman NJ. Dependence of rat serum lactonase upon calcium. Biochem Pharmacol 1967; 16: 596–8

    Article  PubMed  CAS  Google Scholar 

  10. Blumenfield M, Suntay RG, Harmel MH. Sodium gamma hydroxybutyric acid: a new anesthetic adjuvant. Anesth Analg (Cleve) 1962; 41: 721–6

    Google Scholar 

  11. Vickers MD. Gamma hydroxybutyric acid. Int Anesthesiol Clin 1969; 7: 75–9

    Article  PubMed  CAS  Google Scholar 

  12. Schneider J, Thomalske G, Trautmann P. Le comportment EEG de l’homme et de l’animal soumis à l’action progressive du 4-hydroxybutyrate de sodium. Agressologie 1963; 4: 55–70

    PubMed  CAS  Google Scholar 

  13. Hunter AS, Long WJ, Ryrie CC. An evaluation of gamma hydroxybutyric acid in paediatric practice. Br J Anaesth 1971; 43: 620–7

    Article  PubMed  CAS  Google Scholar 

  14. Broughton R, Mamelak M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can J Neurol Sci 1979; 6: 1–6

    PubMed  CAS  Google Scholar 

  15. Scrima L, Hartman PG, Johnson FH, et al. the effects of γ-hydroxybutyrate on the sleep of narcolepsy patients: a double-blind study. Sleep 1990; 13: 479–90

    PubMed  CAS  Google Scholar 

  16. Wong CGT, Bottiglieri T, Snead OC. GABA, γ-hydroxybutyric acid, and neurological disease. Ann Neurol 2003; 54Suppl. 6: S3–12

    Article  PubMed  CAS  Google Scholar 

  17. Tunnicliff G, Raess BU. γ-hydroxybutyrate. Curr Opin Investig Drugs 2002; 3: 278–83

    PubMed  CAS  Google Scholar 

  18. Goldfrank LR, editor. Dieting agents and regimens. In: Goldfrank’s toxicologic emergencies. Norwalk (CT): Appleton & Lange, 1994: 552

  19. Tunnicliff G. Sites of action of gamma-hydroxybutyrate (GHB): a neuroactive drug with abuse potential. Clin Toxicol 1997; 35: 581–90

    Article  CAS  Google Scholar 

  20. Takahara J, Yunoki S, Hosogi H, et al. Concomitant increases in serum growth hormone and hypothalamic somatostatin in rats after injection of γ-aminobutyric acid, aminooxyacetic acid, or γ-hydroxybutyric acid. Endocrinology 1980; 106: 343–7

    Article  PubMed  CAS  Google Scholar 

  21. Gerra G, Caccavari R, Fontanesi B, et al. Flumazenil effects on growth hormone response to gamma-hydroxybutyric acid. Int J Psychopharmacol 1994; 9: 211–5

    Article  CAS  Google Scholar 

  22. Van Cauter E, Plat L, Scharf MB, et al. Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young men. J Clin Invest 1997; 100: 745–53

    Article  PubMed  Google Scholar 

  23. Freese TE, Miotto K, Reback CJ. The effects and consequences of selected club drugs. J Subst Abuse Treat 2002; 23: 151–6

    Article  PubMed  Google Scholar 

  24. Teter CJ, Guthrie SK. A comprehensive review of MDMA and GHB: two common club drugs. Pharmacotherapy 2003; 21: 1486–513

    Article  Google Scholar 

  25. Miotto K, Darakjian J, Basch J, et al. Gamma-hydroxybutyric acid: patterns of use, effects, and withdrawal. Am J Addict 2001; 10: 232–41

    Article  PubMed  CAS  Google Scholar 

  26. Kam PCA, Yoong FFY. Gamma-hydroxybutyric acid: an emerging recreational drug. Anesthesia 1998; 53: 1195–8

    Article  CAS  Google Scholar 

  27. Raess BU, Tunnicliff G. Abuse potential and toxicology of γ-hydroxybutyrate. In: Tunnicliff G, Cash CD, editors. Gamma-hydroxybutyate. London: Taylor & Francis, 2002: 188–96

    Chapter  Google Scholar 

  28. Smith KM, Larive LL, Romanelli F. Club drugs: methylenedioxymethamphetamine, flunitrazepam, ketamine hydrochloride, and gammahydroxybutyrate. Am J Health Syst Pharm 2002; 59: 1067–76

    PubMed  CAS  Google Scholar 

  29. Maitre M. The γ-hydroxybutyrate signaling system in brain: organization and functional implications. Prog Neurobiol 1997; 51: 337–61

    Article  PubMed  CAS  Google Scholar 

  30. Kelly VP, Sherratt PJ, Crouch DH, et al. Novel homodimeric and heterodimeric rat γ-hydroxybutyrate synthases that associate with the golgi apparatus define a distinct subclass of aldo-keto reductase 7 proteins. Biochem J 2002; 366: 847–61

    PubMed  CAS  Google Scholar 

  31. Andriamampadry C, Taleb O, Viry S, et al. Cloning of a rat brain succinic semialdehyde reductase involved in the synthesis of the neuromodulator gamma-hydroxybutyrate. Biochem J 1998; 334: 43–50

    Google Scholar 

  32. Snead OC, Furner R, Liu CC. In vivo conversion of gamma-aminobutyric acid and 1,4 butanediol to gamma-hydroxybutyric acid in rat brain: studies using stable isotopes. Biochem Pharmacol 1989; 38: 4375–80

    Article  PubMed  CAS  Google Scholar 

  33. Tillakaratne NJK, Medina-Kauwe L, Gibson KM. Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and non-neural tissues. Comp Biochem Physiol 1995; 112A: 247–63

    Article  CAS  Google Scholar 

  34. Chambliss KL, Gibson KM. Succinic semialdehyde dehydrogenase from mammalian brain: subunit analysis using polyclonal antiserum. Int J Biochem 1992; 24: 1493–9

    Article  PubMed  CAS  Google Scholar 

  35. Kaufman EE, Nelson T, Fales HM, et al. Isolation and characterization of a hydroxyacid-oxoacid transhydrogenase from rat kidney mitochondria. J Biol Chem 1988; 263: 16872–9

    PubMed  CAS  Google Scholar 

  36. Nelson T, Kaufman EE. Developmental time courses in the brain and kidney of two enzymes that oxidize γ-hydroxybutyrate. Dev Neurosci 1994; 16: 352–8

    Article  PubMed  CAS  Google Scholar 

  37. Kaufman EE, Nelson T. An overview of γ-hydroxybutyrate catabolism: the role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochem Res 1991; 16: 965–74

    Article  PubMed  CAS  Google Scholar 

  38. Walkenstein SS, Wiser R, Gudmundsen C, et al. Metabolism of γ-hydroxybutyric acid. Biochim Biophys Acta 1964; 86: 640–2

    Article  PubMed  CAS  Google Scholar 

  39. Jakobs C, Bojasch M, Monch E, et al. Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities: the probability of a new inborn error of metabolism. Clin Chim Acta 1981; 111: 169–78

    Article  PubMed  CAS  Google Scholar 

  40. Gibson KM, Nyhan WL. Metabolism of [U-14C]-4-hydroxybutyric acid to intermediates of the tricarboxylic acid cycle in extracts of rat liver and kidney mitochondria. Eur J Drug Metab Pharmacokinet 1989; 14: 61–70

    Article  PubMed  CAS  Google Scholar 

  41. Cash CD. Gamma hydroxybutyrate: an overview of the pros and cons for it being an neurotransmitter and/or a useful therapeutic agent. Neurosci Biobehav Rev 1994; 18: 291–304

    Article  PubMed  CAS  Google Scholar 

  42. Bernasconi R, Mathivet P, Bischoff S, et al. Gamma-hydroxybutyric acid: an endogenous neuromodulator with abuse potential? Trends Pharmacol Sci 1999; 20: 135–41

    Article  PubMed  CAS  Google Scholar 

  43. Hedou G, Chasserot-Golaz S, Kemmel V, et al. Immunohistochemical studies of the localization of neurons containing the enzyme that synthesizes dopamine, GABA or γ-hydroxybutyrate in the rat substantia nigra and striatum. J Comp Neurol 2000; 426: 549–60

    Article  PubMed  CAS  Google Scholar 

  44. Maitre M, Cash CD, Weissmann-Nanopoulos D, et al. Depolarization-evoked release of γ-hydroxybutyrate from rat brain slices. J Neurochem 1983; 41: 287–90

    Article  PubMed  CAS  Google Scholar 

  45. Hechler V, Bourguignon JJ, Wermuth CG, et al. γ-Hydroxybutyrate uptake by rat brain striatal slices. Neurochem Res 1985; 10: 387–96

    Article  PubMed  CAS  Google Scholar 

  46. Muller C, Viry S, Miehe M, et al. Evidence for a γ-hydroxybutyrate (GHB) uptake by rat brain synaptic vesicles. J Neurochem 2002; 80: 899–904

    Article  PubMed  CAS  Google Scholar 

  47. Cammalleri M, Brancucci A, Berton F, et al. Gamma-hydroxybutyrate reduces GABA(A)-mediated postsynaptic potentials in the CA1 region of hippocampus. Neuropsychopharmacology 2002; 27: 960–9

    Article  PubMed  CAS  Google Scholar 

  48. Adelsberger H, Brunswieck S, Dudel J. Modulatory effects of γ-hydroxybutyric acid on a GABAA receptor from crayfish muscle. Eur J Pharmacol 1998; 350: 317–23

    Article  PubMed  CAS  Google Scholar 

  49. Lloyd KG, Dreksler S. An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain. Brain Res 1979; 163: 77–87

    Article  PubMed  CAS  Google Scholar 

  50. Serra M, Sanna E, Foddi C, et al. Failure of γ-hydroxybutyrate to alter the function of the GABAA receptor complex in the rat cerebral cortex. Psychopharmacology 1991; 104: 351–5

    Article  PubMed  CAS  Google Scholar 

  51. Snead OC, Liu CC. GABAA receptor function in the γ-hydroxybutyrate model of generalized absence seizures. Neuropharmacology 1993; 32: 401–9

    Article  PubMed  CAS  Google Scholar 

  52. Benavides J, Rumigny JF, Bourguignon JJ, et al. High affinity binding sites for gamma-hydroxybutyric acid in rat brain. Life Sci 1982; 30: 953–61

    Article  PubMed  CAS  Google Scholar 

  53. Maitre M, Rumigny JF, Benavides J, et al. High affinity binding site for gamma-hydroxybutyric acid in rat brain. Adv Biochem Psychopharmacol 1983; 37: 441–53

    PubMed  CAS  Google Scholar 

  54. Snead OC, Liu CC. Gamma-hydroxybutyric acid binding sites in rat and human synaptosomal membranes. Biochem Pharmacol 1984; 33: 2587–90

    Article  PubMed  CAS  Google Scholar 

  55. Hechler V, Weissmann D, Mach E, et al. Regional distribution of high-affinity γ-[3H]hydroxybutyrate binding sites as determined by quantitative autoradiography. J Neurochem 1987; 49: 1025–32

    Article  PubMed  CAS  Google Scholar 

  56. Hechler V, Gobaille S, Maitre M. Selective distribution pattern of γ-hydroxybutyrate receptors in the rat forebrain and midbrain as revealed by quantitative autoradiography. Brain Res 1992; 572: 345–8

    Article  PubMed  CAS  Google Scholar 

  57. Castelli MP, Mocci L, Langlois X, et al. Quantitative autoradiographic distribution of gamma-hydroxybutyric acid binding sites in human and monkey brain. Mol Brain Res 2000; 78: 91–9

    Article  PubMed  CAS  Google Scholar 

  58. Snead OC. The ontogeny of [3H]γ-hydroxybutyrate and 3H]GABAB binding sites: relation to the development of experimental absence seizures. Brain Res 1994; 659: 147–56

    Article  PubMed  Google Scholar 

  59. Snead OC. Evidence for G protein modulation of experimental-generalized absence seizures in rat. Neurosci Lett 1992; 148: 15–8

    Article  PubMed  CAS  Google Scholar 

  60. Ratomponirina C, Yode Y, Hechler V, et al. γ-hydroxybutyrate receptor binding in rat brain is inhibited by guanylyl nucleotides and pertussis toxin. Neurosci Lett 1995; 189: 51–3

    Article  PubMed  CAS  Google Scholar 

  61. Snead OC. Evidence for a G protein-coupled γ-hydroxybutyric acid receptor. J Neurochem 2000; 75: 1986–96

    Article  PubMed  CAS  Google Scholar 

  62. Hu RQ, Banerjee PK, Snead OC. Regulation of γ-aminobutyric acid (GABA) and glutamate release mediated by the GABAB/γ-hydroxybutyric acid (GHB) receptor complex in rat. Neuropharmacology 2000; 39: 427–39

    Article  PubMed  CAS  Google Scholar 

  63. Gobaille S, Hechler V, Andriamampandry C, et al. γ-hydroxybutyrate modulates synthesis and extracellular concentration of γ-aminobutyric acid in discrete brain regions in vivo. J Pharmacol Exp Ther 1999; 290: 303–9

    PubMed  CAS  Google Scholar 

  64. Vayer P, Maitre M. Gamma-hydroxybutyrate stimulation of the formation of cyclic GMP and inositol phosphates in rat hippocampal slices. J Neurochem 1989; 52: 1382–7

    Article  PubMed  CAS  Google Scholar 

  65. Ren X, Mody I. Gamma-hydroxybutyrate reduces mitogen-activated protein kinase phosphorylation via GABA B receptor activation in mouse frontal cortex and hippocampus. J Biol Chem 2003; 43: 42006–11

    Article  CAS  Google Scholar 

  66. Castelli MP, Ferraro L, Mocci I, et al. Selective γ-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic affect of γ-hydroxybutyric acid. J Neurochem 2003; 87: 722–32

    Article  PubMed  CAS  Google Scholar 

  67. Andriamampandry C, Taleb O, Viry S, et al. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J 2003; 17: 1691–3

    PubMed  CAS  Google Scholar 

  68. Bowery NG, Bettler B, Froestl W, et al. International Union of Pharmacology, XXXIII: mammalian γ-aminobutyric acid b receptors: structure and function. Pharmacol Rev 2002; 54: 247–64

    Article  PubMed  CAS  Google Scholar 

  69. Mathivet P, Bernasconi R, De Barry J, et al. Binding characteristics of gamma-hydroxybutyric acid as a weak but selective GABAB receptor agonist. Eur J Pharmacol 1997; 321: 67–75

    Article  PubMed  CAS  Google Scholar 

  70. Lingenhoehl K, Brom R, Heid J, et al. Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology 1999; 38: 1667–73

    Article  PubMed  CAS  Google Scholar 

  71. Xie X, Smart TG. γ-Hydroxybutyrate depresses monosynaptic excitatory and inhibitory postsynaptic potentials in rat hippocampal slices. Eur J Pharmacol 1992; 223: 193–6

    Article  PubMed  CAS  Google Scholar 

  72. Emri Z, Antal K, Crunelli C, et al. Gamma-hydroxybutyric acid decreases thalamic sensory excitatory postsynaptic potentials by an action on presynaptic GABAB receptors. Neurosci Lett 1996; 216: 121–4

    Article  PubMed  CAS  Google Scholar 

  73. Williams SR, Turner JP, Crunelli V. Gamma-hydroxybutyrate promotes oscillatory activity of rat and cat thalamocortical neurons by a tonic GABAB receptor-mediated hyperpolarization. Neuroscience 1995; 66: 133–41

    Article  PubMed  CAS  Google Scholar 

  74. Erhardt S, Andersson B, Nissbrandt H, et al. Inhibition of firing rate and changes in the firing pattern of nigral dopamine neurons by γ-hydroxybutyric acid (GHBA) are specifically induced by activation of GABAB receptors. Naunyn Schmiedebergs Arch Pharmacol 1998; 357: 611–9

    Article  PubMed  CAS  Google Scholar 

  75. Godbout R, Jelenic P, Labrie C, et al. Effect of gamma-hydroxybutyrate and its antagonist NCS-382 on spontaneous cell firing in the prefrontal cortex of the rat. Brain Res 1995; 673: 157–60

    Article  PubMed  CAS  Google Scholar 

  76. Kemmel V, Taleb O, Andriamampandry C, et al. γ-Hydroxybutyrate receptor function determined by stimulation of rubidium and calcium movements from NCB-20 neurons. Neuroscience 2003; 116: 1021–31

    Article  PubMed  CAS  Google Scholar 

  77. Crunelli V, Leresche N. Action of γ-hydroxybutyrate on neuronal excitability and underlying membrane conductances. In: Tunnicliff G, Cash CD, editors. Gamma-hydroxybutyrate. London: Taylor & Francis, 2002: 75–110

    Chapter  Google Scholar 

  78. Jensen K, Mody I. GHB depresses fast excitatory and inhibitory synaptic transmission via GABAB receptors in mouse neocortical neurons. Cereb Cortex 2001; 11: 424–9

    Article  PubMed  CAS  Google Scholar 

  79. Hechler V, Ratomponirina C, Maitre M. Gamma-hydroxybutyrate conversion into GABA induces displacement of GABAB binding that is blocked by valproate and ethosuximide. J Pharmacol Exp Ther 1997; 281: 753–60

    PubMed  CAS  Google Scholar 

  80. Kaufman EE. Metabolism and distribution of γ-hydroxybutyrate in the brain. In: Tunnicliff G, Cash CD, editors. Gamma-hydroxybutyrate. London: Taylor & Francis, 2002: 1–16

    Chapter  Google Scholar 

  81. Snead OC. Relation of the [3H] gamma-hydroxybutyric acid (GHB) binding site to the gamma-aminobutyric acid B (GABAB) receptor in rat brain. Biochem Pharmacol 1996; 52: 1235–43

    Article  PubMed  CAS  Google Scholar 

  82. Kemmel V, Taleb O, Perard A, et al. Neurochemical and electrophysiological evidence for the existence of a functional gamma-hydroxybutyrate system in NCB-20 neurons. Neuroscience 1998; 86: 989–1000

    Article  PubMed  CAS  Google Scholar 

  83. Wu Y, Liu CC, Snead OC. No detectable specific 3H-GHB binding at GABAB receptors expressed in HEK 293 cells [abstract]. Soc Neurosci 2001; 27: 1574

    Google Scholar 

  84. Snead OC, Morley BJ. Ontogeny of γ-hydroxybutyric acid, I: regional concentration in developing rat, monkey and human brain. Brain Res 1981; 1: 579–89

    Article  CAS  Google Scholar 

  85. Snead OC, Hechler V, Vergnes M, et al. Increased γ-hydroxybutyric acid receptors in thalamus of a genetic animal model of petit mal epilepsy. Epilepsy Res 1990; 7: 121–8

    Article  PubMed  CAS  Google Scholar 

  86. Quéva C, Bremner-Danielson M, Edlund A, et al. Effects of GABA agonists on body temperature regulation in GABAB(1)-/- mice. Br J Pharmacol 2003; 140: 315–22

    Article  PubMed  CAS  Google Scholar 

  87. Lin MT, Chen YF, Wang HW, et al. Effects of γ-hydroxybutyric acid on metabolic, respiratory, and vasomotor activities and body temperature in rats. J. Pharmacol Exp Ther 1979; 211: 167–70

    PubMed  CAS  Google Scholar 

  88. Snead OC. γ-Hydroxybutyric acid-induced seizures bear no relation to core temperature. Epilepsia 1990; 31: 253–8

    Article  PubMed  CAS  Google Scholar 

  89. Kaupmann K, Cryan JF, Willendorph P, et al. Specific γ-hydroxybutyrate-binding sites but loss of pharmacological effects of γ-hydroxybutyrate in GABAb(1)-deficient mice. Eur J Neurosci 2003; 18: 2722–30

    Article  PubMed  Google Scholar 

  90. Wong CGT, Wu Y, Wang YT, et al. GHB increases cell surface GABAB receptors independent of agonist activation or conversion to GABA. Program no. 159.6. 2003 abstract viewer/itinerary planner. Washington, DC: Society for Neuroscience [online]. Available from URL: http://sfn.scholarone.com/itin2003/index.html [Accessed 2003]

  91. Howard SG, Banerjee PK. Regulation of central dopamine by γ-hydroxybutyrate. In: Tunnicliff G, Cash CD, editors. Gamma-hydroxybutyrate. London: Taylor and Francis, 2002: 111–99

    Chapter  Google Scholar 

  92. Gessa GL, Vargiu L, Crabai F, et al. Selective increase of brain dopamine induced by γ-hydroxybutyrate. Life Sci 1966; 5: 1921–30

    Article  CAS  Google Scholar 

  93. Aghajanian GK, Roth RH. γ-Hydroxybutyrate-induced increase in brain dopamine: localization by fluorescence microscopy. J Pharmacol Exp Ther 1970; 175: 131–8

    PubMed  CAS  Google Scholar 

  94. Walters JR, Roth RH. Effect of gamma-hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum. Biochem Pharmacol 1972; 21: 2111–21

    Article  PubMed  CAS  Google Scholar 

  95. Gianutsos G, Moore KE. Tolerance to the effects of baclofen and γ-butyrolactone on locomotor activity and dopaminergic neurons in the mouse. J Pharmacol Exp Ther 1978; 207: 859–69

    PubMed  CAS  Google Scholar 

  96. Roth RH, Doherty JD, Walters JR. Gamma-hydroxybutyrate: a role in the regulation of central dopaminergic neurons. Brain Res 1980; 189: 556–60

    Article  PubMed  CAS  Google Scholar 

  97. Diana M, Mereu G, Mura A, et al. Low doses of γ-hydroxybutyric acid stimulate the firing rate of dopaminergic neurons in unanesthetized rats. Brain Res 1991; 566: 208–11

    Article  PubMed  CAS  Google Scholar 

  98. Howard SG, Feigenbaum JJ. Effect of gamma-hydroxybutyrate on central dopamine release in vivo: a microdialysis study in awake and anesthetized animals. Biochem Pharmacol 1997; 53: 103–10

    Article  PubMed  CAS  Google Scholar 

  99. Hechler V, Gobaille S, Bourguignon JJ, et al. Extracellular events induced by gamma-hydroxybutyrate in striatum: a microdialysis study. J Neurochem 1991; 56: 938–44

    Article  PubMed  CAS  Google Scholar 

  100. Feigenbaum JJ, Howard SG. Naloxone reverses the inhibitory effect of gamma-hydroxybutyrate on central DA release in vivo in awake animals: a microdialysis study. Neurosci Lett 1996; 218: 5–8

    Article  PubMed  CAS  Google Scholar 

  101. Schmidt-Mutter C, Muller C, Zwiller J, et al. Gamma-hydroxybutyrate and cocaine administration increases mRNA expression of dopamine D1 and D2 receptors in rat brain. Neuropsychopharmacology 1999; 21: 662–9

    Article  PubMed  CAS  Google Scholar 

  102. Ratomponirina C, Gobaille S, Hode Y, et al. Sulpiride, but not haloperidol, upregulates gamma-hydroxybutyrate receptors in vivo and in cultured cells. Eur J Pharmacol 1998; 346: 331–7

    Article  PubMed  CAS  Google Scholar 

  103. Nissbrandt H, Engberg G. The GABAB-receptor antagonist, CGP 35348, antagonizes gamma-hydroxybutyrate- and baclofen-induced alterations in locomotor activity and forebrain dopamine levels in mice. J Neural Transm 1996; 103: 1255–63

    Article  PubMed  CAS  Google Scholar 

  104. Itzhak Y, Ali SF. Repeated administration of gamma-hydroxybutyric acid (GHB) to mice: assessment of the sedative and rewarding effects of GHB. Ann N Y Acad Sci 2002; 965: 451–60

    Article  PubMed  CAS  Google Scholar 

  105. Carai MA, Colombo G, Reali R, et al. Central effects of 1,4-butanediol are mediated by GABA(B) receptors via its conversion into gamma-hydroxybutyric acid. Eur J Pharmacol 2002; 441: 157–63

    Article  PubMed  CAS  Google Scholar 

  106. Quang LS, Desai MC, Kraner JC, et al. Enzyme and receptor antagonists for preventing toxicity from the gamma-hydroxybutyric acid precursor 1,4-butanediol in CD-1 mice. Ann N Y Acad Sci 2002; 965: 461–72

    Article  PubMed  CAS  Google Scholar 

  107. Bottiglieri T, Anderson D, Gibson KM, et al. Effect of Gamma-hydroxybutyrate on locomotor activity and brain dopamine metabolism in the rat [abstract]. Soc Neurosci 2001; 27: 971

    Google Scholar 

  108. Drakontides AM, Schneider JA, Funderbunk WH. Some effects of sodium gamma-hydroxybutyrate on the central nervous system. Int J Pharmacol 1962; 135: 275–86

    CAS  Google Scholar 

  109. Winters WD, Spooner CE. Various seizure activities following gamma hydroxybutyrate. Int J Neuropharmacol 1965; 4: 197–200

    Article  PubMed  CAS  Google Scholar 

  110. Metcalf DR, Emde RN, Stripe JT. An EEG-behavioral study of sodium gamma-hydroxybutyrate in humans. Electroencephalogr Clin Neurophysiol 1966; 20: 506–12

    Article  PubMed  CAS  Google Scholar 

  111. Marcus JR, Winters WD, Mori K, et al. EEG and behavioral comparison of the effects of gamma-hydroxybutyrate, gamma-butyrolactone, and short chain fatty acids in the rat. Int J Neuropharmacol 1967; 6: 175–85

    Article  PubMed  CAS  Google Scholar 

  112. Winters WL, Spooner CE. A neurophysiological comparison of gamma-hydroxybutyrate with pentobarbital in cats. Electroencephalogr Clin Neurophysiol 1965; 18: 287–96

    Article  PubMed  CAS  Google Scholar 

  113. Winters WL, Spooner CE. A neurophysiological comparison of alpha-chloralose with gamma-hydroxybutyrate in cats. Electroencephalogr Clin Neurophysiol 1966; 20: 83–93

    Article  PubMed  CAS  Google Scholar 

  114. Yamada Y, Yamamoto J, Fujiki A, et al. Effect of butyrolactone and gamma-hydroxybutyrate on the EEG and sleep cycle in man. Electroencephalogr Clin Neurophysiol 1967; 22: 558–62

    Article  PubMed  CAS  Google Scholar 

  115. Snead OC. Gamma hydroxybutyrate in the monkey, II: effect of chronic oral anticonvulsant drugs. Neurology 1978, 648

    Google Scholar 

  116. Godschalk M, Dzoljic MR, Bonta IL. Antagonism of gamma hydroxybutyrateinduced hypersynchronization in the ECoG of rat by anti-petit mal drugs. Neurosci Lett 1976; 3: 1173–8

    Article  Google Scholar 

  117. Godschalk M, Dzoljic MR, Bonta IL. Slow wave sleep and a state resembling absence epilepsy induced in the rat by γ-hydroxybutyrate. Eur J Pharmacol 1977; 44: 105–11

    Article  PubMed  CAS  Google Scholar 

  118. Snead OC. γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988; 29: 361–8

    Article  PubMed  CAS  Google Scholar 

  119. Snead OC. An investigation of the relationship between the dopaminergic and electroencephalographic effects of γ-butyrolactone. Neuropharmacology 1982; 21: 539–43

    Article  PubMed  CAS  Google Scholar 

  120. Snead OC. Ontogeny of γ-hydroxybutyric acid, II: electroencephalographic effects. Dev Brain Res 1984; 15: 89–96

    Article  CAS  Google Scholar 

  121. Snead OC. Pharmacological models of generalized absence seizures in rodents. J Neural Transm Suppl 1992; 35: 7–19

    PubMed  Google Scholar 

  122. Snead OC. Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. Eur J Pharmacol 1992; 213: 343–9

    Article  PubMed  CAS  Google Scholar 

  123. Berkovic SF, Andermann F, Andermann E, et al. Concepts of absence epilepsies: discrete syndromes or biological continuum? Neurology 1987; 37: 993–1000

    Article  PubMed  CAS  Google Scholar 

  124. Snead OC. Basic mechanisms of generalized absence seizures. Ann Neurol 1995; 37: 146–7

    Article  PubMed  Google Scholar 

  125. Snead OC, Depaulis A, Vergnes M, et al. Absence epilepsy: advances in experimental animal models. In: Delgado-Escueta AV, Wilson W, Olsen RW, et al., editors. Jasper’s basic mechanisms of the epilepsies. 3rd ed. New York: Raven Press, 1999: 253–78

    Google Scholar 

  126. Vergnes M, Marescaux C, Depaulis A, et al. Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol 1987; 96: 127–36

    Article  PubMed  CAS  Google Scholar 

  127. Vergnes M, Marescaux C, Depaulis A. Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy. Brain Res 1990; 523: 87–91

    Article  PubMed  CAS  Google Scholar 

  128. Steriade M, Llinas RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 1988; 68: 649–742

    PubMed  CAS  Google Scholar 

  129. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679–85

    Article  PubMed  CAS  Google Scholar 

  130. Kandel A, Bragin A, Carpi D, et al. Lack of hippocampal involvement in a rat model of petit mal epilepsy. Epilepsy Res 1996; 23: 123–7

    Article  PubMed  CAS  Google Scholar 

  131. Banerjee PK, Hirsch E, Snead OC. γ-Hydroxybutyric acid induced spike and wave discharges in rats: relation to high affinity [3H]-γ-hydroxybutyric acid binding sites in the thalamus and cortex. Neuroscience 1993; 56: 11–21

    Article  PubMed  CAS  Google Scholar 

  132. Cortez MA, McKerlie C, Snead OC. Model of atypical absence seizures: EEG, pharmacology, and developmental characterization. Neurology 2001; 56: 341–9

    Article  PubMed  CAS  Google Scholar 

  133. Vergnes M, Marescaux C, Micheletti G, et al. Enhancement of spike and wave discharges by GABA-mimetic drugs in rat with spontaneous petit mal-like epilepsy. Neurosci Lett 1984; 44: 91–4

    Article  PubMed  CAS  Google Scholar 

  134. Snead OC. γ-Hydroxybutyric acid, γ-aminobutyric acid, and petit mal epilepsy. In: Fariello RG, Morselli PL, Lloyd KG, et al., editors. Neurotransmitters, seizures, and epilepsy II. New York: Raven Press, 1984: 37–47

    Google Scholar 

  135. Snead OC. The ontogeny of GABAergic enhancement of the γ-hydroxybutyrate model of generalized absence seizures. Epilepsia 1990; 31: 253–8

    Article  PubMed  CAS  Google Scholar 

  136. Peeters BW, van Rijn CM, Vossen JMH, et al. Effects of GABAergic agents on spontaneous non-convulsive epilepsy, EEG, and behavior, in the WAG/Rij inbred strain of rats. Life Sci 1989; 45: 1171–6

    Article  PubMed  CAS  Google Scholar 

  137. Depaulis A, Snead OC, Marescaux C, et al. Suppressive effects of intranigral injection of muscimol in three models of generalized non-convulsive epilepsy induced by chemical agents. Brain Res 1989; 498: 64–72

    Article  PubMed  CAS  Google Scholar 

  138. Banerjee PK, Snead OC. Excitatory amino acid-mediated mechanisms in the γ-hydroxybutyrate model of absence. Neuropharmacology 1992; 31: 1009–19

    Article  PubMed  CAS  Google Scholar 

  139. Banerjee PK, Snead OC. Thalamic NMDA receptors in the γ-hydroxybutyrate model of absence seizures: a cerebral microinjection study in rats. Neuropharmacology 1995; 34: 43–53

    Article  PubMed  CAS  Google Scholar 

  140. Banerjee PK, Snead OC. Presynaptic γ-hydroxybutyric acid (GHB) and γ-aminobutyric acidB receptor-mediated release of GABA and glutamate (GLU) in rat thalamic ventrobasal nucleus (VB): a possible mechanism for the generation of absence-like seizures induced by GHB. J Pharmacol Exp Ther 1995; 273: 1534–43

    PubMed  CAS  Google Scholar 

  141. Hu RQ, Cortez MA, Man HY, et al. Alteration of GluR2 expression in the rat brain following absence seizures induced by γ-hydroxybutyric acid. Epilepsy Res 2001; 44: 41–51

    Article  PubMed  CAS  Google Scholar 

  142. Hu RQ, Cortez MA, Man HY, et al. γ-Hydroxybutyric acid-induced absence seizures in GluR2 null mutant mice. Brain Res 2001; 897: 27–35

    Article  PubMed  CAS  Google Scholar 

  143. Banerjee PK, Olsen RW, Tillakaratne NJK, et al. Absence seizures decrease steroid modulation of t-[35S]butylbicyclo-phosphorothionate (TBPS) binding in thalamic relay nuclei. J Pharmacol Exp Ther 1998; 287: 766–72

    PubMed  CAS  Google Scholar 

  144. Banerjee PK, Tillakaratne NJK, Brailowsky S, et al. Alterations in GABAA receptor a1 and α4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats. Exp Neurol 1998; 154: 213–23

    Article  PubMed  CAS  Google Scholar 

  145. Banerjee PK, Snead OC. Neuroactive steroids exacerbate γ-hydroxybutyric acid-induced absence seizures in rats. Eur J Pharmacol 1998; 359: 41–8

    Article  PubMed  CAS  Google Scholar 

  146. Banerjee PK, Liu CC, Snead OC. Steroid-inhibition of [3H]γ-hydroxybutyric acid (GHB) binding in thalamic relay nuclei increases during absence seizures. Brain Res 1998; 813: 343–50

    Article  PubMed  CAS  Google Scholar 

  147. Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons, and networks. Nat Rev Neurosci 2002; 3: 371–82

    Article  PubMed  CAS  Google Scholar 

  148. Snead OC. Antiabsence activity of specific GABAB and γ-hydroxybutyric acid antagonists. Pharmacol Biochem Behav 1996; 53: 73–80

    Article  PubMed  CAS  Google Scholar 

  149. Liu Z, Vergnes M, Depaulis A, et al. Involvement of intrathalamic GABAB neurotransmission in the control of absence seizures in the rat. Neuroscience 1992; 48: 87–93

    Article  PubMed  CAS  Google Scholar 

  150. Hosford DA, Clark S, Cao Z, et al. The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 1992; 257: 398–401

    Article  PubMed  CAS  Google Scholar 

  151. Hosford DA, Liu CC, Wang Y, et al. Characterization of the anti-absence efficacy of SCH50911, a GABAB receptor antagonist, in the lethargic mouse, γ-hydroxybutyric acid, and pentylenetetrazole models of absence seizures. J Pharmacol Exp Ther 1995; 274: 1399–403

    PubMed  CAS  Google Scholar 

  152. McCormick DA, Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 1997, 215

    Google Scholar 

  153. von Krosigk M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993; 261: 361–4

    Article  Google Scholar 

  154. Pinault D. Cellular interactions in rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. J Physiol 2003; 552: 3881–905

    Article  CAS  Google Scholar 

  155. Kim D, Song I, Keum S, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 2001; 31: 3–4

    Article  Google Scholar 

  156. Gervasi N, Monnier Z, Vincent P, et al. Pathway-specific action of gamma-hydroxybutyric acid in sensory thalamus and its relevance to absence seizures. J Neurosci 2003; 23: 11469–78

    PubMed  CAS  Google Scholar 

  157. Grove-White IG, Kelman GR. Effect of methohexitone, diazepam and sodium 4 hydroxybutyrate on short-term memory. Br J Anaesth 1971; 43: 113–6

    Article  PubMed  CAS  Google Scholar 

  158. Ferrara SD, Giorgetti R, Zancaner S, et al. Effects of single dose of gamma-hydroxybutyric acid and lorazepam on psychomotor performance and subjective feelings in healthy volunteers. Eur J Clin Pharmacol 1999; 54: 821–7

    Article  PubMed  CAS  Google Scholar 

  159. Sternberg S. Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 1969; 57: 421–57

    PubMed  CAS  Google Scholar 

  160. Bearden LJ, Snead OC, Healy CT, et al. Antagonism of gamma hydroxybutyric acid-induced frequency shifts in the cortical EEG of rats by dipropyl acetate. Electroencephalogr Clin Neurophysiol 1980; 49: 181–3

    Article  PubMed  CAS  Google Scholar 

  161. Ferrara SD, Zotti S, Tedeschi L, et al. Pharmacokinetics of gamma-hydroxybutyric acid in alcohol dependent patients after single and repeated oral doses. Br J Clin Pharmacol 1992; 34: 231–5

    Article  PubMed  CAS  Google Scholar 

  162. Palatini P, Tedeschi L, Frison G, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol 1993; 45: 353–6

    Article  PubMed  CAS  Google Scholar 

  163. Ferrara SD, Tedeschi L, Frison G, et al. Effect of moderate or severe liver dysfunction on the pharmacokinetics of gamma-hydroxybutyric acid. Eur J Clin Pharmacol 1996; 50: 305–10

    Article  PubMed  CAS  Google Scholar 

  164. Chin MY, Kreutzer RA, Dyer JE. Acute poisoning from gamma-hydroxybutyrate in California. West J Med 1992; 156: 380–4

    PubMed  CAS  Google Scholar 

  165. Stephens BG, Baselt RC. Driving under the influence of GHB? J Anal Toxicol 1994; 18: 357–8

    PubMed  CAS  Google Scholar 

  166. Cooper FJ, Logan BK. GHB and driving impairment. J Forensic Sci 2001; 46: 919–23

    Google Scholar 

  167. Elliott SP. Gamma hydroxybutyric acid (GHB) concentrations in humans and factors affecting endogenous production. Forensic Sci Int 2003; 133: 9–16

    Article  PubMed  CAS  Google Scholar 

  168. Hoes MJ, Vree TB, Guelen PJ. Gamma-hydroxybutyric acid as hypnotic: clinical and pharmacokinetic evaluation of gamma-hydroxybutyric acid as hypnotic in man. Encephale 1980; 6: 93–9

    PubMed  CAS  Google Scholar 

  169. Craig K, Gomez HF, McManus JL, et al. Severe gamma-hydroxybutyrate withdrawal: a case report and literature review. J Emerg Med 2000; 18: 65–70

    Article  PubMed  CAS  Google Scholar 

  170. Aizawa M, Ito Y, Fukuda H. Roles of gamma-aminobutyric acidB (GABAB) and gamma-hydroxybutyric acid receptors in hippocampal long-term potentiation and pathogenesis of absence seizures. Biol Pharm Bull 1997; 20: 1066–70

    Article  PubMed  CAS  Google Scholar 

  171. Nava F, Carta G, Bortolato M, et al. Gamma-hydroxybutyric acid and baclofen decrease extracellular acetylcholine levels in the hippocampus via GABA(B) receptors. Eur J Pharmacol 2001; 430(2–3): 261–3

    Article  PubMed  CAS  Google Scholar 

  172. Castellano C, Brioni JD, Nagahara AH, et al. Post-training systemic and intra-amygdala administration of the GABAB agonist baclofen impairs retention. Behav Neural Biol 1989; 52: 170–9

    Article  PubMed  CAS  Google Scholar 

  173. DeSousa NJ, Beninger RJ, Jhamandas K, et al. Stimulation of GABAB receptors in the basal forebrain selectively impairs working memory of rats in the double Y-maze. Brain Res 1994; 641: 29–38

    Article  PubMed  CAS  Google Scholar 

  174. McNamara RK, Skelton RW. Baclofen, a selective GABAB receptor agonist, dose-dependently impairs spatial learning in rats. Pharmacol Biochem Behav 1996; 53: 303–8

    Article  PubMed  CAS  Google Scholar 

  175. Stackman RW, Walsh TJ. Baclofen produces dose-related working memory impairments after intraseptal injection. Behav Neural Biol 1994; 61: 181–5

    Article  PubMed  CAS  Google Scholar 

  176. Swartzwelder HS, Tilson HA, McLamb RL, et al. Baclofen disrupts passive avoidance retention in rats. Psychopharmacology (Berl) 1987; 92: 398–401

    Article  CAS  Google Scholar 

  177. Zarrindast MR, Bakhsha A, Rostami P, et al. Effects of intrahippocampal injection of GABAergic drugs on memory retention of passive avoidance learning in rats. J Psychopharmacol 2002; 16: 313–9

    Article  PubMed  CAS  Google Scholar 

  178. Carletti R, Libri V, Bowery N. The GABAB antagonist CGP 36742 enhances spatial learning performance and antagonizes baclofen-induced amnesia in mice [abstract]. Br J Pharmacol 1993; 109 Suppl.: 74P

    Google Scholar 

  179. Getova D, Bowery NG. The modulatory effects of high affinity GABA(B) receptor antagonists in an active avoidance learning paradigm in rats. Psychopharmacology (Berl) 1998; 137: 369–73

    Article  CAS  Google Scholar 

  180. Mondadori C, Jaekel J, Preiswerk G. CGP 36742: The first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behav Neural Biol 1993; 60: 62–8

    Article  PubMed  CAS  Google Scholar 

  181. Mondadori C, Mobius HJ, Borkowski J. The GABAB receptor antagonist CGP 36,742 and the nootropic oxiracetam facilitate the formation of long-term memory. Behav Brain Res 1996; 77: 223–5

    Article  PubMed  CAS  Google Scholar 

  182. Mondadori C, Moebius HJ, Zingg M. CGP 36,742, an orally active GABAb receptor antagonist, facilitates memory in a social recognition test in rats. Behav Brain Res 1996; 77: 227–9

    Article  PubMed  CAS  Google Scholar 

  183. Farr SA, Uezu K, Creonte TA, et al. Modulation of memory processing in the cingulate cortex of mice. Pharmacol Biochem Behav 2000; 65: 363–8

    Article  PubMed  CAS  Google Scholar 

  184. Koziar VS, Trofimov SS, Ostrovskaia RU, et al. The behavioral consequences of prenatal hemic hypoxia in rat progeny [in Russian]. Zh Vyssh Nerv Deiat Im I P Pavlova 1993; 43: 613–20

    PubMed  CAS  Google Scholar 

  185. Trofimov SS, Ostrovskaia RU, Kravchenko EV, et al. Behavior disorders in rats exposed to intrauterine hypoxia, and their correction by postnatal treatment with piracetam [in Russian]. Biull Eksp Biol Med 1993; 115: 43–5

    Article  PubMed  CAS  Google Scholar 

  186. Koziar VS, Trofimov SS, Ostrovskaia RU, et al. Prenatal exposure to sodium oxybutyrate prevents a disorder of general behavior, learning and memory in the progeny of rats subjected to chronic hemic hypoxia [in Russian]. Eksp Klin Farmakol 1994; 57: 8–11

    PubMed  CAS  Google Scholar 

  187. Ottani A, Saltini S, Bartiromo M, et al. Effect of gamma-hydroxybutyrate in two rat models of focal cerebral damage. Brain Res 2003; 986: 181–90

    Article  PubMed  CAS  Google Scholar 

  188. Vergoni AV, Ottani A, Botticelli AR, et al. Neuroprotective effect of gamma-hydroxybutyrate in transient global cerebral ischemia in the rat. Eur J Pharmacol 2000; 397: 75–84

    Article  PubMed  CAS  Google Scholar 

  189. Vrublevskii AG, Voronin KE. Dissociative state in rats induced by ethanol and possibilities of the pharmacological correction of this phenomenon [in Russian]. Biull Eksp Biol Med 1987; 104: 187–9

    PubMed  CAS  Google Scholar 

  190. Trofimov SS, Ostrovskaia RU, Smol’nikova NM, et al. A behavioral and biochemical analysis of the therapeutic effect of sodium oxybutyrate in alcoholic encephalopathy in progeny [in Russian]. Farmakol Toksikol 1991; 54: 62–4

    PubMed  CAS  Google Scholar 

  191. Ostrovskaia RU, Smol’nikova NM, Savchenko NM, et al. Sodium oxybutyrate correction of the disorders in higher nervous activity in the progeny of alcoholized animals [in Russian]. Farmakol Toksikol 1988; 51: 89–94

    PubMed  CAS  Google Scholar 

  192. Nemova EP, Krylova AM, Smol’nikova NM, et al. The effect of lithium oxybutyrate on the development of the fetus and progeny in alcoholic intoxication of male rats [in Russian]. Eksp Klin Farmakol 1996; 59: 48–50

    PubMed  CAS  Google Scholar 

  193. Savchenko NM, Ostrovskaia RU, Burov IV. Normalization of the adaptive avoidance reaction in rats using substances with nootropic activity [in Russian]. Biull Eksp Biol Med 1988; 106: 170–2

    Article  PubMed  CAS  Google Scholar 

  194. Burov Iu V, Ostrovskaia RU, Smol’nikova NM, et al. Normalizing effect of GABA derivatives on late behavioral disorders occurring in rats with early postnatal suppression of protein synthesis [in Russian]. Farmakol Toksikol 1987; 50: 18–22

    PubMed  CAS  Google Scholar 

  195. MacMillan V. A comparison of the effects of gamma-hydroxybutyrate and gamma-butyrolactone on cerebral carbohydrate metabolism. Can J Physiol Pharmacol 1979; 57: 787–97

    Article  PubMed  CAS  Google Scholar 

  196. Wolfson LI, Sakurada O, Sokoloff L. Effects of gamma-butyrolactone on local cerebral glucose utilization in the rat. J Neurochem 1977; 29: 777–83

    Article  PubMed  CAS  Google Scholar 

  197. Boyd AJ, Sherman IA, Saibil FG, et al. The protective effect of gamma-hydroxybutyrate in regional intestinal ischemia in the hamster. Gastroenterology 1990; 99: 860–2

    PubMed  CAS  Google Scholar 

  198. Dosmagambetova RS. Prevention of stress-related disorders in the contractile function of non-ischemic areas of the heart during myocardial infarction using gamma-hydroxybutyric acid [in Russian]. Biull Eksp Biol Med 1983; 96: 28–30

    Article  PubMed  CAS  Google Scholar 

  199. MacMillan V. The effects of gamma-hydroxybutyrate and gamma-butyrolactone upon the energy metabolism of the normoxic and hypoxic rat brain. Brain Res 1978; 146: 177–87

    Article  PubMed  CAS  Google Scholar 

  200. Kaufman EE, Porrino LJ, Nelson T. Pyretic action of low doses of gamma-hydroxybutyrate in rats. Biochem Pharmacol 1990; 40: 2637–40

    Article  PubMed  CAS  Google Scholar 

  201. Ferraro L, Tanganelli S, O’Connor WT, et al. Gamma-Hydroxybutyrate modulation of glutamate levels in the hippocampus: an in vivo and in vitro study. J Neurochem 2001; 78: 929–39

    Article  PubMed  CAS  Google Scholar 

  202. Behl C, Hovey III L, Krajewski S, et al. BCL-2 prevents killing of neuronal cells by glutamate but not by amyloid beta protein. Biochem Biophys Res Commun 1993; 197: 949–56

    Article  PubMed  CAS  Google Scholar 

  203. Ostrovskaia RU, Trofimov SS. Nootropic properties of gamma-aminobutyric acid derivatives [in Russian]. Biull Eksp Biol Med 1984; 97: 170–2

    PubMed  CAS  Google Scholar 

  204. Mirzoian SA, Zalinian MG, Gevorkian GA, et al. Effect of 2-pyrrolidone and gamma-butyrolactone on the rate of 14C-leucine incorporation into the proteins of different brain structures and of their arterial tissues [in Russian]. Biull Eksp Biol Med 1988; 106: 571–2

    PubMed  CAS  Google Scholar 

  205. Mirzoian SA, Tatevosian AT, Gevorkian GA. Effect of gamma-aminobutyric acid and gamma-hydroxybutyric acid on the rate of 14C-leucine incorporation into proteins of the gastric mucosa and hypothalamus [in Russian]. Biull Eksp Biol Med 1980; 90: 299–300

    PubMed  CAS  Google Scholar 

  206. Morozov IS, Voronina TA. Psychotropic effect of sodium hydroxybutyrate [in Russian]. Biull Eksp Biol Med 1979; 88: 563–4

    Article  PubMed  CAS  Google Scholar 

  207. Burov Iu V, Salimov RM, Speranskaia NP. The tranquilizing properties of sodium hydroxybutyrate [in Russian]. Biull Eksp Biol Med 1976; 81: 186–8

    Article  PubMed  CAS  Google Scholar 

  208. Cook CD, Aceto MD, Coop A, et al. Effects of the putative antagonist NCS382 on the behavioral pharmacological actions of gamma hydroxybutyrate in mice. Psychopharmacology (Berl) 2002; 160: 99–106

    Article  CAS  Google Scholar 

  209. Schmidt-Mutter C, Pain L, Sandner G, et al. The anxiolytic effect of gamma-hydroxybutyrate in the elevated plus maze is reversed by the benzodiazepine receptor antagonist, flumazenil. Eur J Pharmacol 1998; 342: 21–7

    Article  PubMed  CAS  Google Scholar 

  210. Snead OC, Yu RK, Huttenlocher PR. Gamma hydroxybutyrate: correlation of serum and cerebrospinal fluid levels with electroencephalographic and behavioral effects. Neurology 1976; 26: 51–6

    Article  PubMed  CAS  Google Scholar 

  211. Shumate JS, Snead OC. Plasma and central nervous system kinetics of gamma hydroxybutyrate. Res Commun Chem Pathol Pharmacol 1979; 25: 241–56

    PubMed  CAS  Google Scholar 

  212. van der Pol W, van der Kleijn E, Lauw M. Gas Chromatographic determination and pharmacokinetics of 4-hydroxybutyrate in dog and mouse. J Pharmacokinet Biopharm 1975; 3: 99–111

    PubMed  CAS  Google Scholar 

  213. Snead OC. Gamma hydroxybutyrate in the monkey, I: electroencephalographic, behavioral, and pharmacokinetic studies. Neurology 1978; 28: 636–42

    Article  PubMed  CAS  Google Scholar 

  214. Helrich M, McAslan TC, Skolnik S, et al. Correlation of blood levels of 4-hydroxybutyrate with state of consciousness. Anesthesiology 1964; 25: 771–5

    Article  PubMed  CAS  Google Scholar 

  215. Vickers MD. Gamma hydroxybutyric acid. Proc R Soc Med 1968; 61: 821–4

    PubMed  CAS  Google Scholar 

  216. Lettieri JT, Fung HL. Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J Pharmacol Exp Ther 1979; 208: 7–11

    PubMed  CAS  Google Scholar 

  217. Arena C, Fung HL. Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci 1980; 69: 356–8

    Article  PubMed  CAS  Google Scholar 

  218. Borgen LA, Okerholm R, Morrison D, et al. The influence of gender and food on the pharmacokinetics of sodium oxybate oral solution in healthy subjects. J Clin Pharmacol 2003; 43: 59–65

    Article  PubMed  CAS  Google Scholar 

  219. Kavanagh PV, Kenny P, Feely J. The urinary excretion of γ-hydroxybutyric acid in man. J Pharm Pharmacol 2001; 53: 399–402

    Article  PubMed  CAS  Google Scholar 

  220. Zvosec DL, Smith SW, McCutchein JR, et al. Adverse events, including death, associated with the use of 1,4-butanediol. N Engl J Med 2001; 344: 87–94

    Article  PubMed  CAS  Google Scholar 

  221. Lora-Tamayo C, Tena T, Rodriguez A, et al. Intoxication due to 1,4-butanediol. Forensic Sci Int 2003; 133: 256–9

    Article  PubMed  CAS  Google Scholar 

  222. Roth RH, Giarman NJ. Evidence that central nervous system depression by 1,4-butanediol is mediated through a metabolite, gamma-hydroxybutyrate. Biochem Pharmacol 1968; 17: 735–9

    Article  PubMed  CAS  Google Scholar 

  223. Maxwell R, Roth RH. Conversion of 1,4-butanediol to γ-hydroxybutyric acid in rat brain and in peripheral tissue. Biochem Pharmacol 1972; 21: 1521–33

    Article  PubMed  CAS  Google Scholar 

  224. Poldrugo F, Snead OC. 1,4-Butanediol, γ-hydroxybutyric acid and ethanol: relationships and interactions. Neuropharmacology 1984; 23: 109–13

    Article  PubMed  CAS  Google Scholar 

  225. Poldrugo F, Snead OC. 1,4-Butanediol and ethanol compete for degradation in rat brain and liver in vitro. Alcohol 1986; 3: 367–70

    Article  PubMed  CAS  Google Scholar 

  226. Poldrugo F, Barker S, Basa M, et al. Ethanol potentiates the toxic effects of 1,4-butanediol. Alcohol Clin Exp Res 1985; 9: 493–7

    Article  PubMed  CAS  Google Scholar 

  227. Centers for Disease Control. Multistate outbreak of poisonings associated with illicit use of gamma-hydroxybutyrate. JAMA 1991; 265: 447–8

    Article  Google Scholar 

  228. Dyer JE. γ-Hydroxybutyrate: a health-food product producing coma and seizurelike activity. Am J Emerg Med 1991; 9: 321–4

    Article  PubMed  CAS  Google Scholar 

  229. Centers for Disease Control. Gamma hydroxybutyrate use: New York and Texas, 1995–1996. JAMA 1997; 277: 1511–05

    Article  Google Scholar 

  230. Centers for Disease Control. Adverse events associated with ingestion of gamma-butyrolactone: Minnesota, New Mexico, and Texas, 1998–1999. JAMA 1999; 281: 979–80

    Article  Google Scholar 

  231. Eckstein M, Henderson SO, DelaCruz P, et al. Gamma hydroxybutyrate (GHB): report of a mass intoxication and review of the literature. Prehosp Emerg Care 1999; 3: 357–61

    Article  PubMed  CAS  Google Scholar 

  232. Li J, Stokes SA, Woeckener A. A tale of novel intoxication: a review of the effects of gamma-hydroxybutyric acid with recommendations for management. Ann Emerg Med 1998; 31: 729–36

    Article  PubMed  CAS  Google Scholar 

  233. Ferrara SD, Tedeschi L, Frison G, et al. Fatality due to gamma-hydroxybutyric acid (GHB) and heroin intoxication. J Forensic Sci 1995; 40: 501–4

    PubMed  CAS  Google Scholar 

  234. Louagie HK, Verstraete AG, De Soete CJ, et al. A sudden awakening from a near coma after combined intake of gamma hydroxybutyric acid (GHB) and ethanol. Clin Toxicol 1997; 35: 591–4

    Article  CAS  Google Scholar 

  235. Harrington RD, Woodward JA, Hooton TM, et al. Life-threatening interactions between HIV-1 protease inhibitors and the illicit drugs MDMA and γ-hydroxybutyrate. Arch Intern Med 1999; 159: 2221–4

    Article  PubMed  CAS  Google Scholar 

  236. Chin RL, Sporer KA, Culllison B, et al. Clinical course of γ-hydroxybutyrate overdose. Ann Emerg Med 1998; 31: 716–22

    Article  PubMed  CAS  Google Scholar 

  237. Okun MS, Boothby LA, Bartifeld RB, et al. GHB: an important pharmacologic and clinical update. J Pharm Sci 2001; 4: 167–75

    CAS  Google Scholar 

  238. Yates SW, Viera AS. Physostigmine in the treatment of gamma-hydroxybutyric acid overdose. Mayo Clin Proc 2000; 75: 401–2

    Article  PubMed  CAS  Google Scholar 

  239. Holmes CM, Henderson RS. The elimination of pollution by a non-inhalational technique. Aneasth Intensive Care 1978; 6: 120–4

    CAS  Google Scholar 

  240. Caldicott DG, Kuhn M. Gamma-hydroxybutyrate overdose and physostigmine: teaching new tricks to an old drug? Ann Emerg Med 2001; 37: 99–102

    Article  PubMed  CAS  Google Scholar 

  241. Henderson S, Holmes CM. Reversal of the anesthetic action of sodium gamma-hydroxybutyrate. Aneasth Intensive Care 1976; 4: 351–4

    CAS  Google Scholar 

  242. Traub SJ, Nelson LS, Hoffman RS. Physostigmine as a treatment for gamma-hydroxybutyrate toxicity: a review. J Toxicol Clin Toxicol 2002; 40: 781–7

    Article  PubMed  CAS  Google Scholar 

  243. Bismuth C, Dally S, Borron S. Chemical submission: GHB, benzodiazepines, and other knock out drops. Clin Toxicol 1997; 35: 595–8

    Article  CAS  Google Scholar 

  244. Schwartz RH, Milteer R, LeBeau MA. Drug-facilitated sexual assault (‘date rape’). South Med J 2000; 93: 558–61

    PubMed  CAS  Google Scholar 

  245. Carai MA, Colombo G, Brunetti G, et al. Role of GABA(B) receptors in the sedative/hypnotic effect of gamma-hydroxybutyric acid. Eur J Pharmacol 2001, 321

    Google Scholar 

  246. Snead OC. γ-Hydroxybutyate and absence seizures activity. In: Tunnicliff G, Cash CD, editors. Gamma-hydroxybutyrate. London: Taylor and Francis, 2002: 120–31

    Google Scholar 

  247. Colombo G, Gessa G. γ-Hydroxybutyric acid in alcohol preference, dependence and withdrawal. Addict Biol 2000; 64: 293–302

    Google Scholar 

  248. Bania TC, Asahr T, Press G, et al. Gamma-hydroxybutyric acid tolerance and withdrawal in a rat model. Acad Emerg Med 2003; 10: 697–704

    Article  PubMed  Google Scholar 

  249. Van Sassenbroeck DK, De Paepe P, Belpaire FM, et al. Tolerance to the hypnotic and electroencephalographic effect of gamma-hydroxybutyrate in the rat: pharmacokinetic and pharmacodynamic aspects. J Pharm Pharmacol 2003; 55: 609–15

    Article  PubMed  Google Scholar 

  250. Martellotta MC, Fattore L, Cossu G, et al. Rewarding properties of gamma-hydroxybutyric acid: an evaluation through place preference paradigm. Psychopharmacology (Berl) 1997; 132: 1–5

    Article  CAS  Google Scholar 

  251. Colombo G, Lobina C, Gessa GL, et al. Behavioral pharmacology of γ-hydroxybutyrate In: Tunnicliff G, Cash CD, editors. Gamma hydroxybutyrate. London: Taylor & Francis, 2002: 150–68

    Chapter  Google Scholar 

  252. Martellotta MC, Cossu G, Fattore L, et al. Intravenous self-administration of γ-hydroxybutyric in drug-naive mice. Eur J Neuropsychopharmacol 1998; 8: 293–6

    Article  CAS  Google Scholar 

  253. Fattore L, Cossu G, Martellotta MC, et al. Baclofen antagonizes intravenous self-administration of gamma-hydroxybutyric acid in mice. Neuroreport 2001; 12: 2243–6

    Article  PubMed  CAS  Google Scholar 

  254. Zvosec DL, Smith SW. Unsupported ‘efficacy’ claims of gamma hydroxybutyrate (GHB). Acad Emerg Med 2003; 10: 95–104

    Article  PubMed  Google Scholar 

  255. Poldrugo F, Addolorato G. The role of γ-hydroxybutyric acid in the treatment of alcoholism: from animal to clinical studies. Alcohol Alcohol 1999; 34: 15–24

    PubMed  CAS  Google Scholar 

  256. Addolorato G, Castelli E, Stefanini GF, et al. An open multicenter study evaluating 4-hydoxybutyric acid sodium salt in the medium term treatment of 179 alcohol dependant subjects. Alcohol Alcohol 1996; 31: 341–5

    PubMed  CAS  Google Scholar 

  257. Beghe F, Carpanini MT. Safety and tolerability of gamma-hydroxybutyric acid in the treatment of alcohol-dependant patients. Alcohol Alcohol 2000; 20: 223–5

    CAS  Google Scholar 

  258. Addolorato G, Caputo F, Capristo E, et al. A Case of gamma-hydroxybutyric acid withdrawal during alcohol addiction treatment: utility of diazepam administration. Clin Neuropharmacol 1999; 22: 60–2

    Article  PubMed  CAS  Google Scholar 

  259. Caputo F, Addolorato G, Lorenzini F, et al. Gamma-hydroxybutyric acid versus naltrexone in maintaining alcohol abstinence: an open randomized comparative study. Drug Alcohol Depend 2003; 70: 85–91

    Article  PubMed  CAS  Google Scholar 

  260. Van Sassenbroeck DK, De Paepe P, Belpaire FM, et al. Characterization of the pharmacokinetic and pharmacodynamic interaction between gamma-hydroxybutyrate and ethanol in the rat. Toxicol Sci 2003; 73: 270–8

    Article  PubMed  CAS  Google Scholar 

  261. Pearl PL, Gibson KM, Acosta MT, et al. Clinical spectrum of succinic semi-aldehyde dehydrogenase deficiency. Neurology 2003; 60: 1413–7

    Article  PubMed  CAS  Google Scholar 

  262. Pearl PL, Novotny EJ, Acosta MT, et al. Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 2003; 54Suppl. 6: S73–80

    Article  PubMed  CAS  Google Scholar 

  263. Brown GK, Cromby CH, Manning NJ, et al. Urinary organic acids in succinic semialdehyde dehydrogenase deficiency: evidence of alpha-oxidation of 4-hydroxybutyric acid, interaction of succinic semialdehyde with pyruvate dehydrogenase and possible secondary inhibition of mitochondrial beta-oxidation. J Inherit Metab Dis 1987; 10: 367–75

    Article  PubMed  CAS  Google Scholar 

  264. Gibson KM, Gupta M, Pearl PL, et al. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria). Biol Psychiatry 2003; 54: 763–8

    Article  PubMed  CAS  Google Scholar 

  265. Gupta M, Greven R, Jansen EE, et al. Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria). J Pharmacol Exp Ther 2002; 302: 180–7

    Article  PubMed  CAS  Google Scholar 

  266. Gibson KM, Hoffman GF, Hodson AK, et al. 4-Hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics 1998; 29: 14–22

    Article  PubMed  CAS  Google Scholar 

  267. Hogema BM, Taylor M, Jakobs C, et al. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 2001; 29: 212–6

    Article  PubMed  CAS  Google Scholar 

  268. Chambliss KL, Caudle DL, Hinson DD, et al. Molecular cloning of the mature NADADVANCE \u 3+ADVANCE \d 3-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology and tissue expression. J Biol Chem 1995; 270: 461–7

    Article  PubMed  Google Scholar 

  269. Gibson KM, Schor DSM, Gupta M, et al. Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. J Neurochem 2002; 81: 71–9

    Article  PubMed  CAS  Google Scholar 

  270. Snead OC, Wu Y, Cortez MA, et al. Gamma-hydroxybutyric acid and GABAB receptor-mediated function in mice deficient for succinate semialdehyde dehydrogenase. Program no. 503.12. 2002 abstract viewer/itinerary planner. Washington, DC: Society for Neuroscience, 2002

    Google Scholar 

  271. Wirrell EC. Natural history of absence epilepsy in children. Can J Neurol Sci 2003; 30: 184–8

    PubMed  Google Scholar 

  272. Buzzi A, Wu Y, Perez-Velazquez J-L, et al. Altered GABAB receptor (GABABR) function and lethal status epilepticus in mice deficient for succinic semialdehyde dehydrogenase. Program no. 303.2 2003 abstract viewer/itinerary planner. Washington, DC: Society for Neuroscience [online]. Available from URL: http://sfn.scholarone.com/itin2003/index.html [Accessed 2003]

  273. Gibson KM, Jakobs C, Ogier H, et al. Vigabatrin therapy in six patients with succinic semialdehyde dehydrogenase deficiency. J Inher Metab Dis 1995; 18: 143–6

    Article  PubMed  CAS  Google Scholar 

  274. Ergezinger K, Jeschke R, Frauendienst-Egger G, et al. Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003; 54: 686–9

    Article  PubMed  CAS  Google Scholar 

  275. Gupta M, Hogema BM, Grompe M, et al. Murine succinate semialdehyde dehydrogenase deficiency. Ann Neurol 2003; 54Suppl. 6: S81–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Canadian Institutes of Health Research (grant # 14329 MOP), the National Institutes of Health (grant # NS40270), an endowment from the Bloorview Childrens Hospital Foundation, a personal award to CGT Wong from the Heart and Stroke Foundation of Canada, and members of the Partnership for Pediatric Epilepsy Research (including the American Epilepsy Society, the Epilepsy Foundation, Anna and Jim Fantaci, Fight Against Childhood Epilepsy and Seizures [F.A.C.E.S.], Neurotherapy Ventures Charitable Research Fund, and Parents Against Childhood Epilepsy [P.A.C.E.]). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C.G.T., Chan, K.F.Y., Gibson, K.M. et al. γ-Hydroxybutyric Acid. Toxicol Rev 23, 3–20 (2004). https://doi.org/10.2165/00139709-200423010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200423010-00002

Keywords

Navigation