Skip to main content
Erschienen in: Clinical Pharmacokinetics 10/2009

01.10.2009 | Original Research Article

A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labelling

verfasst von: Dr Akihiro Hisaka, Makiko Kusama, Yoshiyuki Ohno, Yuichi Sugiyama, Hiroshi Suzuki

Erschienen in: Clinical Pharmacokinetics | Ausgabe 10/2009

Einloggen, um Zugang zu erhalten

Abstract

Background and Objective

Pharmacokinetic drug-drug interactions (DDIs) are one of the major causes of adverse events in pharmacotherapy, and systematic prediction of the clinical relevance of DDIs is an issue of significant clinical importance. In a previous study, total exposure changes of many substrate drugs of cytochrome P450 (CYP) 3A4 caused by coadministration of inhibitor drugs were successfully predicted by using in vivo information. In order to exploit these predictions in daily pharmacotherapy, the clinical significance of the pharmacokinetic changes needs to be carefully evaluated. The aim of the present study was to construct a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered with pharmacokinetic changes in a systematic manner. Furthermore, the classifications proposed by PISCS were compared in a detailed manner with current alert classifications in the product labelling or the summary of product characteristics used in Japan, the US and the UK.

Methods

A matrix table was composed by stratifying two basic parameters of the prediction: the contribution ratio of CYP3A4 to the oral clearance of substrates (CR), and the inhibition ratio of inhibitors (IR). The total exposure increase was estimated for each cell in the table by associating CR and IR values, and the cells were categorized into nine zones according to the magnitude of the exposure increase. Then, correspondences between the DDI significance and the zones were determined for each drug group considering the observed exposure changes and the current classification in the product labelling. Substrate drugs of CYP3A4 selected from three therapeutic groups, i.e. HMG-CoA reductase inhibitors (statins), calcium-channel antagonists/blockers (CCBs) and benzodiazepines (BZPs), were analysed as representative examples. The product labelling descriptions of drugs in Japan, US and UK were obtained from the websites of each regulatory body.

Results

Among 220 combinations of drugs investigated, estimated exposure changes were more than 5-fold for 41 combinations in which ten combinations were not alerted in the product labelling at least in one country; these involved buspirone, nisoldipine and felodipine as substrates, and ketoconazole, voriconazole, telithromycin, clarithromycin and nefazodone as inhibitors. For those drug combinations, the alert classifications were anticipated as potentially inappropriate. In the current product labelling, many intercountry differences were also noted. Considering the relationships between previously observed exposure changes and the current alert classifications, the boundaries between ‘contraindication’ and ‘warning/caution’ were determined as a 7-fold exposure increase for statins and CCBs, and as a 4-fold increase for BZPs. PISCS clearly discriminated these drug combinations in accordance with the determined boundaries. Classifications by PISCS were expected to be valid even for future drugs because the classifications were made by zones, not by designating individual drugs.

Conclusion

The present analysis suggested that many current alert classifications were potentially inappropriate especially for drug combinations where pharmacokinetics had not been evaluated. It is expected that PISCS would contribute to constructing a leak-less alerting system for a broad range of pharmacokinetic DDIs. Further validation of PISCS is required in clinical studies with key drug combinations, and its extension to other CYP and metabolizing enzymes remains to be achieved.
Literatur
1.
Zurück zum Zitat Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004 Jul 3; 329(7456): 15–9PubMedCrossRef Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004 Jul 3; 329(7456): 15–9PubMedCrossRef
2.
Zurück zum Zitat Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005 Oct; 4(10): 825–33PubMedCrossRef Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005 Oct; 4(10): 825–33PubMedCrossRef
3.
Zurück zum Zitat Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2(5): 205–7PubMedCrossRef Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2(5): 205–7PubMedCrossRef
4.
Zurück zum Zitat Estelle F, Simons R. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol 1999 Nov; 83(5): 481–8PubMedCrossRef Estelle F, Simons R. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol 1999 Nov; 83(5): 481–8PubMedCrossRef
5.
Zurück zum Zitat Huang SM GF, Rahman A, Frueh F, et al. Application of pharmacogenomics in clinical pharmacology. Toxicol Mech Methods 2006; 16(2): 89–99PubMedCrossRef Huang SM GF, Rahman A, Frueh F, et al. Application of pharmacogenomics in clinical pharmacology. Toxicol Mech Methods 2006; 16(2): 89–99PubMedCrossRef
6.
Zurück zum Zitat Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006 Jan; 316(1): 336–48PubMedCrossRef Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006 Jan; 316(1): 336–48PubMedCrossRef
7.
Zurück zum Zitat Brown HS, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 2006; 45(10): 1035–50PubMedCrossRef Brown HS, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 2006; 45(10): 1035–50PubMedCrossRef
8.
Zurück zum Zitat Brown HS, Ito K, Galetin A, et al. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2005 Nov; 60(5): 508–18PubMedCrossRef Brown HS, Ito K, Galetin A, et al. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2005 Nov; 60(5): 508–18PubMedCrossRef
9.
Zurück zum Zitat Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004 Apr; 57(4): 473–86PubMedCrossRef Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004 Apr; 57(4): 473–86PubMedCrossRef
10.
Zurück zum Zitat Ito K, Hallifax D, Obach RS, et al. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 2005 Jun; 33(6): 837–44PubMedCrossRef Ito K, Hallifax D, Obach RS, et al. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 2005 Jun; 33(6): 837–44PubMedCrossRef
11.
Zurück zum Zitat Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet 2007; 46(8): 681–96PubMedCrossRef Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet 2007; 46(8): 681–96PubMedCrossRef
12.
Zurück zum Zitat Ohno Y, Hisaka A, Ueno M, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet 2008; 47(10): 669–80PubMedCrossRef Ohno Y, Hisaka A, Ueno M, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet 2008; 47(10): 669–80PubMedCrossRef
13.
Zurück zum Zitat Fujita K. Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metab Drug Interact 2004; 20(4): 195–217CrossRef Fujita K. Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metab Drug Interact 2004; 20(4): 195–217CrossRef
14.
Zurück zum Zitat Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Ann Rev Pharmacol Toxicol 1999; 39: 1–17CrossRef Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Ann Rev Pharmacol Toxicol 1999; 39: 1–17CrossRef
15.
Zurück zum Zitat Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22(1): 1–21PubMedCrossRef Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22(1): 1–21PubMedCrossRef
16.
Zurück zum Zitat Liu YT, Hao HP, Liu CX, et al. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007; 39(4): 699–721PubMedCrossRef Liu YT, Hao HP, Liu CX, et al. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007; 39(4): 699–721PubMedCrossRef
17.
Zurück zum Zitat Williams JA, Cook J, Hurst SI. A significant drug-metabolizing role for CYP3A5? Drug Metab Dispos 2003 Dec; 31(12): 1526–30PubMedCrossRef Williams JA, Cook J, Hurst SI. A significant drug-metabolizing role for CYP3A5? Drug Metab Dispos 2003 Dec; 31(12): 1526–30PubMedCrossRef
18.
Zurück zum Zitat Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31PubMedCrossRef Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31PubMedCrossRef
19.
Zurück zum Zitat McConn 2nd DJ, Lin YS, Allen K, et al. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 2004 Oct; 32(10): 1083–91PubMed McConn 2nd DJ, Lin YS, Allen K, et al. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 2004 Oct; 32(10): 1083–91PubMed
20.
Zurück zum Zitat Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003 Jul; 31(7): 938–44PubMedCrossRef Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003 Jul; 31(7): 938–44PubMedCrossRef
21.
Zurück zum Zitat Pearson JT, Wahlstrom JL, Dickmann LJ, et al. Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates. Chem Res Toxicol 2007 Dec; 20(12): 1778–86PubMedCrossRef Pearson JT, Wahlstrom JL, Dickmann LJ, et al. Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates. Chem Res Toxicol 2007 Dec; 20(12): 1778–86PubMedCrossRef
22.
Zurück zum Zitat Isoherranen N, Ludington SR, Givens RC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos 2008 Jan; 36(1): 146–54PubMedCrossRef Isoherranen N, Ludington SR, Givens RC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos 2008 Jan; 36(1): 146–54PubMedCrossRef
24.
Zurück zum Zitat Mikus G, Schowel V, Drzewinska M, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 2006 Aug; 80(2): 126–35PubMedCrossRef Mikus G, Schowel V, Drzewinska M, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 2006 Aug; 80(2): 126–35PubMedCrossRef
25.
Zurück zum Zitat Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62PubMed Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62PubMed
26.
Zurück zum Zitat Liu P, Foster G, Gandelman K, et al. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 2007 Oct; 51(10): 3617–26PubMedCrossRef Liu P, Foster G, Gandelman K, et al. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 2007 Oct; 51(10): 3617–26PubMedCrossRef
27.
Zurück zum Zitat Youdim KA, Zayed A, Dickins M, et al. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions: predictions of compounds as objects of interaction. Br J Clin Pharmacol 2008 May; 65(5): 680–92PubMedCrossRef Youdim KA, Zayed A, Dickins M, et al. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions: predictions of compounds as objects of interaction. Br J Clin Pharmacol 2008 May; 65(5): 680–92PubMedCrossRef
28.
Zurück zum Zitat Houston JB, Galetin A. Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab 2008 Nov; 9(9): 940–51PubMedCrossRef Houston JB, Galetin A. Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab 2008 Nov; 9(9): 940–51PubMedCrossRef
29.
Zurück zum Zitat Gibbs JP, Hyland R, Youdim K. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Drug Metab Dispos 2006 Sep; 34(9): 1516–22PubMedCrossRef Gibbs JP, Hyland R, Youdim K. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Drug Metab Dispos 2006 Sep; 34(9): 1516–22PubMedCrossRef
30.
Zurück zum Zitat Venkatakrishnan K, Obach RS, Rostami-Hodjegan A. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment. Xenobiotica 2007 Oct–Nov; 37(10–11): 1225–56PubMedCrossRef Venkatakrishnan K, Obach RS, Rostami-Hodjegan A. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment. Xenobiotica 2007 Oct–Nov; 37(10–11): 1225–56PubMedCrossRef
31.
Zurück zum Zitat Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998 Sep; 50(3): 387–412PubMed Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998 Sep; 50(3): 387–412PubMed
32.
Zurück zum Zitat Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998 Jul; 46(1): 49–53PubMedCrossRef Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998 Jul; 46(1): 49–53PubMedCrossRef
33.
Zurück zum Zitat Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996 Jul; 60(1): 54–61PubMedCrossRef Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996 Jul; 60(1): 54–61PubMedCrossRef
34.
Zurück zum Zitat Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998 Jul; 64(1): 58–65PubMedCrossRef Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998 Jul; 64(1): 58–65PubMedCrossRef
35.
Zurück zum Zitat Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400PubMedCrossRef Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400PubMedCrossRef
36.
Zurück zum Zitat Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999 Mar; 55(1): 57–60PubMedCrossRef Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999 Mar; 55(1): 57–60PubMedCrossRef
37.
Zurück zum Zitat Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997 Apr; 61(4): 410–5PubMedCrossRef Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997 Apr; 61(4): 410–5PubMedCrossRef
38.
Zurück zum Zitat Tateishi T, Ohashi K, Sudo T, et al. Dose dependent effect of diltiazem on the pharmacokinetics of nifedipine. J Clin Pharmacol 1989 Nov; 29(11): 994–7PubMed Tateishi T, Ohashi K, Sudo T, et al. Dose dependent effect of diltiazem on the pharmacokinetics of nifedipine. J Clin Pharmacol 1989 Nov; 29(11): 994–7PubMed
39.
Zurück zum Zitat Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 Dec; 56(6 Pt 1): 601–7PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 Dec; 56(6 Pt 1): 601–7PubMedCrossRef
40.
Zurück zum Zitat Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998 Sep; 64(3): 237–47PubMedCrossRef Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998 Sep; 64(3): 237–47PubMedCrossRef
41.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996 Feb; 276(2): 370–9 von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996 Feb; 276(2): 370–9
42.
Zurück zum Zitat Lam YW, Alfaro CL, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 2003 Nov; 43(11): 1274–82PubMedCrossRef Lam YW, Alfaro CL, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 2003 Nov; 43(11): 1274–82PubMedCrossRef
43.
Zurück zum Zitat Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 May; 55(5): 481–5PubMedCrossRef Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 May; 55(5): 481–5PubMedCrossRef
44.
Zurück zum Zitat Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006 Apr; 79(4): 350–61PubMedCrossRef Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006 Apr; 79(4): 350–61PubMedCrossRef
45.
Zurück zum Zitat Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999 Nov; 66(5): 461–71PubMedCrossRef Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999 Nov; 66(5): 461–71PubMedCrossRef
46.
Zurück zum Zitat Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998 Dec; 64(6): 661–71PubMedCrossRef Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998 Dec; 64(6): 661–71PubMedCrossRef
47.
Zurück zum Zitat Kivisto KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997 Sep; 62(3): 348–54PubMedCrossRef Kivisto KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997 Sep; 62(3): 348–54PubMedCrossRef
48.
Zurück zum Zitat Kivisto KT, Lamberg TS, Neuvonen PJ. Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol Toxicol 1999 Feb; 84(2): 94–7PubMedCrossRef Kivisto KT, Lamberg TS, Neuvonen PJ. Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol Toxicol 1999 Feb; 84(2): 94–7PubMedCrossRef
49.
Zurück zum Zitat Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998 Aug; 30(5): 1685–7PubMedCrossRef Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998 Aug; 30(5): 1685–7PubMedCrossRef
50.
Zurück zum Zitat Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991 May–Jun; 10(3): 351–8PubMed Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991 May–Jun; 10(3): 351–8PubMed
51.
Zurück zum Zitat Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995 Jul; 58(1): 15–9PubMedCrossRef Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995 Jul; 58(1): 15–9PubMedCrossRef
53.
Zurück zum Zitat Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 2006 Apr; 79(4): 362–70PubMedCrossRef Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 2006 Apr; 79(4): 362–70PubMedCrossRef
54.
Zurück zum Zitat Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998 Mar; 63(3): 332–41PubMedCrossRef Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998 Mar; 63(3): 332–41PubMedCrossRef
55.
Zurück zum Zitat Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996 Sep; 34(9): 400–5PubMed Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996 Sep; 34(9): 400–5PubMed
56.
Zurück zum Zitat Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998 Aug; 64(2): 133–43PubMedCrossRef Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998 Aug; 64(2): 133–43PubMedCrossRef
57.
Zurück zum Zitat Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 1996 Feb; 46(2): 213–7PubMed Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 1996 Feb; 46(2): 213–7PubMed
58.
Zurück zum Zitat Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993 Mar; 53(3): 298–305PubMedCrossRef Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993 Mar; 53(3): 298–305PubMedCrossRef
59.
Zurück zum Zitat Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994 Mar; 37(3): 221–5PubMedCrossRef Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994 Mar; 37(3): 221–5PubMedCrossRef
60.
Zurück zum Zitat Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996 Mar; 82(3): 511–6PubMed Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996 Mar; 82(3): 511–6PubMed
61.
Zurück zum Zitat Elliott P, Dundee JW, Elwood RJ, et al. The influence of H2 receptor antagonists on the plasma concentrations of midazolam and temazepam. Eur J Anaesthesiol 1984 Sep; 1(3): 245–51PubMed Elliott P, Dundee JW, Elwood RJ, et al. The influence of H2 receptor antagonists on the plasma concentrations of midazolam and temazepam. Eur J Anaesthesiol 1984 Sep; 1(3): 245–51PubMed
62.
Zurück zum Zitat Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987 Jan; 41(1): 80–4PubMedCrossRef Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987 Jan; 41(1): 80–4PubMedCrossRef
63.
Zurück zum Zitat Elwood RJ, Hildebrand PJ, Dundee JW, et al. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 1983 Jun; 15(6): 743–5PubMedCrossRef Elwood RJ, Hildebrand PJ, Dundee JW, et al. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 1983 Jun; 15(6): 743–5PubMedCrossRef
64.
Zurück zum Zitat Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5PubMedCrossRef Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5PubMedCrossRef
65.
Zurück zum Zitat Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995 Jun; 33(6): 356–9PubMed Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995 Jun; 33(6): 356–9PubMed
66.
Zurück zum Zitat Grasela DM, LaCreta FP, Kollia GD, et al. Open-label, nonrandomized study of the effects of gatifloxacin on the pharmacokinetics of midazolam in healthy male volunteers. Pharmacotherapy 2000 Mar; 20(3): 330–5PubMedCrossRef Grasela DM, LaCreta FP, Kollia GD, et al. Open-label, nonrandomized study of the effects of gatifloxacin on the pharmacokinetics of midazolam in healthy male volunteers. Pharmacotherapy 2000 Mar; 20(3): 330–5PubMedCrossRef
67.
Zurück zum Zitat Van Harten J, van Brummelen P, Lodewijks MT, et al. Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clin Pharmacol Ther 1988 Mar; 43(3): 332–41PubMedCrossRef Van Harten J, van Brummelen P, Lodewijks MT, et al. Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clin Pharmacol Ther 1988 Mar; 43(3): 332–41PubMedCrossRef
68.
Zurück zum Zitat Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000 Mar; 67(3): 267–74PubMedCrossRef Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000 Mar; 67(3): 267–74PubMedCrossRef
69.
Zurück zum Zitat Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998 Aug; 64(2): 177–82PubMedCrossRef Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998 Aug; 64(2): 177–82PubMedCrossRef
70.
Zurück zum Zitat Ito K, Sawada Y, Sugiyama Y, et al. Linear relationship between GABAA receptor occupancy of muscimol and glucose metabolic response in the conscious mouse brain: clinical implication based on comparison with benzodiazepine receptor agonist. Drug Metab Dispos 1994 Jan–Feb; 22(1): 50–4PubMed Ito K, Sawada Y, Sugiyama Y, et al. Linear relationship between GABAA receptor occupancy of muscimol and glucose metabolic response in the conscious mouse brain: clinical implication based on comparison with benzodiazepine receptor agonist. Drug Metab Dispos 1994 Jan–Feb; 22(1): 50–4PubMed
71.
Zurück zum Zitat Shimada S, Nakajima Y, Yamamoto K, et al. Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol Pharm Bull 1996 Mar; 19(3): 430–7PubMedCrossRef Shimada S, Nakajima Y, Yamamoto K, et al. Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol Pharm Bull 1996 Mar; 19(3): 430–7PubMedCrossRef
72.
Zurück zum Zitat Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003 Apr 2; 289(13): 1681–90PubMedCrossRef Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003 Apr 2; 289(13): 1681–90PubMedCrossRef
73.
Zurück zum Zitat Robin DW, Hasan SS, Lichtenstein MJ, et al. Dose-related effect of triazolam on postural sway. Clin Pharmacol Ther 1991 May; 49(5): 581–8PubMedCrossRef Robin DW, Hasan SS, Lichtenstein MJ, et al. Dose-related effect of triazolam on postural sway. Clin Pharmacol Ther 1991 May; 49(5): 581–8PubMedCrossRef
74.
Zurück zum Zitat Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology 1998 Oct; 139(3): 269–73PubMedCrossRef Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology 1998 Oct; 139(3): 269–73PubMedCrossRef
75.
Zurück zum Zitat Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol 2006 Apr 17; 97(8A): 27–31CCrossRef Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol 2006 Apr 17; 97(8A): 27–31CCrossRef
76.
Zurück zum Zitat Herbrecht R. Voriconazole: therapeutic review of a new azole antifungal. Expert Rev Anti Infect Ther 2004 Aug; 2(4): 485–97PubMedCrossRef Herbrecht R. Voriconazole: therapeutic review of a new azole antifungal. Expert Rev Anti Infect Ther 2004 Aug; 2(4): 485–97PubMedCrossRef
77.
Zurück zum Zitat Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 2005 Sep; 28(9): 1805–8PubMedCrossRef Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 2005 Sep; 28(9): 1805–8PubMedCrossRef
78.
Zurück zum Zitat Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006 May; 12(5): 552–9PubMedCrossRef Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006 May; 12(5): 552–9PubMedCrossRef
79.
Zurück zum Zitat Yoshida N, Yamada A, Mimura Y, et al. Trends in new drug interactions for pharmaceutical products in Japan. Pharmacoepidemiol Drug Saf 2006 Jun; 15(6): 421–7PubMedCrossRef Yoshida N, Yamada A, Mimura Y, et al. Trends in new drug interactions for pharmaceutical products in Japan. Pharmacoepidemiol Drug Saf 2006 Jun; 15(6): 421–7PubMedCrossRef
80.
Zurück zum Zitat Vasques LR, Stabellini R, Xue F, et al. XIST repression in the absence of DNMT1 and DNMT3B. DNA Res 2005; 12(5): 373–8PubMedCrossRef Vasques LR, Stabellini R, Xue F, et al. XIST repression in the absence of DNMT1 and DNMT3B. DNA Res 2005; 12(5): 373–8PubMedCrossRef
81.
Zurück zum Zitat Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 2006; 45(9): 931–56PubMedCrossRef Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 2006; 45(9): 931–56PubMedCrossRef
82.
Zurück zum Zitat Shorr RI, Robin DW. Rational use of benzodiazepines in the elderly. Drugs Aging 1994 Jan; 4(1): 9–20PubMedCrossRef Shorr RI, Robin DW. Rational use of benzodiazepines in the elderly. Drugs Aging 1994 Jan; 4(1): 9–20PubMedCrossRef
83.
Zurück zum Zitat Petrovic M, Mariman A, Warie H, et al. Is there a rationale for prescription of benzodiazepines in the elderly? Review of the literature. Acta Clin Belg 2003 Jan–Feb; 58(1): 27–36PubMed Petrovic M, Mariman A, Warie H, et al. Is there a rationale for prescription of benzodiazepines in the elderly? Review of the literature. Acta Clin Belg 2003 Jan–Feb; 58(1): 27–36PubMed
84.
Zurück zum Zitat Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006 Dec; 80(6): 565–81PubMedCrossRef Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006 Dec; 80(6): 565–81PubMedCrossRef
85.
Zurück zum Zitat Asberg A. Interactions between cyclosporin and lipid-lowering drugs: implications for organ transplant recipients. Drugs 2003; 63(4): 367–78PubMedCrossRef Asberg A. Interactions between cyclosporin and lipid-lowering drugs: implications for organ transplant recipients. Drugs 2003; 63(4): 367–78PubMedCrossRef
Metadaten
Titel
A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labelling
verfasst von
Dr Akihiro Hisaka
Makiko Kusama
Yoshiyuki Ohno
Yuichi Sugiyama
Hiroshi Suzuki
Publikationsdatum
01.10.2009
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 10/2009
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11317220-000000000-00000

Weitere Artikel der Ausgabe 10/2009

Clinical Pharmacokinetics 10/2009 Zur Ausgabe

Correspondence

The Authors’ Reply