Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2009

01.11.2009 | Review Article

Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance

Part I

verfasst von: Shu-Feng Zhou

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2009

Einloggen, um Zugang zu erhalten

Abstract

Cytochrome P450 (CYP) 2D6 is one of the most investigated CYPs in relation to genetic polymorphism, but accounts for only a small percentage of all hepatic CYPs (∼2–4%). There is a large interindividual variation in the enzyme activity of CYP2D6. The enzyme is largely non-inducible and metabolizes ∼25% of current drugs. Typical substrates for CYP2D6 are largely lipophilic bases and include some antidepressants, antipsychotics, antiarrhythmics, antiemetics, β-adrenoceptor antagonists (β-blockers) and opioids. The CYP2D6 activity ranges considerably within a population and includes ultrarapid metabolizers (UMs), extensive metabolizers (EMs), intermediate metabolizers (IMs) and poor metabolizers (PMs). There is a considerable variability in the CYP2D6 allele distribution among different ethnic groups, resulting in variable percentages of PMs, IMs, EMs and UMs in a given population.
To date, 74 allelic variants and a series of subvariants of the CYP2D6 gene have been reported and the number of alleles is still growing. Among these are fully functional alleles, alleles with reduced function and null (non-functional) alleles, which convey a wide range of enzyme activity, from no activity to ultrarapid metabolism of substrates. As a consequence, drug adverse effects or lack of drug effect may occur if standard doses are applied. The alleles *10, *17, *36 and *41 give rise to substrate-dependent decreased activity. Null alleles of CYP2D6 do not encode a functional protein and there is no detectable residual enzymatic activity. It is clear that alleles *3, *4, *5, *6, *7, *8, *11, *12, *13, *14, *15, *16, *18, *19, *20, *21, *38, *40, *42, *44, *56 and *62 have no enzyme activity. They are responsible for the PM phenotype when present in homozygous or compound heterozygous constellations. These alleles are of clinical significance as they often cause altered drug clearance and drug response. Among the most important variants are CYP2D6*2, *3, *4, *5, *10, *17 and *41. On the other hand, the CYP2D6 gene is subject to copy number variations that are often associated with the UM phenotype. Marked decreases in drug concentrations have been observed in UMs with tramadol, venlafaxine, morphine, mirtazapine and metoprolol. The functional impact of CYP2D6 alleles may be substrate-dependent. For example, CYP2D6*17 is generally considered as an allele with reduced function, but it displays remarkable variability in its activity towards substrates such as dextromethorphan, risperidone, codeine and haloperidol.
The clinical consequence of the CYP2D6 polymorphism can be either occurrence of adverse drug reactions or altered drug response. Drugs that are most affected by CYP2D6 polymorphisms are commonly those in which CYP2D6 represents a substantial metabolic pathway either in the activation to form active metabolites or clearance of the agent. For example, encainide metabolites are more potent than the parent drug and thus QRS prolongation is more apparent in EMs than in PMs. In contrast, propafenone is a more potent b-blocker than its metabolites and the β-blocking activity during propafenone therapy is more prominent in PMs than EMs, as the parent drug accumulates in PMs. Since flecainide is mainly eliminated through renal excretion, and both R- and S-flecainide possess equivalent potency for sodium channel inhibition, the CYP2D6 phenotype has a minor impact on the response to flecainide. Since the contribution of CYP2D6 is greater for metoprolol than for carvedilol, propranolol and timolol, a stronger gene-dose effect is seen with this β-blocker, while such an effect is lesser or marginal in other β-blockers.
Concordant genotype-phenotype correlation provides a basis for predicting the phenotype based on genetic testing, which has the potential to achieve optimal pharmacotherapy. However, genotype testing for CYP2D6 is not routinely performed in clinical practice and there is uncertainty regarding genotype-phenotype, gene-concentration and gene-dose relationships. Further prospective studies on the clinical impact of CYP2D6-dependent metabolism of drugs are warranted in large cohorts of subjects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002; 360: 1155–62PubMed Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002; 360: 1155–62PubMed
3.
Zurück zum Zitat Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34: 83–448PubMed Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34: 83–448PubMed
4.
Zurück zum Zitat Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526PubMed Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526PubMed
5.
Zurück zum Zitat Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007; 1770: 489–94PubMed Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007; 1770: 489–94PubMed
6.
Zurück zum Zitat Tomalik-Scharte D, Lazar A, Fuhr U, et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 2008; 8:4–15PubMed Tomalik-Scharte D, Lazar A, Fuhr U, et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J 2008; 8:4–15PubMed
7.
Zurück zum Zitat Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41: 89–295PubMed Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41: 89–295PubMed
9.
Zurück zum Zitat Alexanderson B, Evans DA, Sjoqvist F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br Med J 1969; 4: 764–8PubMed Alexanderson B, Evans DA, Sjoqvist F. Steady-state plasma levels of nortriptyline in twins: influence of genetic factors and drug therapy. Br Med J 1969; 4: 764–8PubMed
10.
Zurück zum Zitat Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II: 584–6 Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II: 584–6
11.
Zurück zum Zitat Eichelbaum M, Spannbrucker N, Steincke B, et al. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1979; 16: 183–7PubMed Eichelbaum M, Spannbrucker N, Steincke B, et al. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1979; 16: 183–7PubMed
12.
Zurück zum Zitat Cascorbi I. Pharmacogenetics of cytochrome P4502D6: genetic background and clinical implication. Eur J Clin Invest 2003; 33: 17–22PubMed Cascorbi I. Pharmacogenetics of cytochrome P4502D6: genetic background and clinical implication. Eur J Clin Invest 2003; 33: 17–22PubMed
13.
Zurück zum Zitat Gardiner SJ, Begg EJ. Pharmacogenetics drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–90PubMed Gardiner SJ, Begg EJ. Pharmacogenetics drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006; 58: 521–90PubMed
14.
Zurück zum Zitat Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005; 5: 6–13PubMed Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005; 5: 6–13PubMed
15.
Zurück zum Zitat Zhou SF, Di YM, Chan E, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 2008; 9: 738–84PubMed Zhou SF, Di YM, Chan E, et al. Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 2008; 9: 738–84PubMed
16.
Zurück zum Zitat Marechal JD, Kemp CA, Roberts GC, et al. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 2008; 153 Suppl. 1: S82–9PubMed Marechal JD, Kemp CA, Roberts GC, et al. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol 2008; 153 Suppl. 1: S82–9PubMed
17.
Zurück zum Zitat Bock KW, Schrenk D, Forster A, et al. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 1994;4:209–18PubMed Bock KW, Schrenk D, Forster A, et al. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 1994;4:209–18PubMed
18.
Zurück zum Zitat Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 23–37PubMed Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 23–37PubMed
19.
Zurück zum Zitat Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95PubMed
20.
Zurück zum Zitat Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43PubMed Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43PubMed
21.
Zurück zum Zitat Wang SL, Huang JD, Lai MD, et al. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 1993; 53: 410–8PubMed Wang SL, Huang JD, Lai MD, et al. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 1993; 53: 410–8PubMed
22.
Zurück zum Zitat Johansson I, Yue QY, Dahl ML, et al. Genetic analysis of the interethnic difference between Chinese and Caucasians in the polymorphic metabolism of debrisoquine and codeine. EurJ Clin Pharmacol 1991; 40: 553–6 Johansson I, Yue QY, Dahl ML, et al. Genetic analysis of the interethnic difference between Chinese and Caucasians in the polymorphic metabolism of debrisoquine and codeine. EurJ Clin Pharmacol 1991; 40: 553–6
23.
Zurück zum Zitat Dahl ML, Johansson I, Bertilsson L, et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population: analysis of the molecular genetic basis. J Pharmacol Exp Ther 1995; 274: 516–20PubMed Dahl ML, Johansson I, Bertilsson L, et al. Ultrarapid hydroxylation of debrisoquine in a Swedish population: analysis of the molecular genetic basis. J Pharmacol Exp Ther 1995; 274: 516–20PubMed
24.
Zurück zum Zitat Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 1996; 278: 441–6PubMed Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 1996; 278: 441–6PubMed
25.
Zurück zum Zitat Gough AC, Smith CA, Howell SM, et al. Localization of the CYP2D gene locus to human chromosome 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis. Genomics 1993; 15: 430–2PubMed Gough AC, Smith CA, Howell SM, et al. Localization of the CYP2D gene locus to human chromosome 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis. Genomics 1993; 15: 430–2PubMed
26.
Zurück zum Zitat Kimura S, Umeno M, Skoda RC, et al. The human debrisoquine 4-hydroxy- lase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 1989; 45: 889–904PubMed Kimura S, Umeno M, Skoda RC, et al. The human debrisoquine 4-hydroxy- lase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 1989; 45: 889–904PubMed
27.
Zurück zum Zitat Eichelbaum M, Baur MP, Dengler HJ, et al. Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 1987; 23: 455–8PubMed Eichelbaum M, Baur MP, Dengler HJ, et al. Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 1987; 23: 455–8PubMed
28.
Zurück zum Zitat Heim M, Meyer UA. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 1990; 336: 529–32PubMed Heim M, Meyer UA. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 1990; 336: 529–32PubMed
29.
Zurück zum Zitat Heim MH, Meyer UA. Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics 1992; 14: 49–58PubMed Heim MH, Meyer UA. Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics 1992; 14: 49–58PubMed
30.
Zurück zum Zitat Steen VM, Andreassen OA, Daly AK, et al. Detection of the poor metabolizer-associated CYP2D6 (D) gene deletion allele by long-PCR technology. Pharmacogenetics 1995; 5: 215–2331.PubMed Steen VM, Andreassen OA, Daly AK, et al. Detection of the poor metabolizer-associated CYP2D6 (D) gene deletion allele by long-PCR technology. Pharmacogenetics 1995; 5: 215–2331.PubMed
31.
Zurück zum Zitat Pai HV, Kommaddi RP, Chinta SJ, et al. A frameshiftmutation and alternate splicing in human brain generate a functional form of the pseudogene cytochrome P4502D7 that demethylates codeine to morphine. J Biol Chem 2004; 279: 27383–9PubMed Pai HV, Kommaddi RP, Chinta SJ, et al. A frameshiftmutation and alternate splicing in human brain generate a functional form of the pseudogene cytochrome P4502D7 that demethylates codeine to morphine. J Biol Chem 2004; 279: 27383–9PubMed
32.
Zurück zum Zitat Gaedigk A, Gaedigk R, Leeder JS. CYP2D7 splice variants in human liver and brain: does CYP2D7 encode functional protein? Biochem Biophys Res Commun 2005; 336: 1241–50PubMed Gaedigk A, Gaedigk R, Leeder JS. CYP2D7 splice variants in human liver and brain: does CYP2D7 encode functional protein? Biochem Biophys Res Commun 2005; 336: 1241–50PubMed
33.
Zurück zum Zitat Zhang WY, Tu YB, Haining RL, et al. Expression and functional analysis of CYP2D6.24, CYP2D6.26, CYP2D6.27, and CYP2D7 isozymes. Drug Metab Dispos 2009; 37: 1–4PubMed Zhang WY, Tu YB, Haining RL, et al. Expression and functional analysis of CYP2D6.24, CYP2D6.26, CYP2D6.27, and CYP2D7 isozymes. Drug Metab Dispos 2009; 37: 1–4PubMed
34.
Zurück zum Zitat Nelson DR, Zeldin DC, Hoffman SM, et al. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004; 14: 1–18PubMed Nelson DR, Zeldin DC, Hoffman SM, et al. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004; 14: 1–18PubMed
35.
Zurück zum Zitat Eichelbaum M, Spannbrucker N, Dengler HJ. Proceedings: N-oxidation of sparteine in man and its interindividual differences. Naunyn Schmiedebergs Arch Pharmacol 1975; 287 Suppl.: R94 Eichelbaum M, Spannbrucker N, Dengler HJ. Proceedings: N-oxidation of sparteine in man and its interindividual differences. Naunyn Schmiedebergs Arch Pharmacol 1975; 287 Suppl.: R94
36.
Zurück zum Zitat Osikowska-Evers B, Dayer P, Meyer UA, et al. Evidence for altered catalytic properties of the cytochrome P-450 involved in sparteine oxidation in poor metabolizers. Clin Pharmacol Ther 1987; 41: 320–5PubMed Osikowska-Evers B, Dayer P, Meyer UA, et al. Evidence for altered catalytic properties of the cytochrome P-450 involved in sparteine oxidation in poor metabolizers. Clin Pharmacol Ther 1987; 41: 320–5PubMed
37.
Zurück zum Zitat Eichelbaum M, Spannbrucker N, Dengler HJ. Influence of the defective metabolism of sparteine on its pharmacokinetics. Eur J Clin Pharmacol 1979; 16: 189–94PubMed Eichelbaum M, Spannbrucker N, Dengler HJ. Influence of the defective metabolism of sparteine on its pharmacokinetics. Eur J Clin Pharmacol 1979; 16: 189–94PubMed
38.
Zurück zum Zitat Eichelbaum M, Mineshita S, Ohnhaus EE, et al. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 1986; 22: 49–53PubMed Eichelbaum M, Mineshita S, Ohnhaus EE, et al. The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 1986; 22: 49–53PubMed
39.
Zurück zum Zitat Eichelbaum M, Reetz KP, Schmidt EK, et al. The genetic polymorphism of sparteinemetabolism. Xenobiotica 1986; 16: 465–81PubMed Eichelbaum M, Reetz KP, Schmidt EK, et al. The genetic polymorphism of sparteinemetabolism. Xenobiotica 1986; 16: 465–81PubMed
40.
Zurück zum Zitat Ebner T, Meese CO, Eichelbaum M. Mechanism of cytochrome P450 2D6-catalyzed sparteine metabolism in humans. Mol Pharmacol 1995; 48: 1078–86PubMed Ebner T, Meese CO, Eichelbaum M. Mechanism of cytochrome P450 2D6-catalyzed sparteine metabolism in humans. Mol Pharmacol 1995; 48: 1078–86PubMed
41.
Zurück zum Zitat Tyndale RF, Gonzalez FJ, Hardwick JP, et al. Sparteine metabolism capacity in human liver: structural variants of human P450IID6 as assessed by immunochemistry. Pharmacol Toxicol 1990; 67: 14–8PubMed Tyndale RF, Gonzalez FJ, Hardwick JP, et al. Sparteine metabolism capacity in human liver: structural variants of human P450IID6 as assessed by immunochemistry. Pharmacol Toxicol 1990; 67: 14–8PubMed
42.
Zurück zum Zitat Schellens JH, van der Wart JH, Brugman M, et al. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a “cocktail” study design. J Pharmacol Exp Ther 1989; 249: 638–45PubMed Schellens JH, van der Wart JH, Brugman M, et al. Influence of enzyme induction and inhibition on the oxidation of nifedipine, sparteine, mephenytoin and antipyrine in humans as assessed by a “cocktail” study design. J Pharmacol Exp Ther 1989; 249: 638–45PubMed
43.
Zurück zum Zitat Madan A, Graham RA, Carroll KM, et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 2003; 31: 421–31PubMed Madan A, Graham RA, Carroll KM, et al. Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 2003; 31: 421–31PubMed
44.
Zurück zum Zitat Zanger UM, Klein K, Saussele T, et al. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 2007; 8: 743–59PubMed Zanger UM, Klein K, Saussele T, et al. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 2007; 8: 743–59PubMed
45.
Zurück zum Zitat Woolhouse NM, Andoh B, Mahgoub A, et al. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin Pharmacol Ther 1979; 26: 584–91PubMed Woolhouse NM, Andoh B, Mahgoub A, et al. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin Pharmacol Ther 1979; 26: 584–91PubMed
46.
Zurück zum Zitat Eiermann B, Edlund PO, Tjernberg A, et al. 1- and 3-hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2D6 in humans. Drug Metab Dispos 1998; 26: 1096–101PubMed Eiermann B, Edlund PO, Tjernberg A, et al. 1- and 3-hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2D6 in humans. Drug Metab Dispos 1998; 26: 1096–101PubMed
47.
Zurück zum Zitat Gonzalez FJ, Skoda RC, Kimura S, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988; 331: 442–6PubMed Gonzalez FJ, Skoda RC, Kimura S, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 1988; 331: 442–6PubMed
48.
Zurück zum Zitat Evans DA, Mahgoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of debrisoquine oxidation in a White British population. J Med Genet 1980; 17: 102–5PubMed Evans DA, Mahgoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of debrisoquine oxidation in a White British population. J Med Genet 1980; 17: 102–5PubMed
49.
Zurück zum Zitat Alvan G, Bechtel P, Iselius L, et al. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol 1990; 39: 533–7PubMed Alvan G, Bechtel P, Iselius L, et al. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol 1990; 39: 533–7PubMed
50.
Zurück zum Zitat Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–97PubMed Bertilsson L, Lou YQ, Du YL, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–97PubMed
51.
Zurück zum Zitat Dayer P, Leemann T, Striberni R. Dextromethorphan O-demethylation in liver microsomes as a prototype reaction to monitor cytochrome P-450 db1 activity. Clin Pharmacol Ther 1989; 45: 34–40PubMed Dayer P, Leemann T, Striberni R. Dextromethorphan O-demethylation in liver microsomes as a prototype reaction to monitor cytochrome P-450 db1 activity. Clin Pharmacol Ther 1989; 45: 34–40PubMed
52.
Zurück zum Zitat Jacqz-Aigrain E, Funck-Brentano C, Cresteil T. CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics 1993; 3: 197–204PubMed Jacqz-Aigrain E, Funck-Brentano C, Cresteil T. CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics 1993; 3: 197–204PubMed
53.
Zurück zum Zitat Schmid B, Bircher J, Preisig R, et al. Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 1985; 38: 618–24PubMed Schmid B, Bircher J, Preisig R, et al. Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 1985; 38: 618–24PubMed
54.
Zurück zum Zitat Kohler D, Hartter S, Fuchs K, et al. CYP2D6 genotype and phenotyping by determination of dextromethorphan and metabolites in serum of healthy controls and of patients under psychotropic medication. Pharmacogenetics 1997; 7: 453–61PubMed Kohler D, Hartter S, Fuchs K, et al. CYP2D6 genotype and phenotyping by determination of dextromethorphan and metabolites in serum of healthy controls and of patients under psychotropic medication. Pharmacogenetics 1997; 7: 453–61PubMed
55.
Zurück zum Zitat Hiroi T, Chow T, Imaoka S, et al. Catalytic specificity ofCYP2D isoforms in rat and human. Drug Metab Dispos 2002; 30: 970–6PubMed Hiroi T, Chow T, Imaoka S, et al. Catalytic specificity ofCYP2D isoforms in rat and human. Drug Metab Dispos 2002; 30: 970–6PubMed
56.
Zurück zum Zitat Carcillo JA, Adedoyin A, Burckart GJ, et al. Coordinated intrahepatic and extrahepatic regulation of cytochrome P4502D6 in healthy subjects and in patients after liver transplantation. Clin Pharmacol Ther 2003; 73: 456–67PubMed Carcillo JA, Adedoyin A, Burckart GJ, et al. Coordinated intrahepatic and extrahepatic regulation of cytochrome P4502D6 in healthy subjects and in patients after liver transplantation. Clin Pharmacol Ther 2003; 73: 456–67PubMed
57.
Zurück zum Zitat Mankowski DC. The role of CYP2C19 in the metabolism of (±) bufuralol, the prototypic substrate of CYP2D6. Drug Metab Dispos 1999; 27: 1024–8PubMed Mankowski DC. The role of CYP2C19 in the metabolism of (±) bufuralol, the prototypic substrate of CYP2D6. Drug Metab Dispos 1999; 27: 1024–8PubMed
58.
Zurück zum Zitat Yamazaki H, Guo Z, Persmark M, et al. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Mol Pharmacol 1994; 46: 568–77PubMed Yamazaki H, Guo Z, Persmark M, et al. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Mol Pharmacol 1994; 46: 568–77PubMed
59.
Zurück zum Zitat Paar WD, Poche S, Gerloff J, et al. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 1997; 53: 235–9PubMed Paar WD, Poche S, Gerloff J, et al. Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 1997; 53: 235–9PubMed
60.
Zurück zum Zitat Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human livermicrosomes. Drug Metab Dispos 2001; 29: 1146–55PubMed Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human livermicrosomes. Drug Metab Dispos 2001; 29: 1146–55PubMed
61.
Zurück zum Zitat Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human livermicrosomes. Clin Investig 1992; 70: 708–10PubMed Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human livermicrosomes. Clin Investig 1992; 70: 708–10PubMed
62.
Zurück zum Zitat Wu WN, McKown LA, Liao S. Metabolism of the analgesic drug Ultram® (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 2002; 32: 411–25PubMed Wu WN, McKown LA, Liao S. Metabolism of the analgesic drug Ultram® (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 2002; 32: 411–25PubMed
63.
Zurück zum Zitat Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43: 879–923PubMed Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43: 879–923PubMed
64.
Zurück zum Zitat Yuan R, Madani S, Wei XX, et al. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 2002; 30: 1311–9PubMed Yuan R, Madani S, Wei XX, et al. Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 2002; 30: 1311–9PubMed
65.
Zurück zum Zitat Zhou SF, Liu JP, Lai XS. Substrate specificity, inhibitors and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 2009; 16: 2661–805PubMed Zhou SF, Liu JP, Lai XS. Substrate specificity, inhibitors and regulation of human cytochrome P450 2D6 and implications in drug development. Curr Med Chem 2009; 16: 2661–805PubMed
66.
Zurück zum Zitat Mellstrom B, von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes. Drug Metab Dispos 1981; 9: 565–8PubMed Mellstrom B, von Bahr C. Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes. Drug Metab Dispos 1981; 9: 565–8PubMed
67.
Zurück zum Zitat Venkatakrishnan K, Von Moltke LL, Obach RS, et al. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther 2000; 293: 343–50PubMed Venkatakrishnan K, Von Moltke LL, Obach RS, et al. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther 2000; 293: 343–50PubMed
68.
Zurück zum Zitat Venkatakrishnan K, Schmider J, Harmatz JS, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001; 41: 1043–54PubMed Venkatakrishnan K, Schmider J, Harmatz JS, et al. Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 2001; 41: 1043–54PubMed
69.
Zurück zum Zitat Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996; 277: 1659–64PubMed Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther 1996; 277: 1659–64PubMed
70.
Zurück zum Zitat Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32PubMed
71.
Zurück zum Zitat Venkatakrishnan K, Greenblatt DJ, von Moltke LL, et al. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38: 112–21PubMed Venkatakrishnan K, Greenblatt DJ, von Moltke LL, et al. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38: 112–21PubMed
72.
Zurück zum Zitat Haritos VS, Ghabrial H, Ahokas JT, et al. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 2000; 10: 591–603PubMed Haritos VS, Ghabrial H, Ahokas JT, et al. Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 2000; 10: 591–603PubMed
73.
Zurück zum Zitat Hartter S, Tybring G, Friedberg T, et al. The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res 2002; 19: 1034–7PubMed Hartter S, Tybring G, Friedberg T, et al. The N-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic CYP2C19. Pharm Res 2002; 19: 1034–7PubMed
74.
Zurück zum Zitat Breyer-Pfaff U, Fischer D, Winne D. Biphasic kinetics of quaternary ammonium glucuronide formation from amitriptyline and diphenhydramine in human livermicrosomes. Drug Metab Dispos 1997; 25: 340–5PubMed Breyer-Pfaff U, Fischer D, Winne D. Biphasic kinetics of quaternary ammonium glucuronide formation from amitriptyline and diphenhydramine in human livermicrosomes. Drug Metab Dispos 1997; 25: 340–5PubMed
75.
Zurück zum Zitat Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol 2000; 50: 563–71PubMed Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol 2000; 50: 563–71PubMed
76.
Zurück zum Zitat Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos 2000; 28: 1187–91PubMed Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos 2000; 28: 1187–91PubMed
77.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Duan SX, et al. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl) 1997; 132: 402–7 von Moltke LL, Greenblatt DJ, Duan SX, et al. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl) 1997; 132: 402–7
78.
Zurück zum Zitat Spigset O, Axelsson S, Norstrom A, et al. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol 2001; 57: 653–8PubMed Spigset O, Axelsson S, Norstrom A, et al. The major fluvoxamine metabolite in urine is formed by CYP2D6. Eur J Clin Pharmacol 2001; 57: 653–8PubMed
79.
Zurück zum Zitat Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J ClinPharmacol 1992; 33: 521–3 Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J ClinPharmacol 1992; 33: 521–3
80.
Zurück zum Zitat Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 2005; 33: 262–70PubMed Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 2005; 33: 262–70PubMed
81.
Zurück zum Zitat Xu ZH, Wang W, Zhao XJ, et al. Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes. Br J Clin Pharmacol 1999; 48: 416–23PubMed Xu ZH, Wang W, Zhao XJ, et al. Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes. Br J Clin Pharmacol 1999; 48: 416–23PubMed
82.
Zurück zum Zitat Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab Dispos 1999; 27: 763–6PubMed Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-demethylation is catalyzed by multiple isoforms of human cytochrome P-450 in vitro. Drug Metab Dispos 1999; 27: 763–6PubMed
83.
Zurück zum Zitat Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMed Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23PubMed
84.
Zurück zum Zitat Brachtendorf L, Jetter A, Beckurts KT, et al. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002; 90: 144–9PubMed Brachtendorf L, Jetter A, Beckurts KT, et al. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol 2002; 90: 144–9PubMed
85.
Zurück zum Zitat Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000; 28: 1168–75PubMed Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000; 28: 1168–75PubMed
86.
Zurück zum Zitat Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278: 21–30PubMed Koyama E, Chiba K, Tani M, et al. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278: 21–30PubMed
87.
Zurück zum Zitat Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. BrJClin Pharmacol 1996; 41: 149–56 Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. BrJClin Pharmacol 1996; 41: 149–56
88.
Zurück zum Zitat Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999; 20: 480–90PubMed Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999; 20: 480–90PubMed
89.
Zurück zum Zitat Yoshii K, Kobayashi K, Tsumuji M, et al. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human livermicrosomes. Life Sci 2000; 67: 175–84PubMed Yoshii K, Kobayashi K, Tsumuji M, et al. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human livermicrosomes. Life Sci 2000; 67: 175–84PubMed
90.
Zurück zum Zitat Wojcikowski J, Maurel P, Daniel WA. Characterization of human cytochrome P450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 2006; 34: 471–6PubMed Wojcikowski J, Maurel P, Daniel WA. Characterization of human cytochrome P450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 2006; 34: 471–6PubMed
91.
Zurück zum Zitat Shiraga T, Kaneko H, Iwasaki K, et al. Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes. Xenobiotica 1999; 29: 217–29PubMed Shiraga T, Kaneko H, Iwasaki K, et al. Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes. Xenobiotica 1999; 29: 217–29PubMed
92.
Zurück zum Zitat Dahl ML, Ekqvist B, Widen J, et al. Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand 1991; 84: 99–102PubMed Dahl ML, Ekqvist B, Widen J, et al. Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand 1991; 84: 99–102PubMed
93.
Zurück zum Zitat Jerling M, Dahl ML, Aberg-Wistedt A, et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclo-penthixol. Clin Pharmacol Ther 1996; 59: 423–8PubMed Jerling M, Dahl ML, Aberg-Wistedt A, et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclo-penthixol. Clin Pharmacol Ther 1996; 59: 423–8PubMed
94.
Zurück zum Zitat Yasui-Furukori N, Hidestrand M, Spina E, et al. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos 2001; 29: 1263–8PubMed Yasui-Furukori N, Hidestrand M, Spina E, et al. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab Dispos 2001; 29: 1263–8PubMed
95.
Zurück zum Zitat Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-deal-kylation of haloperidol and bromperidol and oxidation of their reduced forms by human livermicrosomes. Life Sci 2000; 67: 2913–20PubMed Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-deal-kylation of haloperidol and bromperidol and oxidation of their reduced forms by human livermicrosomes. Life Sci 2000; 67: 2913–20PubMed
96.
Zurück zum Zitat Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol 1998; 54: 253–9PubMed Kudo S, Odomi M. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation. Eur J Clin Pharmacol 1998; 54: 253–9PubMed
97.
Zurück zum Zitat Yue QY, Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997; 52: 41–7PubMed Yue QY, Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur J Clin Pharmacol 1997; 52: 41–7PubMed
98.
Zurück zum Zitat Kirkwood LC, Nation RL, Somogyi AA. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine. Br J Clin Pharmacol 1997; 44: 549–55PubMed Kirkwood LC, Nation RL, Somogyi AA. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine. Br J Clin Pharmacol 1997; 44: 549–55PubMed
99.
Zurück zum Zitat Sanwald P, David M, Dow J. Use of electrospray ionization liquid chromatography-mass spectrometry to study the role of CYP2D6 in the in vitro metabolism of 5-hydroxytryptamine receptor antagonists. J Chromatogr B Biomed Appl 1996; 678: 53–61PubMed Sanwald P, David M, Dow J. Use of electrospray ionization liquid chromatography-mass spectrometry to study the role of CYP2D6 in the in vitro metabolism of 5-hydroxytryptamine receptor antagonists. J Chromatogr B Biomed Appl 1996; 678: 53–61PubMed
100.
Zurück zum Zitat Firkusny L, Kroemer HK, Eichelbaum M. In vitro characterization of cytochrome P450 catalysed metabolism of the antiemetic tropisetron. Biochem Pharmacol 1995; 49: 1777–84PubMed Firkusny L, Kroemer HK, Eichelbaum M. In vitro characterization of cytochrome P450 catalysed metabolism of the antiemetic tropisetron. Biochem Pharmacol 1995; 49: 1777–84PubMed
101.
Zurück zum Zitat Fischer V, Vickers AE, Heitz F, et al. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos 1994; 22: 269–74PubMed Fischer V, Vickers AE, Heitz F, et al. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos 1994; 22: 269–74PubMed
102.
Zurück zum Zitat Sanwald P, David M, Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron: comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos 1996; 24: 602–9PubMed Sanwald P, David M, Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron: comparison with other indole-containing 5-HT3 antagonists. Drug Metab Dispos 1996; 24: 602–9PubMed
103.
Zurück zum Zitat Desta Z, Wu GM, Morocho AM, et al. The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos 2002; 30: 336–43PubMed Desta Z, Wu GM, Morocho AM, et al. The gastroprokinetic and antiemetic drug metoclopramide is a substrate and inhibitor of cytochrome P450 2D6. Drug Metab Dispos 2002; 30: 336–43PubMed
104.
Zurück zum Zitat Kobayashi K, Chiba K, Yagi T, et al. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther 1997; 280: 927–33PubMed Kobayashi K, Chiba K, Yagi T, et al. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther 1997; 280: 927–33PubMed
105.
Zurück zum Zitat Rochat B, Amey M, Gillet M, et al. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human livermicrosomes. Pharmacogenetics 1997; 7: 1–10PubMed Rochat B, Amey M, Gillet M, et al. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human livermicrosomes. Pharmacogenetics 1997; 7: 1–10PubMed
106.
Zurück zum Zitat Olesen OV, Linnet K. Studies on the stereoselectivemetabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999; 59: 298–309PubMed Olesen OV, Linnet K. Studies on the stereoselectivemetabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999; 59: 298–309PubMed
107.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–9 von Moltke LL, Greenblatt DJ, Giancarlo GM, et al. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos 2001; 29: 1102–9
108.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Grassi JM, et al. Gepirone and 1-(2- pyrimidinyl)-piperazine in vitro: human cytochromes mediating transformation and cytochrome inhibitory effects. Psychopharmacology (Berl) 1998; 140: 293–9 von Moltke LL, Greenblatt DJ, Grassi JM, et al. Gepirone and 1-(2- pyrimidinyl)-piperazine in vitro: human cytochromes mediating transformation and cytochrome inhibitory effects. Psychopharmacology (Berl) 1998; 140: 293–9
109.
Zurück zum Zitat Greenblatt DJ, Von Moltke LL, Giancarlo GM, et al. Human cytochromes mediating gepirone biotransformation at low substrate concentrations. Biopharm Drug Dispos 2003; 24: 87–94PubMed Greenblatt DJ, Von Moltke LL, Giancarlo GM, et al. Human cytochromes mediating gepirone biotransformation at low substrate concentrations. Biopharm Drug Dispos 2003; 24: 87–94PubMed
110.
Zurück zum Zitat Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73: 170–7PubMed Skinner MH, Kuan HY, Pan A, et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73: 170–7PubMed
111.
Zurück zum Zitat Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001; 7: 249–64PubMed Anttila SA, Leinonen EV. A review of the pharmacological and clinical profile of mirtazapine. CNS Drug Rev 2001; 7: 249–64PubMed
112.
Zurück zum Zitat Wang JS, DeVane CL. Involvement ofCYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 2003; 31: 742–7PubMed Wang JS, DeVane CL. Involvement ofCYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 2003; 31: 742–7PubMed
113.
Zurück zum Zitat Bottiger Y, Dostert P, Benedetti MS, et al. Involvement ofCYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 1996; 42:707–11PubMed Bottiger Y, Dostert P, Benedetti MS, et al. Involvement ofCYP2D6 but not CYP2C19 in nicergoline metabolism in humans. Br J Clin Pharmacol 1996; 42:707–11PubMed
114.
Zurück zum Zitat Grace JM, Kinter MT, Macdonald TL. Atypical metabolism of deprenyl and its enantiomer, (S)-(+)- N, α-dimethyl- N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol 1994; 7: 286–90PubMed Grace JM, Kinter MT, Macdonald TL. Atypical metabolism of deprenyl and its enantiomer, (S)-(+)- N, α-dimethyl- N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol 1994; 7: 286–90PubMed
115.
Zurück zum Zitat Hidestrand M, Oscarson M, Salonen JS, et al. CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos 2001; 29: 1480–4PubMed Hidestrand M, Oscarson M, Salonen JS, et al. CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos 2001; 29: 1480–4PubMed
116.
Zurück zum Zitat Gras J, Llenas J, Jansat JM, et al. Almotriptan, a new anti-migraine agent: a review. CNS Drug Rev 2002; 8: 217–34PubMed Gras J, Llenas J, Jansat JM, et al. Almotriptan, a new anti-migraine agent: a review. CNS Drug Rev 2002; 8: 217–34PubMed
117.
Zurück zum Zitat Pascual J. Almotriptan: an effective and well-tolerated treatment for migraine pain. Drugs Today (Barc) 2003; 39 Suppl. D: 31–6 Pascual J. Almotriptan: an effective and well-tolerated treatment for migraine pain. Drugs Today (Barc) 2003; 39 Suppl. D: 31–6
118.
Zurück zum Zitat Keam SJ, Goa KL, Figgitt DP. Almotriptan: a review of its use in migraine. Drugs 2002; 62: 387–414PubMed Keam SJ, Goa KL, Figgitt DP. Almotriptan: a review of its use in migraine. Drugs 2002; 62: 387–414PubMed
119.
Zurück zum Zitat McEnroe JD, Fleishaker JC. Clinical pharmacokinetics of almotriptan, a serotonin 5-HT1B/1D receptor agonist for the treatment of migraine. Clin Pharmacokinet 2005; 44: 237–46PubMed McEnroe JD, Fleishaker JC. Clinical pharmacokinetics of almotriptan, a serotonin 5-HT1B/1D receptor agonist for the treatment of migraine. Clin Pharmacokinet 2005; 44: 237–46PubMed
120.
Zurück zum Zitat Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450s. Drug Metab Dispos 1995; 23: 1253–62PubMed Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450s. Drug Metab Dispos 1995; 23: 1253–62PubMed
121.
Zurück zum Zitat Spaldin V, Madden S, Pool WF, et al. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 1994; 38: 15–22PubMed Spaldin V, Madden S, Pool WF, et al. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 1994; 38: 15–22PubMed
122.
Zurück zum Zitat Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother 1998; 32: 70–7PubMed Barner EL, Gray SL. Donepezil use in Alzheimer disease. Ann Pharmacother 1998; 32: 70–7PubMed
123.
Zurück zum Zitat Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics 1999; 9: 661–8PubMed Bachus R, Bickel U, Thomsen T, et al. The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics 1999; 9: 661–8PubMed
124.
Zurück zum Zitat Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41: 719–39PubMed Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41: 719–39PubMed
125.
Zurück zum Zitat Obach RS, Pablo J, Mash DC. Cytochrome P4502D6 catalyzes the O-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxy-ibogamine. Drug Metab Dispos 1998; 26: 764–8PubMed Obach RS, Pablo J, Mash DC. Cytochrome P4502D6 catalyzes the O-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxy-ibogamine. Drug Metab Dispos 1998; 26: 764–8PubMed
126.
Zurück zum Zitat Davies BJ, Coller JK, Somogyi AA, et al. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos 2007; 35: 128–38PubMed Davies BJ, Coller JK, Somogyi AA, et al. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes. Drug Metab Dispos 2007; 35: 128–38PubMed
127.
Zurück zum Zitat Desta Z, Ward BA, Soukhova NV, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75PubMed Desta Z, Ward BA, Soukhova NV, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75PubMed
128.
Zurück zum Zitat Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 2007; 96: 2224–31PubMed Beverage JN, Sissung TM, Sion AM, et al. CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 2007; 96: 2224–31PubMed
129.
Zurück zum Zitat Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95: 1758–64PubMed Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 2003; 95: 1758–64PubMed
130.
Zurück zum Zitat Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002; 30: 869–74PubMed Crewe HK, Notley LM, Wunsch RM, et al. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 2002; 30: 869–74PubMed
131.
Zurück zum Zitat Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–6PubMed Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57: 3402–6PubMed
132.
Zurück zum Zitat Narimatsu S, Kariya S, Isozaki S, et al. Involvement ofCYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem Biophys Res Commun 1993; 193: 1262–8PubMed Narimatsu S, Kariya S, Isozaki S, et al. Involvement ofCYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem Biophys Res Commun 1993; 193: 1262–8PubMed
133.
Zurück zum Zitat Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine: formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. BiochemPharmacol 1996; 51: 165–72 Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine: formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. BiochemPharmacol 1996; 51: 165–72
134.
Zurück zum Zitat Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol 1995; 107: 420PubMed Yumibe N, Huie K, Chen KJ, et al. Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allergy Immunol 1995; 107: 420PubMed
135.
Zurück zum Zitat Nakamura K, Yokoi T, Inoue K, et al. CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human livermicrosomes. Pharmacogenetics 1996; 6: 449–57PubMed Nakamura K, Yokoi T, Inoue K, et al. CYP2D6 is the principal cytochrome P450 responsible for metabolism of the histamine H1 antagonist promethazine in human livermicrosomes. Pharmacogenetics 1996; 6: 449–57PubMed
136.
Zurück zum Zitat Matsumoto S, Yamazoe Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 2001; 51: 133–42PubMed Matsumoto S, Yamazoe Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and a comparison with terfenadine. Br J Clin Pharmacol 2001; 51: 133–42PubMed
137.
Zurück zum Zitat Nakamura K, Yokoi T, Kodama T, et al. Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther 1998; 284: 437–42PubMed Nakamura K, Yokoi T, Kodama T, et al. Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes. J Pharmacol Exp Ther 1998; 284: 437–42PubMed
138.
Zurück zum Zitat Jones BC, Hyland R, Ackland M, et al. Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 1998; 26: 875–82PubMed Jones BC, Hyland R, Ackland M, et al. Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 1998; 26: 875–82PubMed
139.
Zurück zum Zitat Imai T, Taketani M, Suzu T, et al. In vitro identification of the human cytochrome P-450 enzymes involved in the N-demethylation of azelastine. Drug Metab Dispos 1999; 27: 942–6PubMed Imai T, Taketani M, Suzu T, et al. In vitro identification of the human cytochrome P-450 enzymes involved in the N-demethylation of azelastine. Drug Metab Dispos 1999; 27: 942–6PubMed
140.
Zurück zum Zitat Nakajima M, Nakamura S, Tokudome S, et al. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 1999; 27: 1381–91PubMed Nakajima M, Nakamura S, Tokudome S, et al. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 1999; 27: 1381–91PubMed
141.
Zurück zum Zitat Goto A, Ueda K, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull 2005; 28: 328–34PubMed Goto A, Ueda K, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its kinetic parameters and inhibition constants. Biol Pharm Bull 2005; 28: 328–34PubMed
142.
Zurück zum Zitat Goto A, Adachi Y, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull 2004; 27: 684–90PubMed Goto A, Adachi Y, Inaba A, et al. Identification of human P450 isoforms involved in the metabolism of the antiallergic drug, oxatomide, and its inhibitory effect on enzyme activity. Biol Pharm Bull 2004; 27: 684–90PubMed
143.
Zurück zum Zitat Kishimoto W, Hiroi T, Sakai K, et al. Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol 1997; 98: 273–92PubMed Kishimoto W, Hiroi T, Sakai K, et al. Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine. Res Commun Mol Pathol Pharmacol 1997; 98: 273–92PubMed
144.
Zurück zum Zitat Akutsu T, Kobayashi K, Sakurada K, et al. Identification of human cytochrome P450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007; 35: 72–8PubMed Akutsu T, Kobayashi K, Sakurada K, et al. Identification of human cytochrome P450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 2007; 35: 72–8PubMed
145.
Zurück zum Zitat He N, Zhang WQ, Shockley D, et al. Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 847–51PubMed He N, Zhang WQ, Shockley D, et al. Inhibitory effects of H1-antihistamines on CYP2D6- and CYP2C9-mediated drug metabolic reactions in human liver microsomes. Eur J Clin Pharmacol 2002; 57: 847–51PubMed
146.
Zurück zum Zitat Yasuda SU, Zannikos P, Young AE, et al. The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 2002; 53: 519–25PubMed Yasuda SU, Zannikos P, Young AE, et al. The roles of CYP2D6 and stereoselectivity in the clinical pharmacokinetics of chlorpheniramine. Br J Clin Pharmacol 2002; 53: 519–25PubMed
147.
Zurück zum Zitat Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93PubMed
148.
Zurück zum Zitat Kudo S, Okumura H, Miyamoto G, et al. Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine. Drug Metab Dispos 1999; 27: 303–8PubMed Kudo S, Okumura H, Miyamoto G, et al. Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine. Drug Metab Dispos 1999; 27: 303–8PubMed
149.
Zurück zum Zitat Kumar GN, Rodrigues AD, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996; 277: 423–31PubMed Kumar GN, Rodrigues AD, Buko AM, et al. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 1996; 277: 423–31PubMed
150.
Zurück zum Zitat Erickson DA, Mather G, Trager WF, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 1999; 27: 1488–95PubMed Erickson DA, Mather G, Trager WF, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 1999; 27: 1488–95PubMed
151.
Zurück zum Zitat Voorman RL, Maio SM, Hauer MJ, et al. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos 1998; 26: 631–9PubMed Voorman RL, Maio SM, Hauer MJ, et al. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A. Drug Metab Dispos 1998; 26: 631–9PubMed
152.
Zurück zum Zitat Halliday RC, Jones BC, Smith DA, et al. An investigation of the interaction between halofantrine, CYP2D6 and CYP3A4: studies with human liver microsomes and heterologous enzyme expression systems. Br J Clin Pharmacol 1995; 40: 369–78PubMed Halliday RC, Jones BC, Smith DA, et al. An investigation of the interaction between halofantrine, CYP2D6 and CYP3A4: studies with human liver microsomes and heterologous enzyme expression systems. Br J Clin Pharmacol 1995; 40: 369–78PubMed
153.
Zurück zum Zitat Gibbs JP, Hyland R, Youdim K. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Drug Metab Dispos 2006; 34: 1516–22PubMed Gibbs JP, Hyland R, Youdim K. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Drug Metab Dispos 2006; 34: 1516–22PubMed
154.
Zurück zum Zitat Evans WE, Relling MV, Petros WP, et al. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 1989; 45: 568–73PubMed Evans WE, Relling MV, Petros WP, et al. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 1989; 45: 568–73PubMed
155.
Zurück zum Zitat Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMed Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39PubMed
156.
Zurück zum Zitat Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301PubMed
157.
Zurück zum Zitat Zoble RG, Kirsten EB, Brewington J. Pharmacokinetic and pharmacodynamic evaluation of propafenone in patients with ventricular arrhythmia. Propafenone Research Group. Clin Pharmacol Ther 1989; 45: 535–41PubMed Zoble RG, Kirsten EB, Brewington J. Pharmacokinetic and pharmacodynamic evaluation of propafenone in patients with ventricular arrhythmia. Propafenone Research Group. Clin Pharmacol Ther 1989; 45: 535–41PubMed
158.
Zurück zum Zitat Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clin Pharmacol Ther 1975; 17: 555–63PubMed Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clin Pharmacol Ther 1975; 17: 555–63PubMed
159.
Zurück zum Zitat Holliday SM, Benfield P. Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–94PubMed Holliday SM, Benfield P. Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–94PubMed
160.
Zurück zum Zitat Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8PubMed Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8PubMed
161.
Zurück zum Zitat Sunwoo YE, Ryu J, Jung H, et al. Disposition of chlorpromazine in Korean healthy subjects with CYP2D6 wild-type and *10B mutation [abstract]. Clin Pharmacol Ther 2004; 73: PII–146 Sunwoo YE, Ryu J, Jung H, et al. Disposition of chlorpromazine in Korean healthy subjects with CYP2D6 wild-type and *10B mutation [abstract]. Clin Pharmacol Ther 2004; 73: PII–146
162.
Zurück zum Zitat Ebner T, Eichelbaum M. The metabolism of aprindine in relation to the sparteine/debrisoquinepolymorphism. BrJClinPharmacol 1993; 35:426–30 Ebner T, Eichelbaum M. The metabolism of aprindine in relation to the sparteine/debrisoquinepolymorphism. BrJClinPharmacol 1993; 35:426–30
163.
Zurück zum Zitat Wang LL, Li Y, Zhou SF. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450. Drug Metab Dispos 2009; 37: 977–91PubMed Wang LL, Li Y, Zhou SF. A bioinformatics approach for the phenotype prediction of nonsynonymous single nucleotide polymorphisms in human cytochromes P450. Drug Metab Dispos 2009; 37: 977–91PubMed
164.
Zurück zum Zitat Kagimoto M, Heim M, Kagimoto K, et al. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine: study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem 1990; 265: 17209–14PubMed Kagimoto M, Heim M, Kagimoto K, et al. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine: study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem 1990; 265: 17209–14PubMed
165.
Zurück zum Zitat Evert B, Eichelbaum M, Haubruck H, et al. Functional properties of CYP2D6.1 (wild-type) and CYP2D6.7 (His324Pro) expressed by recombinant baculovirus in insect cells. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: 309–18PubMed Evert B, Eichelbaum M, Haubruck H, et al. Functional properties of CYP2D6.1 (wild-type) and CYP2D6.7 (His324Pro) expressed by recombinant baculovirus in insect cells. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: 309–18PubMed
166.
Zurück zum Zitat Gaedigk A, Blum M, Gaedigk R, et al. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 1991; 48: 943–50PubMed Gaedigk A, Blum M, Gaedigk R, et al. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 1991; 48: 943–50PubMed
167.
Zurück zum Zitat Skoda RC, Gonzalez FJ, Demierre A, et al. Two mutant alleles of the human cytochrome P-450db 1 gene (P450C2D 1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci U S A 1988; 85: 5240–3PubMed Skoda RC, Gonzalez FJ, Demierre A, et al. Two mutant alleles of the human cytochrome P-450db 1 gene (P450C2D 1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci U S A 1988; 85: 5240–3PubMed
168.
Zurück zum Zitat Marez D, Legrand M, Sabbagh N, et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997; 7: 193–202PubMed Marez D, Legrand M, Sabbagh N, et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997; 7: 193–202PubMed
169.
Zurück zum Zitat Dahl ML, Johansson I, Palmertz MP, et al. Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther 1992; 51: 12–7PubMed Dahl ML, Johansson I, Palmertz MP, et al. Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther 1992; 51: 12–7PubMed
170.
Zurück zum Zitat Masimirembwa C, Hasler J, Bertilssons L, et al. Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a Black Zimbabwean population: reduced enzyme activity and evaluation of metabolic correlation ofCYP2D6 probe drugs. EurJClin Pharmacol 1996; 51: 117–22 Masimirembwa C, Hasler J, Bertilssons L, et al. Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a Black Zimbabwean population: reduced enzyme activity and evaluation of metabolic correlation ofCYP2D6 probe drugs. EurJClin Pharmacol 1996; 51: 117–22
171.
Zurück zum Zitat Simooya OO, Njunju E, Hodjegan AR, et al. Debrisoquine and metoprolol oxidation in Zambians: a population study. Pharmacogenetics 1993; 3:205–8PubMed Simooya OO, Njunju E, Hodjegan AR, et al. Debrisoquine and metoprolol oxidation in Zambians: a population study. Pharmacogenetics 1993; 3:205–8PubMed
172.
Zurück zum Zitat Gaedigk A, Bradford LD, Alander SW, et al. CYP2D6*36 gene arrangements within the CYP2D6 locus: association of CYP2D6*36 with poor metabolizer status. Drug Metab Dispos 2006; 34: 563–9PubMed Gaedigk A, Bradford LD, Alander SW, et al. CYP2D6*36 gene arrangements within the CYP2D6 locus: association of CYP2D6*36 with poor metabolizer status. Drug Metab Dispos 2006; 34: 563–9PubMed
173.
Zurück zum Zitat Evert B, Griese EU, Eichelbaum M. A missense mutation in exon 6 of the CYP2D6 gene leading to a histidine 324 to proline exchange is associated with the poor metabolizer phenotype of sparteine. Naunyn Schmiedebergs Arch Pharmacol 1994; 350: 434–9PubMed Evert B, Griese EU, Eichelbaum M. A missense mutation in exon 6 of the CYP2D6 gene leading to a histidine 324 to proline exchange is associated with the poor metabolizer phenotype of sparteine. Naunyn Schmiedebergs Arch Pharmacol 1994; 350: 434–9PubMed
174.
Zurück zum Zitat Marez D, Sabbagh N, Legrand M, et al. A novel CYP2D6 allele with an abolished splice recognition site associated with the poor metabolizer phenotype. Pharmacogenetics 1995; 5: 305–11PubMed Marez D, Sabbagh N, Legrand M, et al. A novel CYP2D6 allele with an abolished splice recognition site associated with the poor metabolizer phenotype. Pharmacogenetics 1995; 5: 305–11PubMed
175.
Zurück zum Zitat Marez-Allorge D, Ellis SW, Lo Guidice JM, et al. A rare G2061 insertion affecting the open reading frame of CYP2D6 and responsible for the poor metabolizer phenotype. Pharmacogenetics 1999; 9: 393–6PubMed Marez-Allorge D, Ellis SW, Lo Guidice JM, et al. A rare G2061 insertion affecting the open reading frame of CYP2D6 and responsible for the poor metabolizer phenotype. Pharmacogenetics 1999; 9: 393–6PubMed
176.
Zurück zum Zitat Li L, Pan RM, Porter TD, et al. New cytochrome P450 2D6*56 allele identified by genotype/phenotype analysis of cryopreserved human hepatocytes. Drug Metab Dispos 2006; 34: 1411–6PubMed Li L, Pan RM, Porter TD, et al. New cytochrome P450 2D6*56 allele identified by genotype/phenotype analysis of cryopreserved human hepatocytes. Drug Metab Dispos 2006; 34: 1411–6PubMed
177.
Zurück zum Zitat Klein K, Tatzel S, Raimundo S, et al. A natural variant of the heme-binding signature (R441C) resulting in complete loss of function ofCYP2D6. Drug Metab Dispos 2007; 35: 1247–50PubMed Klein K, Tatzel S, Raimundo S, et al. A natural variant of the heme-binding signature (R441C) resulting in complete loss of function ofCYP2D6. Drug Metab Dispos 2007; 35: 1247–50PubMed
178.
Zurück zum Zitat Marez D, Legrand M, Sabbagh N, et al. An additional allelic variant of the CYP2D6 genecausing impaired metabolism of sparteine. Hum Genet 1996; 97: 668–70PubMed Marez D, Legrand M, Sabbagh N, et al. An additional allelic variant of the CYP2D6 genecausing impaired metabolism of sparteine. Hum Genet 1996; 97: 668–70PubMed
179.
Zurück zum Zitat Wang SL, Lai MD, Huang JD. G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab Dispos 1999; 27: 385–8PubMed Wang SL, Lai MD, Huang JD. G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab Dispos 1999; 27: 385–8PubMed
180.
Zurück zum Zitat Kubota T, Yamaura Y, Ohkawa N, et al. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br J Clin Pharmacol 2000; 50: 31–4PubMed Kubota T, Yamaura Y, Ohkawa N, et al. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in different CYP2D6 genotypes. Br J Clin Pharmacol 2000; 50: 31–4PubMed
181.
Zurück zum Zitat Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996; 6: 193–201PubMed Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996; 6: 193–201PubMed
182.
Zurück zum Zitat Sakuyama K, Sasaki T, Ujiie S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51,53-55, and 57). Drug Metab Dispos 2008; 36: 2460–7PubMed Sakuyama K, Sasaki T, Ujiie S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51,53-55, and 57). Drug Metab Dispos 2008; 36: 2460–7PubMed
183.
Zurück zum Zitat Ji L, Pan S, Marti-Jaun J, et al. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin Chem 2002; 48: 983–8PubMed Ji L, Pan S, Marti-Jaun J, et al. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin Chem 2002; 48: 983–8PubMed
184.
Zurück zum Zitat Yokoi T, Kosaka Y, Chida M, et al. A new CYP2D6 allele with a nine base insertion in exon 9 in a Japanese population associated with poor metabolizer phenotype. Pharmacogenetics 1996; 6: 395–401PubMed Yokoi T, Kosaka Y, Chida M, et al. A new CYP2D6 allele with a nine base insertion in exon 9 in a Japanese population associated with poor metabolizer phenotype. Pharmacogenetics 1996; 6: 395–401PubMed
185.
Zurück zum Zitat Steen VM, Molven A, Aarskog NK, et al. Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of human cytochrome P450 CYP2D6 gene. Hum Mol Genet 1995; 4: 2251–7PubMed Steen VM, Molven A, Aarskog NK, et al. Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of human cytochrome P450 CYP2D6 gene. Hum Mol Genet 1995; 4: 2251–7PubMed
186.
Zurück zum Zitat Idle JR, Corchero J, Gonzalez FJ. Medical implications ofHGP’s sequence of chromosome 22. Lancet 2000; 355: 319PubMed Idle JR, Corchero J, Gonzalez FJ. Medical implications ofHGP’s sequence of chromosome 22. Lancet 2000; 355: 319PubMed
187.
Zurück zum Zitat Panserat S, Mura C, Gerard N, et al. An unequal cross-over event within the CYP2D gene cluster generates a chimeric CYP2D7/CYP2D6 gene which is associated with the poor metabolizer phenotype. Br J Clin Pharmacol 1995; 40: 361–7PubMed Panserat S, Mura C, Gerard N, et al. An unequal cross-over event within the CYP2D gene cluster generates a chimeric CYP2D7/CYP2D6 gene which is associated with the poor metabolizer phenotype. Br J Clin Pharmacol 1995; 40: 361–7PubMed
188.
Zurück zum Zitat Daly AK, Fairbrother KS, Andreassen OA, et al. Characterization and PCR-based detection of two different hybrid CYP2D7P/CYP2D6 alleles associated with the poor metabolizer phenotype. Pharmacogenetics 1996; 6: 319–28PubMed Daly AK, Fairbrother KS, Andreassen OA, et al. Characterization and PCR-based detection of two different hybrid CYP2D7P/CYP2D6 alleles associated with the poor metabolizer phenotype. Pharmacogenetics 1996; 6: 319–28PubMed
189.
Zurück zum Zitat Johansson I, Oscarson M, Yue QY, et al. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 1994; 46: 452–9PubMed Johansson I, Oscarson M, Yue QY, et al. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 1994; 46: 452–9PubMed
190.
Zurück zum Zitat Ishiguro A, Kubota T, Sasaki H, et al. A long PCR assay to distinguish CYP2D6*5 and a novel CYP2D6 mutant allele associated with an 11-kb EcoRI haplotype. Clin Chim Acta 2004; 347: 217–21PubMed Ishiguro A, Kubota T, Sasaki H, et al. A long PCR assay to distinguish CYP2D6*5 and a novel CYP2D6 mutant allele associated with an 11-kb EcoRI haplotype. Clin Chim Acta 2004; 347: 217–21PubMed
191.
Zurück zum Zitat Leathart JB, London SJ, Steward A, et al. CYP2D6 phenotype-genotype relationships in African-Americans and Caucasians in Los Angeles. Pharmacogenetics 1998; 8: 529–41PubMed Leathart JB, London SJ, Steward A, et al. CYP2D6 phenotype-genotype relationships in African-Americans and Caucasians in Los Angeles. Pharmacogenetics 1998; 8: 529–41PubMed
192.
Zurück zum Zitat Yokota H, Tamura S, Furuya H, et al. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteinemetabolism. Pharmacogenetics 1993; 3: 256–63PubMed Yokota H, Tamura S, Furuya H, et al. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteinemetabolism. Pharmacogenetics 1993; 3: 256–63PubMed
193.
Zurück zum Zitat Huang J, Chuang SK, Cheng CL, et al. Pharmacokinetics of metoprolol enantiomers in Chinese subjects of major CYP2D6 genotypes. Clin Pharmacol Ther 1999; 65: 402–7PubMed Huang J, Chuang SK, Cheng CL, et al. Pharmacokinetics of metoprolol enantiomers in Chinese subjects of major CYP2D6 genotypes. Clin Pharmacol Ther 1999; 65: 402–7PubMed
194.
Zurück zum Zitat Yue QY, Zhong ZH, Tybring G, et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64: 384–90PubMed Yue QY, Zhong ZH, Tybring G, et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64: 384–90PubMed
195.
Zurück zum Zitat Yamazaki S, Sato K, Suhara K, et al. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem 1993; 114: 652–7PubMed Yamazaki S, Sato K, Suhara K, et al. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem 1993; 114: 652–7PubMed
196.
Zurück zum Zitat Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and in hibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292–300PubMed Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and in hibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 2007; 35: 1292–300PubMed
197.
Zurück zum Zitat Garcia-Barcelo M, Chow LY, Lam KL, et al. Occurrence of CYP2D6 gene duplication in Hong Kong Chinese. Clin Chem 2000; 46: 1411–3PubMed Garcia-Barcelo M, Chow LY, Lam KL, et al. Occurrence of CYP2D6 gene duplication in Hong Kong Chinese. Clin Chem 2000; 46: 1411–3PubMed
198.
Zurück zum Zitat Mitsunaga Y, Kubota T, Ishiguro A, et al. Frequent occurrence of CYP2D6*10 duplication allele in a Japanese population. Mutat Res 2002; 505: 83–5PubMed Mitsunaga Y, Kubota T, Ishiguro A, et al. Frequent occurrence of CYP2D6*10 duplication allele in a Japanese population. Mutat Res 2002; 505: 83–5PubMed
199.
Zurück zum Zitat Masimirembwa C, Persson I, Bertilsson L, et al. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a Black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol 1996;42:713–9PubMed Masimirembwa C, Persson I, Bertilsson L, et al. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a Black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol 1996;42:713–9PubMed
200.
Zurück zum Zitat Wennerholm A, Johansson I, Massele AY, et al. Decreased capacity for debrisoquine metabolism among Black Tanzanians: analyses of the CYP2D6 genotype and phenotype. Pharmacogenetics 1999; 9: 707–14PubMed Wennerholm A, Johansson I, Massele AY, et al. Decreased capacity for debrisoquine metabolism among Black Tanzanians: analyses of the CYP2D6 genotype and phenotype. Pharmacogenetics 1999; 9: 707–14PubMed
201.
Zurück zum Zitat Griese EU, Asante-Poku S, Ofori-Adjei D, et al. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–23PubMed Griese EU, Asante-Poku S, Ofori-Adjei D, et al. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–23PubMed
202.
Zurück zum Zitat Oscarson M, Hidestrand M, Johansson I, et al. A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol Pharmacol 1997; 52: 1034–40PubMed Oscarson M, Hidestrand M, Johansson I, et al. A combination of mutations in the CYP2D6*17 (CYP2D6Z) allele causes alterations in enzyme function. Mol Pharmacol 1997; 52: 1034–40PubMed
203.
Zurück zum Zitat Bogni A, Monshouwer M, Moscone A, et al. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles. Toxicol In Vitro 2005; 19: 621–9PubMed Bogni A, Monshouwer M, Moscone A, et al. Substrate specific metabolism by polymorphic cytochrome P450 2D6 alleles. Toxicol In Vitro 2005; 19: 621–9PubMed
204.
Zurück zum Zitat Cai WM, Nikoloff DM, Pan RM, et al. CYP2D6 genetic variation in healthy adults and psychiatric African-American subjects: implications for clinical practice and genetic testing. Pharmacogenomics J 2006; 6: 343–50PubMed Cai WM, Nikoloff DM, Pan RM, et al. CYP2D6 genetic variation in healthy adults and psychiatric African-American subjects: implications for clinical practice and genetic testing. Pharmacogenomics J 2006; 6: 343–50PubMed
205.
Zurück zum Zitat Fukuda T, Nishida Y, Imaoka S, et al. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the lowexpression but also by low affinity ofCYP2D6. Arch Biochem Biophys 2000; 380: 303–8PubMed Fukuda T, Nishida Y, Imaoka S, et al. The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the lowexpression but also by low affinity ofCYP2D6. Arch Biochem Biophys 2000; 380: 303–8PubMed
206.
Zurück zum Zitat Chida M, Ariyoshi N, Yokoi T, et al. New allelic arrangement CYP2D6*36 × 2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics 2002; 12: 659–62PubMed Chida M, Ariyoshi N, Yokoi T, et al. New allelic arrangement CYP2D6*36 × 2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics 2002; 12: 659–62PubMed
207.
Zurück zum Zitat Raimundo S, Fischer J, Eichelbaum M, et al. Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 2000; 10: 577–81PubMed Raimundo S, Fischer J, Eichelbaum M, et al. Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 2000; 10: 577–81PubMed
208.
Zurück zum Zitat Raimundo S, Toscano C, Klein K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in White subjects. Clin Pharmacol Ther 2004; 76: 128–38PubMed Raimundo S, Toscano C, Klein K, et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in White subjects. Clin Pharmacol Ther 2004; 76: 128–38PubMed
209.
Zurück zum Zitat Toscano C, Klein K, Blievernicht J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics 2006; 16: 755–66PubMed Toscano C, Klein K, Blievernicht J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: evidence for modulation of splicing events. Pharmacogenet Genomics 2006; 16: 755–66PubMed
210.
Zurück zum Zitat Rau T, Diepenbruck S, Diepenbruck I, et al. The 2988G>A polymorphism affects splicing of a CYP2D6 minigene. Clin Pharmacol Ther 2006; 80: 555–58; author reply 558-60PubMed Rau T, Diepenbruck S, Diepenbruck I, et al. The 2988G>A polymorphism affects splicing of a CYP2D6 minigene. Clin Pharmacol Ther 2006; 80: 555–58; author reply 558-60PubMed
211.
Zurück zum Zitat Soyama A, Kubo T, Miyajima A, et al. Novel nonsynonymous single nucleotide polymorphisms in the CYP2D6 gene. Drug Metab Pharmacokinet 2004; 19: 313–9PubMed Soyama A, Kubo T, Miyajima A, et al. Novel nonsynonymous single nucleotide polymorphisms in the CYP2D6 gene. Drug Metab Pharmacokinet 2004; 19: 313–9PubMed
212.
Zurück zum Zitat Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006; 281: 7614–22PubMed Rowland P, Blaney FE, Smyth MG, et al. Crystal structure of human cytochrome P450 2D6. J Biol Chem 2006; 281: 7614–22PubMed
213.
Zurück zum Zitat Soyama A, Saito Y, Kubo T, et al. Sequence-based analysis of the CYP2D6*36-CYP2D6*10 tandem-type arrangement, a major CYP2D6*10 haplotype in the Japanese population. Drug Metab Pharmacokinet 2006; 21: 208–16PubMed Soyama A, Saito Y, Kubo T, et al. Sequence-based analysis of the CYP2D6*36-CYP2D6*10 tandem-type arrangement, a major CYP2D6*10 haplotype in the Japanese population. Drug Metab Pharmacokinet 2006; 21: 208–16PubMed
214.
Zurück zum Zitat Gaedigk A, Bhathena A, Ndjountche L, et al. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. Pharmacogenomics J 2005; 5: 173–82PubMed Gaedigk A, Bhathena A, Ndjountche L, et al. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. Pharmacogenomics J 2005; 5: 173–82PubMed
215.
Zurück zum Zitat Gaedigk A, Ndjountche L, Leeder JS, et al. Limited association of the 2988G>A single nucleotide polymorphism with CYP2D6*41 in Black subjects. Clin Pharmacol Ther 2005; 77: 228–30; author reply 230-1PubMed Gaedigk A, Ndjountche L, Leeder JS, et al. Limited association of the 2988G>A single nucleotide polymorphism with CYP2D6*41 in Black subjects. Clin Pharmacol Ther 2005; 77: 228–30; author reply 230-1PubMed
216.
Zurück zum Zitat Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A 1993; 90: 11825–9PubMed Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci U S A 1993; 90: 11825–9PubMed
217.
Zurück zum Zitat Flanagan JU, Marechal JD, Ward R, et al. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem J 2004; 380: 353–60PubMed Flanagan JU, Marechal JD, Ward R, et al. Phe120 contributes to the regiospecificity of cytochrome P450 2D6: mutation leads to the formation of a novel dextromethorphan metabolite. Biochem J 2004; 380: 353–60PubMed
218.
Zurück zum Zitat Keizers PH, Lussenburg BM, de Graaf C, et al. Influence of phenylalanine 120 on cytochrome P450 2D6 catalytic selectivity and regiospecificity: crucial role in 7-methoxy-4-(aminomethyl)-coumarin metabolism. Biochem Pharmacol 2004; 68: 2263–71PubMed Keizers PH, Lussenburg BM, de Graaf C, et al. Influence of phenylalanine 120 on cytochrome P450 2D6 catalytic selectivity and regiospecificity: crucial role in 7-methoxy-4-(aminomethyl)-coumarin metabolism. Biochem Pharmacol 2004; 68: 2263–71PubMed
219.
Zurück zum Zitat McLaughlin LA, Paine MJ, Kemp CA, et al. Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem 2005; 280: 38617–24PubMed McLaughlin LA, Paine MJ, Kemp CA, et al. Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding. J Biol Chem 2005; 280: 38617–24PubMed
220.
Zurück zum Zitat Solus JF, Arietta BJ, Harris JR, et al. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 2004; 5: 895–931PubMed Solus JF, Arietta BJ, Harris JR, et al. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 2004; 5: 895–931PubMed
221.
Zurück zum Zitat Panserat S, Mura C, Gerard N, et al. DNA haplotype-dependent differences in the amino acid sequence of debrisoquine 4-hydroxylase (CYP2D6): evidence for two major allozymes in extensive metabolisers. Hum Genet 1994; 94: 401–6PubMed Panserat S, Mura C, Gerard N, et al. DNA haplotype-dependent differences in the amino acid sequence of debrisoquine 4-hydroxylase (CYP2D6): evidence for two major allozymes in extensive metabolisers. Hum Genet 1994; 94: 401–6PubMed
222.
Zurück zum Zitat Gaedigk A, Ndjountche L, Divakaran K, et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin Pharmacol Ther 2007; 81: 242–51PubMed Gaedigk A, Ndjountche L, Divakaran K, et al. Cytochrome P4502D6 (CYP2D6) gene locus heterogeneity: characterization of gene duplication events. Clin Pharmacol Ther 2007; 81: 242–51PubMed
223.
Zurück zum Zitat Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341:63PubMed Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341:63PubMed
224.
Zurück zum Zitat Aklillu E, Herrlin K, Gustafsson LL, et al. Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics 2002; 12: 375–83PubMed Aklillu E, Herrlin K, Gustafsson LL, et al. Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics 2002; 12: 375–83PubMed
225.
Zurück zum Zitat Nishida Y, Fukuda T, Yamamoto I, et al. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 2000; 10: 567–70PubMed Nishida Y, Fukuda T, Yamamoto I, et al. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 2000; 10: 567–70PubMed
226.
Zurück zum Zitat Bathum L, Johansson I, Ingelman-Sundberg M, et al. Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics 1998; 8: 119–23PubMed Bathum L, Johansson I, Ingelman-Sundberg M, et al. Ultrarapid metabolism of sparteine: frequency of alleles with duplicated CYP2D6 genes in a Danish population as determined by restriction fragment length polymorphism and long polymerase chain reaction. Pharmacogenetics 1998; 8: 119–23PubMed
227.
Zurück zum Zitat Bathum L, Skjelbo E, Mutabingwa TK, et al. Phenotypes and genotypes for CYP2D6 and CYP2C19 in a Black Tanzanian population. Br J Clin Pharmacol 1999; 48: 395–401PubMed Bathum L, Skjelbo E, Mutabingwa TK, et al. Phenotypes and genotypes for CYP2D6 and CYP2C19 in a Black Tanzanian population. Br J Clin Pharmacol 1999; 48: 395–401PubMed
228.
Zurück zum Zitat Sistonen J, Fuselli S, Palo JU, et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009; 19: 170–9PubMed Sistonen J, Fuselli S, Palo JU, et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009; 19: 170–9PubMed
229.
Zurück zum Zitat Sistonen J, Sajantila A, Lao O, et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 2007; 17: 93–101PubMed Sistonen J, Sajantila A, Lao O, et al. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 2007; 17: 93–101PubMed
230.
Zurück zum Zitat Kirchheiner J, Keulen JT, Bauer S, et al. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 2008; 28: 78–83PubMed Kirchheiner J, Keulen JT, Bauer S, et al. Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 2008; 28: 78–83PubMed
231.
Zurück zum Zitat Stamer UM, Musshoff F, Kobilay M, et al. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 2007; 82: 41–7PubMed Stamer UM, Musshoff F, Kobilay M, et al. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 2007; 82: 41–7PubMed
232.
Zurück zum Zitat Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31:493–502PubMed Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31:493–502PubMed
233.
Zurück zum Zitat Kirchheiner J, Schmidt H, Tzvetkov M, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 2007; 7: 257–65PubMed Kirchheiner J, Schmidt H, Tzvetkov M, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 2007; 7: 257–65PubMed
234.
Zurück zum Zitat Kirchheiner J, Henckel HB, Meineke I, et al. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–52PubMed Kirchheiner J, Henckel HB, Meineke I, et al. Impact of the CYP2D6 ultrarapid metabolizer genotype on mirtazapine pharmacokinetics and adverse events in healthy volunteers. J Clin Psychopharmacol 2004; 24: 647–52PubMed
235.
Zurück zum Zitat Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2004; 76: 302–12PubMed Kirchheiner J, Heesch C, Bauer S, et al. Impact of the ultrarapid metabolizer genotype of cytochrome P450 2D6 on metoprolol pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 2004; 76: 302–12PubMed
236.
Zurück zum Zitat Goryachkina K, Burbello A, Boldueva S, et al. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol 2008; 64: 1163–73PubMed Goryachkina K, Burbello A, Boldueva S, et al. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol 2008; 64: 1163–73PubMed
237.
Zurück zum Zitat Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain aftercodeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4PubMed Dalen P, Frengell C, Dahl ML, et al. Quick onset of severe abdominal pain aftercodeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 1997; 19: 543–4PubMed
238.
Zurück zum Zitat Horai Y, Nakano M, Ishizaki T, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207PubMed Horai Y, Nakano M, Ishizaki T, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207PubMed
239.
Zurück zum Zitat Sohn DR, Shin SG, Park CW, et al. Metoprolol oxidation polymorphism in a Korean population: comparison with native Japanese and Chinese populations. Br J Clin Pharmacol 1991; 32: 504–7PubMed Sohn DR, Shin SG, Park CW, et al. Metoprolol oxidation polymorphism in a Korean population: comparison with native Japanese and Chinese populations. Br J Clin Pharmacol 1991; 32: 504–7PubMed
240.
Zurück zum Zitat Horai Y, Taga J, Ishizaki T, et al. Correlations among the metabolic ratios of three test probes (metoprolol, debrisoquine and sparteine) for genetically determined oxidation polymorphism in a Japanese population. Br J Clin Pharmacol 1990;29: 111–5PubMed Horai Y, Taga J, Ishizaki T, et al. Correlations among the metabolic ratios of three test probes (metoprolol, debrisoquine and sparteine) for genetically determined oxidation polymorphism in a Japanese population. Br J Clin Pharmacol 1990;29: 111–5PubMed
241.
Zurück zum Zitat Lamba V, Lamba JK, Dilawari JB, et al. Genetic polymorphism of CYP2D6 in North Indian subjects. Eur J Clin Pharmacol 1998; 54: 787–91PubMed Lamba V, Lamba JK, Dilawari JB, et al. Genetic polymorphism of CYP2D6 in North Indian subjects. Eur J Clin Pharmacol 1998; 54: 787–91PubMed
242.
Zurück zum Zitat Gaedigk A, Bradford LD, Marcucci KA, et al. Unique CYP2D6 activity distribution and genotype-phenotype discordance in Black Americans. Clin Pharmacol Ther 2002; 72: 76–89PubMed Gaedigk A, Bradford LD, Marcucci KA, et al. Unique CYP2D6 activity distribution and genotype-phenotype discordance in Black Americans. Clin Pharmacol Ther 2002; 72: 76–89PubMed
243.
Zurück zum Zitat Evans WE, Relling MV, Rahman A, et al. Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in Black Americans. J Clin Invest 1993; 91: 2150–4PubMed Evans WE, Relling MV, Rahman A, et al. Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in Black Americans. J Clin Invest 1993; 91: 2150–4PubMed
244.
Zurück zum Zitat Relling MV, Cherrie J, Schell MJ, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American Black versus White subjects. Clin Pharmacol Ther 1991; 50: 308–13PubMed Relling MV, Cherrie J, Schell MJ, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American Black versus White subjects. Clin Pharmacol Ther 1991; 50: 308–13PubMed
245.
Zurück zum Zitat Jorge LF, Eichelbaum M, Griese EU, et al. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 1999; 9: 217–28PubMed Jorge LF, Eichelbaum M, Griese EU, et al. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 1999; 9: 217–28PubMed
246.
Zurück zum Zitat Griese EU, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26PubMed Griese EU, Zanger UM, Brudermanns U, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998; 8: 15–26PubMed
247.
Zurück zum Zitat London SJ, Daly AK, Leathart JB, et al. Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis 1997; 18: 1203–14PubMed London SJ, Daly AK, Leathart JB, et al. Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis 1997; 18: 1203–14PubMed
248.
Zurück zum Zitat Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 1999; 147: 300–5 Scordo MG, Spina E, Facciola G, et al. Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 1999; 147: 300–5
249.
Zurück zum Zitat Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a White population. Clin Pharmacol Ther 1995; 57: 265–9PubMed Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a White population. Clin Pharmacol Ther 1995; 57: 265–9PubMed
250.
Zurück zum Zitat Bernal ML, Sinues B, Johansson I, et al. Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenetics 1999; 9: 657–60PubMed Bernal ML, Sinues B, Johansson I, et al. Ten percent of North Spanish individuals carry duplicated or triplicated CYP2D6 genes associated with ultrarapid metabolism of debrisoquine. Pharmacogenetics 1999; 9: 657–60PubMed
251.
Zurück zum Zitat Aynacioglu AS, Sachse C, Bozkurt A, et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 1999; 66: 185–92PubMed Aynacioglu AS, Sachse C, Bozkurt A, et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 1999; 66: 185–92PubMed
252.
Zurück zum Zitat McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997; 7: 187–91PubMed McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997; 7: 187–91PubMed
253.
Zurück zum Zitat Lin KM, Finder E. Neuroleptic dosage for Asians. Am J Psychiatry 1983; 140: 490–5PubMed Lin KM, Finder E. Neuroleptic dosage for Asians. Am J Psychiatry 1983; 140: 490–5PubMed
254.
Zurück zum Zitat Mihara K, Otani K, Suzuki A, et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997; 133: 95–8 Mihara K, Otani K, Suzuki A, et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berl) 1997; 133: 95–8
255.
Zurück zum Zitat Horowitz JD, Button IK, Wing L. Is perhexiline essential for the optimal management of angina pectoris? Aust N Z J Med 1995; 25: 111–3PubMed Horowitz JD, Button IK, Wing L. Is perhexiline essential for the optimal management of angina pectoris? Aust N Z J Med 1995; 25: 111–3PubMed
256.
Zurück zum Zitat Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev 2007; 25: 76–97PubMed Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev 2007; 25: 76–97PubMed
257.
Zurück zum Zitat Cole PL, Beamer AD, McGowan N, et al. Efficacy and safety of perhexiline maleate in refractory angina: a double-blind placebo-controlled clinical trial of anovel antianginal agent. Circulation 1990; 81: 1260–70PubMed Cole PL, Beamer AD, McGowan N, et al. Efficacy and safety of perhexiline maleate in refractory angina: a double-blind placebo-controlled clinical trial of anovel antianginal agent. Circulation 1990; 81: 1260–70PubMed
258.
Zurück zum Zitat Sorensen LB, Sorensen RN, Miners JO, et al. Polymorphic hydroxylation of perhexiline in vitro. Br J Clin Pharmacol 2003; 55: 635–8PubMed Sorensen LB, Sorensen RN, Miners JO, et al. Polymorphic hydroxylation of perhexiline in vitro. Br J Clin Pharmacol 2003; 55: 635–8PubMed
259.
Zurück zum Zitat Sallustio BC, Westley IS, Morris RG. Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol 2002; 54: 107–14PubMed Sallustio BC, Westley IS, Morris RG. Pharmacokinetics of the antianginal agent perhexiline: relationship between metabolic ratio and steady-state dose. Br J Clin Pharmacol 2002; 54: 107–14PubMed
260.
Zurück zum Zitat Barclay ML, Sawyers SM, Begg EJ, et al. Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics 2003; 13: 627–32PubMed Barclay ML, Sawyers SM, Begg EJ, et al. Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics 2003; 13: 627–32PubMed
261.
Zurück zum Zitat Cooper RG, Evans DA, Whibley EJ. Polymorphic hydroxylation of perhexiline maleate in man. J Med Genet 1984; 21: 27–33PubMed Cooper RG, Evans DA, Whibley EJ. Polymorphic hydroxylation of perhexiline maleate in man. J Med Genet 1984; 21: 27–33PubMed
262.
Zurück zum Zitat Cooper RG, Evans DA, Price AH. Studies on the metabolism of perhexiline in man. Eur J Clin Pharmacol 1987; 32: 569–76PubMed Cooper RG, Evans DA, Price AH. Studies on the metabolism of perhexiline in man. Eur J Clin Pharmacol 1987; 32: 569–76PubMed
263.
Zurück zum Zitat Morgan MY, Reshef R, Shah RR, et al. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 1984; 25: 1057–64PubMed Morgan MY, Reshef R, Shah RR, et al. Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 1984; 25: 1057–64PubMed
264.
Zurück zum Zitat Shah RR, Oates NS, Idle JR, et al. Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br Med J (Clin Res Ed) 1982; 284: 295–9 Shah RR, Oates NS, Idle JR, et al. Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br Med J (Clin Res Ed) 1982; 284: 295–9
265.
Zurück zum Zitat Follath F. The utility of serum drug level monitoring during therapy with class III antiarrhythmic agents. J Cardiovasc Pharmacol 1992; 20 Suppl. 2: S41–3PubMed Follath F. The utility of serum drug level monitoring during therapy with class III antiarrhythmic agents. J Cardiovasc Pharmacol 1992; 20 Suppl. 2: S41–3PubMed
266.
Zurück zum Zitat Niwa T, Shiraga T, Mitani Y, et al. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement ofCYP2D and CYP3A. Drug Metab Dispos 2000; 28: 1128–34PubMed Niwa T, Shiraga T, Mitani Y, et al. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement ofCYP2D and CYP3A. Drug Metab Dispos 2000; 28: 1128–34PubMed
267.
Zurück zum Zitat Abolfathi Z, Fiset C, Gilbert M, et al. Role of polymorphic debrisoquin 4-hydroxylase activity in the stereoselective disposition of mexiletine in humans. J Pharmacol Exp Ther 1993; 266: 1196–201PubMed Abolfathi Z, Fiset C, Gilbert M, et al. Role of polymorphic debrisoquin 4-hydroxylase activity in the stereoselective disposition of mexiletine in humans. J Pharmacol Exp Ther 1993; 266: 1196–201PubMed
268.
Zurück zum Zitat Broly F, Libersa C, Lhermitte M, et al. Inhibitory studies of mexiletine and dextromethorphan oxidation in human liver microsomes. Biochem Pharmacol 1990; 39: 1045–53PubMed Broly F, Libersa C, Lhermitte M, et al. Inhibitory studies of mexiletine and dextromethorphan oxidation in human liver microsomes. Biochem Pharmacol 1990; 39: 1045–53PubMed
269.
Zurück zum Zitat Botsch S, Gautier JC, Beaune P, et al. Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol 1993;43: 120–6PubMed Botsch S, Gautier JC, Beaune P, et al. Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol 1993;43: 120–6PubMed
270.
Zurück zum Zitat Kroemer HK, Fischer C, Meese CO, et al. Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism. Mol Pharmacol 1991; 40: 135–42PubMed Kroemer HK, Fischer C, Meese CO, et al. Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism. Mol Pharmacol 1991; 40: 135–42PubMed
271.
Zurück zum Zitat Kroemer HK, Mikus G, Kronbach T, et al. In vitro characterization of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clin Pharmacol Ther 1989; 45: 28–33PubMed Kroemer HK, Mikus G, Kronbach T, et al. In vitro characterization of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clin Pharmacol Ther 1989; 45: 28–33PubMed
272.
Zurück zum Zitat Funck-Brentano C, Thomas G, Jacqz-Aigrain E, et al. Polymorphism of dextromethorphan metabolism: relationships between phenotype, genotype and response to the administration of encainide in humans. J Pharmacol Exp Ther 1992; 263: 780–6PubMed Funck-Brentano C, Thomas G, Jacqz-Aigrain E, et al. Polymorphism of dextromethorphan metabolism: relationships between phenotype, genotype and response to the administration of encainide in humans. J Pharmacol Exp Ther 1992; 263: 780–6PubMed
273.
Zurück zum Zitat Haefeli WE, Bargetzi MJ, Follath F, et al. Potent inhibition of cytochrome P450IID6 (debrisoquin 4-hydroxylase) by flecainide in vitro and in vivo. J Cardiovasc Pharmacol 1990; 15: 776–9PubMed Haefeli WE, Bargetzi MJ, Follath F, et al. Potent inhibition of cytochrome P450IID6 (debrisoquin 4-hydroxylase) by flecainide in vitro and in vivo. J Cardiovasc Pharmacol 1990; 15: 776–9PubMed
274.
Zurück zum Zitat Mehvar R, Brocks DR, Vakily M. Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin Pharmacokinet 2002; 41: 533–58PubMed Mehvar R, Brocks DR, Vakily M. Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin Pharmacokinet 2002; 41: 533–58PubMed
275.
Zurück zum Zitat Turgeon J, Roden DM. Pharmacokinetic profile of encainide. Clin Pharmacol Ther 1989; 45: 692–4PubMed Turgeon J, Roden DM. Pharmacokinetic profile of encainide. Clin Pharmacol Ther 1989; 45: 692–4PubMed
276.
Zurück zum Zitat Carey Jr EL, Duff HJ, Roden DM, et al. Encainide and its metabolites: comparative effects in man on ventricular arrhythmia and electrocardiographic intervals. J Clin Invest 1984; 73: 539–47PubMed Carey Jr EL, Duff HJ, Roden DM, et al. Encainide and its metabolites: comparative effects in man on ventricular arrhythmia and electrocardiographic intervals. J Clin Invest 1984; 73: 539–47PubMed
277.
Zurück zum Zitat Barbey JT, Thompson KA, Echt DS, et al. Antiarrhythmic activity, electrocardiographic effects and pharmacokinetics of the encainide metabolites O-desmethyl encainide and 3-methoxy-O-desmethyl encainide in man. Circulation 1988; 77: 380–91PubMed Barbey JT, Thompson KA, Echt DS, et al. Antiarrhythmic activity, electrocardiographic effects and pharmacokinetics of the encainide metabolites O-desmethyl encainide and 3-methoxy-O-desmethyl encainide in man. Circulation 1988; 77: 380–91PubMed
278.
Zurück zum Zitat Roden DM, Wood AJ, Wilkinson GR, et al. Disposition kinetics of encainide and metabolites. Am J Cardiol 1986; 58: 4–9C Roden DM, Wood AJ, Wilkinson GR, et al. Disposition kinetics of encainide and metabolites. Am J Cardiol 1986; 58: 4–9C
279.
Zurück zum Zitat McAllister CB, Wolfenden HT, Aslanian WS, et al. Oxidative metabolism of encainide: polymorphism, pharmacokinetics and clinical considerations. Xenobiotica 1986; 16: 483–90PubMed McAllister CB, Wolfenden HT, Aslanian WS, et al. Oxidative metabolism of encainide: polymorphism, pharmacokinetics and clinical considerations. Xenobiotica 1986; 16: 483–90PubMed
280.
Zurück zum Zitat Woosley RL, Roden DM, Dai GH, et al. Co-inheritance of the polymorphic metabolism of encainide and debrisoquin. Clin Pharmacol Ther 1986; 39: 282–7PubMed Woosley RL, Roden DM, Dai GH, et al. Co-inheritance of the polymorphic metabolism of encainide and debrisoquin. Clin Pharmacol Ther 1986; 39: 282–7PubMed
281.
Zurück zum Zitat Wang T, Roden DM, Wolfenden HT, et al. Influence of genetic polymorphism on the metabolism and disposition of encainide in man. J Pharmacol Exp Ther 1984; 228: 605–11PubMed Wang T, Roden DM, Wolfenden HT, et al. Influence of genetic polymorphism on the metabolism and disposition of encainide in man. J Pharmacol Exp Ther 1984; 228: 605–11PubMed
282.
Zurück zum Zitat Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMed Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107PubMed
283.
Zurück zum Zitat Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 1995; 57: 518–24PubMed Zhou HH, Wood AJ. Stereoselective disposition of carvedilol is determined by CYP2D6. Clin Pharmacol Ther 1995; 57: 518–24PubMed
284.
Zurück zum Zitat Giessmann T, Modess C, Hecker U, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther 2004; 75: 213–22PubMed Giessmann T, Modess C, Hecker U, et al. CYP2D6 genotype and induction of intestinal drug transporters by rifampin predict presystemic clearance of carvedilol in healthy subjects. Clin Pharmacol Ther 2004; 75: 213–22PubMed
285.
Zurück zum Zitat Yasuda SU, Wellstein A, Likhari P, et al. Chlorpheniramine plasma concentration and histamine H1-receptor occupancy. Clin Pharmacol Ther 1995; 58: 210–20PubMed Yasuda SU, Wellstein A, Likhari P, et al. Chlorpheniramine plasma concentration and histamine H1-receptor occupancy. Clin Pharmacol Ther 1995; 58: 210–20PubMed
286.
Zurück zum Zitat Nielsen KK, Brosen K, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992;43:405–11PubMed Nielsen KK, Brosen K, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992;43:405–11PubMed
287.
Zurück zum Zitat Sindrup SH, Gram LF, Skjold T, et al. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms: a double-blind cross-over study. Br J Clin Pharmacol 1990; 30: 683–91PubMed Sindrup SH, Gram LF, Skjold T, et al. Clomipramine vs desipramine vs placebo in the treatment of diabetic neuropathy symptoms: a double-blind cross-over study. Br J Clin Pharmacol 1990; 30: 683–91PubMed
288.
Zurück zum Zitat Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004; 43: 983–1013PubMed Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 2004; 43: 983–1013PubMed
289.
Zurück zum Zitat Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMed Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33PubMed
290.
Zurück zum Zitat Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J Pharmacol Exp Ther 1996; 278: 1165–74PubMed Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J Pharmacol Exp Ther 1996; 278: 1165–74PubMed
291.
Zurück zum Zitat Spina E, Steiner E, Ericsson O, et al. Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1987; 41: 314–9PubMed Spina E, Steiner E, Ericsson O, et al. Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1987; 41: 314–9PubMed
292.
Zurück zum Zitat Spina E, Gitto C, Avenoso A, et al. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–8PubMed Spina E, Gitto C, Avenoso A, et al. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–8PubMed
293.
Zurück zum Zitat Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMed Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84PubMed
294.
Zurück zum Zitat Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMed Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55PubMed
295.
Zurück zum Zitat Fromm MF, Hofmann U, Griese EU, et al. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995; 58: 374–82PubMed Fromm MF, Hofmann U, Griese EU, et al. Dihydrocodeine: a new opioid substrate for the polymorphic CYP2D6 in humans. Clin Pharmacol Ther 1995; 58: 374–82PubMed
296.
Zurück zum Zitat Kirchheiner J, Meineke I, Muller G, et al. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 2002; 12: 571–80PubMed Kirchheiner J, Meineke I, Muller G, et al. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 2002; 12: 571–80PubMed
297.
Zurück zum Zitat Gross AS, Mikus G, Fischer C, et al. Polymorphic flecainide disposition under conditions of uncontrolled urine flow and pH. EurJ Clin Pharmacol 1991; 40: 155–62 Gross AS, Mikus G, Fischer C, et al. Polymorphic flecainide disposition under conditions of uncontrolled urine flow and pH. EurJ Clin Pharmacol 1991; 40: 155–62
298.
Zurück zum Zitat Mikus G, Gross AS, Beckmann J, et al. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin Pharmacol Ther 1989; 45: 562–7PubMed Mikus G, Gross AS, Beckmann J, et al. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin Pharmacol Ther 1989; 45: 562–7PubMed
299.
Zurück zum Zitat Fjordside L, Jeppesen U, Eap CB, et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 1999; 9: 55–60PubMed Fjordside L, Jeppesen U, Eap CB, et al. The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 1999; 9: 55–60PubMed
300.
Zurück zum Zitat Hamelin BA, Turgeon J, Vallee F, et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996;60: 512–21PubMed Hamelin BA, Turgeon J, Vallee F, et al. The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996;60: 512–21PubMed
301.
Zurück zum Zitat Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301PubMed Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301PubMed
302.
Zurück zum Zitat Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMed Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9PubMed
303.
Zurück zum Zitat Steiner E, Spina E. Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42: 278–82PubMed Steiner E, Spina E. Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42: 278–82PubMed
304.
Zurück zum Zitat Firkusny L, Gleiter CH. Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–8PubMed Firkusny L, Gleiter CH. Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–8PubMed
305.
Zurück zum Zitat Lennard MS, Tucker GT, Silas JH, et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 1983; 34: 732–7PubMed Lennard MS, Tucker GT, Silas JH, et al. Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 1983; 34: 732–7PubMed
306.
Zurück zum Zitat Hamelin BA, Bouayad A, Methot J, et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 2000; 67: 466–77PubMed Hamelin BA, Bouayad A, Methot J, et al. Significant interaction between the nonprescription antihistamine diphenhydramine and the CYP2D6 substrate metoprolol in healthy men with high or low CYP2D6 activity. Clin Pharmacol Ther 2000; 67: 466–77PubMed
307.
Zurück zum Zitat Lennard MS, Silas JH, Freestone S, et al. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–3PubMed Lennard MS, Silas JH, Freestone S, et al. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–3PubMed
308.
Zurück zum Zitat Broly F, Vandamme N, Libersa C, et al. The metabolism of mexiletine in relation to the debrisoquine/sparteine-type polymorphism of drug oxidation. Br J Clin Pharmacol 1991; 32: 459–66PubMed Broly F, Vandamme N, Libersa C, et al. The metabolism of mexiletine in relation to the debrisoquine/sparteine-type polymorphism of drug oxidation. Br J Clin Pharmacol 1991; 32: 459–66PubMed
309.
Zurück zum Zitat Dahl ML, Tybring G, Elwin CE, et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–83PubMed Dahl ML, Tybring G, Elwin CE, et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–83PubMed
310.
Zurück zum Zitat Mihara K, Otani K, Tybring G, et al. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997; 17: 467–71PubMed Mihara K, Otani K, Tybring G, et al. The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997; 17: 467–71PubMed
311.
Zurück zum Zitat Dalen P, Dahl ML, Bernal Ruiz ML, et al. 10-Hydroxylation of nortriptyline in White persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52PubMed Dalen P, Dahl ML, Bernal Ruiz ML, et al. 10-Hydroxylation of nortriptyline in White persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–52PubMed
312.
Zurück zum Zitat Morita S, Shimoda K, Someya T, et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20: 141–9PubMed Morita S, Shimoda K, Someya T, et al. Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20: 141–9PubMed
313.
Zurück zum Zitat Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87PubMed Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87PubMed
314.
Zurück zum Zitat Ozdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMed Ozdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47PubMed
315.
Zurück zum Zitat Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31PubMed Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31PubMed
316.
Zurück zum Zitat Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMed Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81PubMed
317.
Zurück zum Zitat Linnet K, Wiborg O. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 1996; 60: 41–7PubMed Linnet K, Wiborg O. Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 1996; 60: 41–7PubMed
318.
Zurück zum Zitat Ozdemir V, Bertilsson L, Miura J, et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics 2007; 17: 339–47PubMed Ozdemir V, Bertilsson L, Miura J, et al. CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenet Genomics 2007; 17: 339–47PubMed
319.
Zurück zum Zitat Labbe L, O’Hara G, Lefebvre M, et al. Pharmacokinetic and pharmacodynamic interaction between mexiletine and propafenone in human beings. Clin Pharmacol Ther 2000; 68: 44–57PubMed Labbe L, O’Hara G, Lefebvre M, et al. Pharmacokinetic and pharmacodynamic interaction between mexiletine and propafenone in human beings. Clin Pharmacol Ther 2000; 68: 44–57PubMed
320.
Zurück zum Zitat Cai WM, Chen B, Cai MH, et al. The influence of CYP2D6 activity on the kinetics of propafenone enantiomers in Chinese subjects. Br J Clin Pharmacol 1999; 47: 553–6PubMed Cai WM, Chen B, Cai MH, et al. The influence of CYP2D6 activity on the kinetics of propafenone enantiomers in Chinese subjects. Br J Clin Pharmacol 1999; 47: 553–6PubMed
321.
Zurück zum Zitat Siddoway LA, Thompson KA, McAllister CB, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987; 75: 785–91PubMed Siddoway LA, Thompson KA, McAllister CB, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 1987; 75: 785–91PubMed
322.
Zurück zum Zitat Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9PubMed Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9PubMed
323.
Zurück zum Zitat Lee JT, Kroemer HK, Silberstein DJ, et al. The role of genetically determined polymorphic drug metabolism in the b-blockade produced by propafenone. N Engl J Med 1990; 322: 1764–8PubMed Lee JT, Kroemer HK, Silberstein DJ, et al. The role of genetically determined polymorphic drug metabolism in the b-blockade produced by propafenone. N Engl J Med 1990; 322: 1764–8PubMed
324.
Zurück zum Zitat Chen B, Cai WM. Influence of CYP2D6*10B genotype on pharmacokinetics of propafenone enantiomers in Chinese subjects. Acta Pharmacol Sin 2003; 24: 1277–80PubMed Chen B, Cai WM. Influence of CYP2D6*10B genotype on pharmacokinetics of propafenone enantiomers in Chinese subjects. Acta Pharmacol Sin 2003; 24: 1277–80PubMed
325.
Zurück zum Zitat Bondolfi G, Eap CB, Bertschy G, et al. The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients. Pharmacopsychiatry 2002; 35: 50–6PubMed Bondolfi G, Eap CB, Bertschy G, et al. The effect of fluoxetine on the pharmacokinetics and safety of risperidone in psychotic patients. Pharmacopsychiatry 2002; 35: 50–6PubMed
326.
Zurück zum Zitat Olesen OV, Licht RW, Thomsen E, et al. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20: 380–4PubMed Olesen OV, Licht RW, Thomsen E, et al. Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20: 380–4PubMed
327.
Zurück zum Zitat Nyberg S, Dahl ML, Halldin C. A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berl) 1995; 119: 345–8 Nyberg S, Dahl ML, Halldin C. A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berl) 1995; 119: 345–8
328.
Zurück zum Zitat Roh HK, Kim CE, Chung WG, et al. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–5PubMed Roh HK, Kim CE, Chung WG, et al. Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–5PubMed
329.
Zurück zum Zitat van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 2005; 27: 478–83PubMed van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE. Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 2005; 27: 478–83PubMed
330.
Zurück zum Zitat Leon J, Susce MT, Pan RM, et al. A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 2007; 40: 93–102PubMed Leon J, Susce MT, Pan RM, et al. A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 2007; 40: 93–102PubMed
331.
Zurück zum Zitat Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–9PubMed Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–9PubMed
332.
Zurück zum Zitat Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93PubMed Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93PubMed
333.
Zurück zum Zitat Goetz MP, Knox SK, Suman VJ, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101: 113–21PubMed Goetz MP, Knox SK, Suman VJ, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101: 113–21PubMed
334.
Zurück zum Zitat Bonanni B, Macis D, Maisonneuve P, et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol 2006; 24: 3708–9; author reply 3709PubMed Bonanni B, Macis D, Maisonneuve P, et al. Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol 2006; 24: 3708–9; author reply 3709PubMed
335.
Zurück zum Zitat Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74PubMed Borges S, Desta Z, Li L, et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74PubMed
336.
Zurück zum Zitat Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23: 9312–8PubMed Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23: 9312–8PubMed
337.
Zurück zum Zitat Lim HS, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 2007; 25: 3837–45PubMed Lim HS, Ju Lee H, Seok Lee K, et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 2007; 25: 3837–45PubMed
338.
Zurück zum Zitat von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991;49: 234–40 von Bahr C, Movin G, Nordin C, et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991;49: 234–40
339.
Zurück zum Zitat Lewis RV, Lennard MS, Jackson PR, et al. Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1985; 19: 329–33PubMed Lewis RV, Lennard MS, Jackson PR, et al. Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1985; 19: 329–33PubMed
340.
Zurück zum Zitat Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636–44PubMed Poulsen L, Arendt-Nielsen L, Brosen K, et al. The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 1996; 60: 636–44PubMed
341.
Zurück zum Zitat Fliegert F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 2005; 61: 257–66PubMed Fliegert F, Kurth B, Gohler K. The effects of tramadol on static and dynamic pupillometry in healthy subjects: the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 2005; 61: 257–66PubMed
342.
Zurück zum Zitat Kim MK, Cho JY, Lim HS, et al. Effect of the CYP2D6 genotype on the pharmacokinetics of tropisetron in healthy Korean subjects. Eur J Clin Pharmacol 2003; 59: 111–6PubMed Kim MK, Cho JY, Lim HS, et al. Effect of the CYP2D6 genotype on the pharmacokinetics of tropisetron in healthy Korean subjects. Eur J Clin Pharmacol 2003; 59: 111–6PubMed
343.
Zurück zum Zitat Kaiser R, Sezer O, Papies A, et al. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805–11PubMed Kaiser R, Sezer O, Papies A, et al. Patient-tailored antiemetic treatment with 5-hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol 2002; 20: 2805–11PubMed
344.
Zurück zum Zitat Lessard E, Yessine MA, Hamelin BA, et al. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43PubMed Lessard E, Yessine MA, Hamelin BA, et al. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–43PubMed
345.
Zurück zum Zitat Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80PubMed Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000; 56: 175–80PubMed
346.
Zurück zum Zitat Lindh JD, Annas A, Meurling L, et al. Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 2003; 59: 401–6PubMed Lindh JD, Annas A, Meurling L, et al. Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 2003; 59: 401–6PubMed
347.
Zurück zum Zitat Whyte EM, Romkes M, Mulsant BH, et al. CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 2006; 21: 542–9PubMed Whyte EM, Romkes M, Mulsant BH, et al. CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 2006; 21: 542–9PubMed
348.
Zurück zum Zitat Linnet K, Wiborg O. Influence of CYP2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 1996; 18: 629–34PubMed Linnet K, Wiborg O. Influence of CYP2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 1996; 18: 629–34PubMed
349.
Zurück zum Zitat Roden DM, Woosley RL. Clinical pharmacokinetics of encainide. Clin Pharmacokinet 1988; 14: 141–7PubMed Roden DM, Woosley RL. Clinical pharmacokinetics of encainide. Clin Pharmacokinet 1988; 14: 141–7PubMed
350.
Zurück zum Zitat Anderson JL, Stewart JR, Perry BA, et al. Oral flecainide acetate for the treatment of ventricular arrhythmias. N Engl J Med 1981; 305: 473–7PubMed Anderson JL, Stewart JR, Perry BA, et al. Oral flecainide acetate for the treatment of ventricular arrhythmias. N Engl J Med 1981; 305: 473–7PubMed
351.
Zurück zum Zitat McQuinn RL, Quarfoth GJ, Johnson JD, et al. Biotransformation and elimination of 14C-flecainide acetate in humans. Drug Metab Dispos 1984; 12: 414–20PubMed McQuinn RL, Quarfoth GJ, Johnson JD, et al. Biotransformation and elimination of 14C-flecainide acetate in humans. Drug Metab Dispos 1984; 12: 414–20PubMed
352.
Zurück zum Zitat Gross AS, Mikus G, Fischer C, et al. Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype. Br J Clin Pharmacol 1989; 28: 555–66PubMed Gross AS, Mikus G, Fischer C, et al. Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype. Br J Clin Pharmacol 1989; 28: 555–66PubMed
353.
Zurück zum Zitat Doki K, Homma M, Kuga K, et al. Effect of CYP2D6 genotype on flecainide pharmacokinetics in Japanese patients with supraventricular tachyarrhythmia. Eur J Clin Pharmacol 2006; 62: 919–26PubMed Doki K, Homma M, Kuga K, et al. Effect of CYP2D6 genotype on flecainide pharmacokinetics in Japanese patients with supraventricular tachyarrhythmia. Eur J Clin Pharmacol 2006; 62: 919–26PubMed
354.
Zurück zum Zitat Martinez-Selles M, Castillo I, Montenegro P, et al. Pharmacogenetic study of the response to flecainide and propafenone in patients with atrial fibrillation [in Spanish]. Rev Esp Cardiol 2005; 58: 745–8PubMed Martinez-Selles M, Castillo I, Montenegro P, et al. Pharmacogenetic study of the response to flecainide and propafenone in patients with atrial fibrillation [in Spanish]. Rev Esp Cardiol 2005; 58: 745–8PubMed
355.
Zurück zum Zitat Funck-Brentano C, Becquemont L, Kroemer HK, et al. Variable disposition kinetics and electrocardiographic effects of flecainide during repeated dosing in humans: contribution of genetic factors, dose-dependent clearance, and interaction with amiodarone. Clin Pharmacol Ther 1994; 55: 256–69PubMed Funck-Brentano C, Becquemont L, Kroemer HK, et al. Variable disposition kinetics and electrocardiographic effects of flecainide during repeated dosing in humans: contribution of genetic factors, dose-dependent clearance, and interaction with amiodarone. Clin Pharmacol Ther 1994; 55: 256–69PubMed
356.
Zurück zum Zitat Tenneze L, Tarral E, Ducloux N, et al. Pharmacokinetics and electrocardiographic effects of a new controlled-release form of flecainide acetate: comparison with the standard form and influence of the CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72: 112–22PubMed Tenneze L, Tarral E, Ducloux N, et al. Pharmacokinetics and electrocardiographic effects of a new controlled-release form of flecainide acetate: comparison with the standard form and influence of the CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72: 112–22PubMed
357.
Zurück zum Zitat Birgersdotter UM, Wong W, Turgeon J, et al. Stereoselective genetically-determined interaction between chronic flecainide and quinidine in patients with arrhythmias. Br J Clin Pharmacol 1992; 33: 275–80PubMed Birgersdotter UM, Wong W, Turgeon J, et al. Stereoselective genetically-determined interaction between chronic flecainide and quinidine in patients with arrhythmias. Br J Clin Pharmacol 1992; 33: 275–80PubMed
358.
Zurück zum Zitat Lim KS, Cho JY, Jang IJ, et al. Pharmacokinetic interaction of flecainide and paroxetine in relation to the CYP2D6*10 allele in healthy Korean subjects. Br J Clin Pharmacol 2008; 66: 660–6PubMed Lim KS, Cho JY, Jang IJ, et al. Pharmacokinetic interaction of flecainide and paroxetine in relation to the CYP2D6*10 allele in healthy Korean subjects. Br J Clin Pharmacol 2008; 66: 660–6PubMed
359.
Zurück zum Zitat Monk JP, Brogden RN. Mexiletine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in the treatment of arrhythmias. Drugs 1990; 40: 374–411PubMed Monk JP, Brogden RN. Mexiletine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in the treatment of arrhythmias. Drugs 1990; 40: 374–411PubMed
360.
Zurück zum Zitat Vandamme N, Broly F, Libersa C, et al. Stereoselective hydroxylation of mexiletine in human liver microsomes: implication of P450IID6: a preliminary report. J Cardiovasc Pharmacol 1993; 21: 77–83PubMed Vandamme N, Broly F, Libersa C, et al. Stereoselective hydroxylation of mexiletine in human liver microsomes: implication of P450IID6: a preliminary report. J Cardiovasc Pharmacol 1993; 21: 77–83PubMed
361.
Zurück zum Zitat Beckett AH, Chidomere EC. The identification and analysis of mexiletine and its metabolic products in man. J Pharm Pharmacol 1977; 29: 281–5PubMed Beckett AH, Chidomere EC. The identification and analysis of mexiletine and its metabolic products in man. J Pharm Pharmacol 1977; 29: 281–5PubMed
362.
Zurück zum Zitat Turgeon J, Fiset C, Giguere R, et al. Influence of debrisoquine phenotype and of quinidine on mexiletine disposition in man. J Pharmacol Exp Ther 1991; 259: 789–98PubMed Turgeon J, Fiset C, Giguere R, et al. Influence of debrisoquine phenotype and of quinidine on mexiletine disposition in man. J Pharmacol Exp Ther 1991; 259: 789–98PubMed
363.
Zurück zum Zitat Broly F, Vandamme N, Caron J, et al. Single-dose quinidine treatment in hibits mexiletine oxidation in extensive metabolizers of debrisoquine. Life Sci 1991;48:PL123–8PubMed Broly F, Vandamme N, Caron J, et al. Single-dose quinidine treatment in hibits mexiletine oxidation in extensive metabolizers of debrisoquine. Life Sci 1991;48:PL123–8PubMed
364.
Zurück zum Zitat Turgeon J, Pare JR, Lalande M, et al. Isolation and structural characterization by spectroscopic methods of two glucuronide metabolites of mexiletine after N-oxidation and deamination. Drug Metab Dispos 1992; 20: 762–9PubMed Turgeon J, Pare JR, Lalande M, et al. Isolation and structural characterization by spectroscopic methods of two glucuronide metabolites of mexiletine after N-oxidation and deamination. Drug Metab Dispos 1992; 20: 762–9PubMed
365.
Zurück zum Zitat Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking cimetidine. Clin Pharmacol Ther 1985; 37: 669–73PubMed Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking cimetidine. Clin Pharmacol Ther 1985; 37: 669–73PubMed
366.
Zurück zum Zitat Brockmeyer NH, Breithaupt H, Ferdinand W, et al. Kinetics of oral and intravenous mexiletine: lack of effect of cimetidine and ranitidine. Eur J Clin Pharmacol 1989; 36: 375–8PubMed Brockmeyer NH, Breithaupt H, Ferdinand W, et al. Kinetics of oral and intravenous mexiletine: lack of effect of cimetidine and ranitidine. Eur J Clin Pharmacol 1989; 36: 375–8PubMed
367.
Zurück zum Zitat Yonezawa E, Matsumoto K, Ueno K, et al. Lack of interaction between amiodarone and mexiletine in cardiac arrhythmia patients. J Clin Pharmacol 2002; 42: 342–6PubMed Yonezawa E, Matsumoto K, Ueno K, et al. Lack of interaction between amiodarone and mexiletine in cardiac arrhythmia patients. J Clin Pharmacol 2002; 42: 342–6PubMed
368.
Zurück zum Zitat Ueno K, Yamaguchi R, Tanaka K, et al. Lack of akinetic interaction between fluconazole and mexiletine. Eur J Clin Pharmacol 1996; 50: 129–31PubMed Ueno K, Yamaguchi R, Tanaka K, et al. Lack of akinetic interaction between fluconazole and mexiletine. Eur J Clin Pharmacol 1996; 50: 129–31PubMed
369.
Zurück zum Zitat Kusumoto M, Ueno K, Tanaka K, et al. Lack of pharmacokinetic interaction between mexiletine and omeprazole. Ann Pharmacother 1998; 32: 182–4PubMed Kusumoto M, Ueno K, Tanaka K, et al. Lack of pharmacokinetic interaction between mexiletine and omeprazole. Ann Pharmacother 1998; 32: 182–4PubMed
370.
Zurück zum Zitat Bryson HM, Palmer KJ, Langtry HD, et al. Propafenone: a reappraisal of its pharmacology, pharmacokinetics and therapeutic use in cardiac arrhythmias. Drugs 1993;45:85–130PubMed Bryson HM, Palmer KJ, Langtry HD, et al. Propafenone: a reappraisal of its pharmacology, pharmacokinetics and therapeutic use in cardiac arrhythmias. Drugs 1993;45:85–130PubMed
371.
Zurück zum Zitat Kroemer HK, Funck-Brentano C, Silberstein DJ, et al. Stereoselective disposition and pharmacologic activity of propafenone enantiomers. Circulation 1989; 79: 1068–76PubMed Kroemer HK, Funck-Brentano C, Silberstein DJ, et al. Stereoselective disposition and pharmacologic activity of propafenone enantiomers. Circulation 1989; 79: 1068–76PubMed
372.
Zurück zum Zitat Hege HG, Hollmann M, Kaumeier S, et al. The metabolic fate of 2H-labelled propafenone in man. Eur J Drug Metab Pharmacokinet 1984; 9: 41–55PubMed Hege HG, Hollmann M, Kaumeier S, et al. The metabolic fate of 2H-labelled propafenone in man. Eur J Drug Metab Pharmacokinet 1984; 9: 41–55PubMed
373.
Zurück zum Zitat Zhou Q, Yao TW, Yu YN, et al. Concentration dependent stereoselectivity of propafenone N-depropylation metabolism with human hepatic recombinant CYP1A2. Pharmazie 2003; 58: 651–3PubMed Zhou Q, Yao TW, Yu YN, et al. Concentration dependent stereoselectivity of propafenone N-depropylation metabolism with human hepatic recombinant CYP1A2. Pharmazie 2003; 58: 651–3PubMed
374.
Zurück zum Zitat Funck-Brentano C, Turgeon J, Woosley RL, et al. Effect of low dose quinidine on encainide pharmacokinetics and pharmacodynamics: influence of genetic polymorphism. J Pharmacol Exp Ther 1989; 249: 134–42PubMed Funck-Brentano C, Turgeon J, Woosley RL, et al. Effect of low dose quinidine on encainide pharmacokinetics and pharmacodynamics: influence of genetic polymorphism. J Pharmacol Exp Ther 1989; 249: 134–42PubMed
375.
Zurück zum Zitat Capucci A, Boriani G, Marchesini B, et al. Minimal effective concentration values of propafenone and 5-hydroxy-propafenone in acute and chronic therapy. Cardiovasc Drugs Ther 1990; 4: 281–7PubMed Capucci A, Boriani G, Marchesini B, et al. Minimal effective concentration values of propafenone and 5-hydroxy-propafenone in acute and chronic therapy. Cardiovasc Drugs Ther 1990; 4: 281–7PubMed
376.
Zurück zum Zitat Anzenbacherova E, Anzenbacher P, Perlik F, et al. Use of a propafenone metabolic ratio as a measure of CYP2D6 activity. Int J Clin Pharmacol Ther 2000; 38: 426–9PubMed Anzenbacherova E, Anzenbacher P, Perlik F, et al. Use of a propafenone metabolic ratio as a measure of CYP2D6 activity. Int J Clin Pharmacol Ther 2000; 38: 426–9PubMed
377.
Zurück zum Zitat Jazwinska-Tarnawska E, Orzechowska-Juzwenko K, Niewinski P, et al. The influence of CYP2D6 polymorphism on the antiarrhythmic efficacy of propafenone in patients with paroxysmal atrial fibrillation during 3 months propafenone prophylactic treatment. Int J Clin Pharmacol Ther 2001; 39: 288–92PubMed Jazwinska-Tarnawska E, Orzechowska-Juzwenko K, Niewinski P, et al. The influence of CYP2D6 polymorphism on the antiarrhythmic efficacy of propafenone in patients with paroxysmal atrial fibrillation during 3 months propafenone prophylactic treatment. Int J Clin Pharmacol Ther 2001; 39: 288–92PubMed
378.
Zurück zum Zitat Morike KE, Roden DM. Quinidine-enhanced beta-blockade during treatment with propafenone in extensive metabolizer human subjects. Clin Pharmacol Ther 1994; 55: 28–34PubMed Morike KE, Roden DM. Quinidine-enhanced beta-blockade during treatment with propafenone in extensive metabolizer human subjects. Clin Pharmacol Ther 1994; 55: 28–34PubMed
379.
Zurück zum Zitat Morike K, Magadum S, Mettang T, et al. Propafenone in a usual dose produces severe side-effects: the impact of genetically determined metabolic status on drug therapy. J Intern Med 1995; 238: 469–72PubMed Morike K, Magadum S, Mettang T, et al. Propafenone in a usual dose produces severe side-effects: the impact of genetically determined metabolic status on drug therapy. J Intern Med 1995; 238: 469–72PubMed
380.
Zurück zum Zitat Ujhelyi MR, O’Rangers EA, Fan C, et al. The pharmacokinetic and pharmacodynamic interaction between propafenone and lidocaine. Clin Pharmacol Ther 1993; 53: 38–48PubMed Ujhelyi MR, O’Rangers EA, Fan C, et al. The pharmacokinetic and pharmacodynamic interaction between propafenone and lidocaine. Clin Pharmacol Ther 1993; 53: 38–48PubMed
381.
Zurück zum Zitat Kowey PR, Kirsten EB, Fu CH, et al. Interaction between propranolol and propafenone in healthy volunteers. J Clin Pharmacol 1989; 29: 512–7PubMed Kowey PR, Kirsten EB, Fu CH, et al. Interaction between propranolol and propafenone in healthy volunteers. J Clin Pharmacol 1989; 29: 512–7PubMed
382.
Zurück zum Zitat Wagner F, Kalusche D, Trenk D, et al. Drug interaction between propafenone and metoprolol. Br J Clin Pharmacol 1987; 24: 213–20PubMed Wagner F, Kalusche D, Trenk D, et al. Drug interaction between propafenone and metoprolol. Br J Clin Pharmacol 1987; 24: 213–20PubMed
383.
Zurück zum Zitat Katz MR. Raised serum levels of desipramine with the antiarrhythmic propafenone. J Clin Psychiatry 1991; 52: 432–3PubMed Katz MR. Raised serum levels of desipramine with the antiarrhythmic propafenone. J Clin Psychiatry 1991; 52: 432–3PubMed
384.
Zurück zum Zitat Cai WM, Chen B, Zhou Y, et al. Fluoxetine impairs the CYP2D6-mediated metabolism of propafenone enantiomers in healthy Chinese volunteers. Clin Pharmacol Ther 1999; 66: 516–21PubMed Cai WM, Chen B, Zhou Y, et al. Fluoxetine impairs the CYP2D6-mediated metabolism of propafenone enantiomers in healthy Chinese volunteers. Clin Pharmacol Ther 1999; 66: 516–21PubMed
385.
Zurück zum Zitat Roy D, Pratt CM, Torp-Pedersen C, et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial. Circulation 2008; 117: 1518–25PubMed Roy D, Pratt CM, Torp-Pedersen C, et al. Vernakalant hydrochloride for rapid conversion of atrial fibrillation: a phase 3, randomized, placebo-controlled trial. Circulation 2008; 117: 1518–25PubMed
386.
Zurück zum Zitat Naccarelli GV, Wolbrette DL, Samii S, et al. Vernakalant: pharmacology electrophysiology, safety and efficacy. Drugs Today (Barc) 2008; 44: 325–9 Naccarelli GV, Wolbrette DL, Samii S, et al. Vernakalant: pharmacology electrophysiology, safety and efficacy. Drugs Today (Barc) 2008; 44: 325–9
388.
Zurück zum Zitat Mao ZL, Wheeler JJ, Clohs L, et al. Pharmacokinetics of novel atrial-selective antiarrhythmic agent vernakalant hydrochloride injection (RSD1235): influence ofCYP2D6 expression and other factors. J Clin Pharmacol 2009; 49: 17–29PubMed Mao ZL, Wheeler JJ, Clohs L, et al. Pharmacokinetics of novel atrial-selective antiarrhythmic agent vernakalant hydrochloride injection (RSD1235): influence ofCYP2D6 expression and other factors. J Clin Pharmacol 2009; 49: 17–29PubMed
389.
Zurück zum Zitat Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of β-adrenergic blockers in humans. J Pharm Pharm Sci 2001; 4: 185–200PubMed Mehvar R, Brocks DR. Stereospecific pharmacokinetics and pharmacodynamics of β-adrenergic blockers in humans. J Pharm Pharm Sci 2001; 4: 185–200PubMed
390.
Zurück zum Zitat Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos 1997; 25: 970–7PubMed Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos 1997; 25: 970–7PubMed
391.
Zurück zum Zitat Narimatsu S, Takemi C, Tsuzuki D, et al. Stereoselective metabolism of bufuralol racemate and enantiomers in human liver microsomes. J Pharmacol Exp Ther 2002; 303: 172–8PubMed Narimatsu S, Takemi C, Tsuzuki D, et al. Stereoselective metabolism of bufuralol racemate and enantiomers in human liver microsomes. J Pharmacol Exp Ther 2002; 303: 172–8PubMed
392.
Zurück zum Zitat Mautz DS, Nelson WL, Shen DD. Regioselective and stereoselective oxidation of metoprolol and bufuralol catalyzed by microsomes containing cDNA-expressed human P4502D6. Drug Metab Dispos 1995; 23: 513–7PubMed Mautz DS, Nelson WL, Shen DD. Regioselective and stereoselective oxidation of metoprolol and bufuralol catalyzed by microsomes containing cDNA-expressed human P4502D6. Drug Metab Dispos 1995; 23: 513–7PubMed
393.
Zurück zum Zitat McGourty JC, Silas JH, Lennard MS, et al. Metoprolol metabolism and debrisoquine oxidation polymorphism: population and family studies. Br J Clin Pharmacol 1985; 20: 555–66PubMed McGourty JC, Silas JH, Lennard MS, et al. Metoprolol metabolism and debrisoquine oxidation polymorphism: population and family studies. Br J Clin Pharmacol 1985; 20: 555–66PubMed
394.
Zurück zum Zitat Belpaire FM, Wijnant P, Temmerman A, et al. The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors. Eur J Clin Pharmacol 1998; 54: 261–4PubMed Belpaire FM, Wijnant P, Temmerman A, et al. The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors. Eur J Clin Pharmacol 1998; 54: 261–4PubMed
395.
Zurück zum Zitat Tassaneeyakul W, Birkett DJ, Veronese ME, et al. Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther 1993; 265: 401–7PubMed Tassaneeyakul W, Birkett DJ, Veronese ME, et al. Specificity of substrate and inhibitor probes for human cytochromes P450 1A1 and 1A2. J Pharmacol Exp Ther 1993; 265: 401–7PubMed
396.
Zurück zum Zitat Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994; 22: 909–15PubMed Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994; 22: 909–15PubMed
397.
Zurück zum Zitat Johnson JA, Herring VL, Wolfe MS, et al. CYP1A2 and CYP2D6 4-hydroxy-late propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther 2000; 294: 1099–105PubMed Johnson JA, Herring VL, Wolfe MS, et al. CYP1A2 and CYP2D6 4-hydroxy-late propranolol and both reactions exhibit racial differences. J Pharmacol Exp Ther 2000; 294: 1099–105PubMed
398.
Zurück zum Zitat Volotinen M, Turpeinen M, Tolonen A, et al. Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Drug Metab Dispos 2007;35: 1135–41PubMed Volotinen M, Turpeinen M, Tolonen A, et al. Timolol metabolism in human liver microsomes is mediated principally by CYP2D6. Drug Metab Dispos 2007;35: 1135–41PubMed
399.
Zurück zum Zitat McTavish D, Campoli-Richards D, Sorkin EM. Carvedilol: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1993; 45: 232–58PubMed McTavish D, Campoli-Richards D, Sorkin EM. Carvedilol: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1993; 45: 232–58PubMed
400.
Zurück zum Zitat Keating GM, Jarvis B. Carvedilol: a review of its use in chronic heart failure. Drugs 2003; 63: 1697–741PubMed Keating GM, Jarvis B. Carvedilol: a review of its use in chronic heart failure. Drugs 2003; 63: 1697–741PubMed
401.
Zurück zum Zitat Neugebauer G, Akpan W, Kaufmann B, et al. Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol 1990; 38 Suppl. 2: S108–11PubMed Neugebauer G, Akpan W, Kaufmann B, et al. Stereoselective disposition of carvedilol in man after intravenous and oral administration of the racemic compound. Eur J Clin Pharmacol 1990; 38 Suppl. 2: S108–11PubMed
402.
Zurück zum Zitat Honda M, Nozawa T, Igarashi N, et al. Effect of CYP2D6*10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull 2005; 28: 1476–9PubMed Honda M, Nozawa T, Igarashi N, et al. Effect of CYP2D6*10 on the pharmacokinetics of R- and S-carvedilol in healthy Japanese volunteers. Biol Pharm Bull 2005; 28: 1476–9PubMed
403.
Zurück zum Zitat Prakash A, Markham A. Metoprolol: a review of its use in chronic heart failure. Drugs 2000; 60: 647–78PubMed Prakash A, Markham A. Metoprolol: a review of its use in chronic heart failure. Drugs 2000; 60: 647–78PubMed
404.
Zurück zum Zitat Dayer P, Leemann T, Marmy A, et al. Interindividual variation of β-adrenoceptor blocking drugs, plasma concentration and effect: influence of genetic status on behaviour of atenolol, bopindolol and metoprolol. Eur J Clin Pharmacol 1985; 28: 149–53PubMed Dayer P, Leemann T, Marmy A, et al. Interindividual variation of β-adrenoceptor blocking drugs, plasma concentration and effect: influence of genetic status on behaviour of atenolol, bopindolol and metoprolol. Eur J Clin Pharmacol 1985; 28: 149–53PubMed
405.
Zurück zum Zitat Borg KO, Carlsson E, Hoffmann KJ, et al. Metabolism of metoprolol-(3-h) in man, the dog and the rat. Acta Pharmacol Toxicol (Copenh) 1975;36: 125–35 Borg KO, Carlsson E, Hoffmann KJ, et al. Metabolism of metoprolol-(3-h) in man, the dog and the rat. Acta Pharmacol Toxicol (Copenh) 1975;36: 125–35
406.
Zurück zum Zitat Otton SV, Crewe HK, Lennard MS, et al. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther 1988; 247: 242–7PubMed Otton SV, Crewe HK, Lennard MS, et al. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther 1988; 247: 242–7PubMed
407.
Zurück zum Zitat Johnson JA, Burlew BS. Metoprolol metabolism via cytochrome P4502D6 in ethnic populations. Drug Metab Dispos 1996; 24: 350–5PubMed Johnson JA, Burlew BS. Metoprolol metabolism via cytochrome P4502D6 in ethnic populations. Drug Metab Dispos 1996; 24: 350–5PubMed
408.
Zurück zum Zitat Hoffmann KJ, Regardh CG, Aurell M, et al. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol metabolites. Clin Pharmacokinet 1980; 5: 181–91PubMed Hoffmann KJ, Regardh CG, Aurell M, et al. The effect of impaired renal function on the plasma concentration and urinary excretion of metoprolol metabolites. Clin Pharmacokinet 1980; 5: 181–91PubMed
409.
Zurück zum Zitat Hemeryck A, Lefebvre RA, De Vriendt C, et al. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther 2000; 67: 283–91PubMed Hemeryck A, Lefebvre RA, De Vriendt C, et al. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Pharmacol Ther 2000; 67: 283–91PubMed
410.
Zurück zum Zitat Hemeryck A, De Vriendt CA, Belpaire FM. Metoprolol-paroxetine interaction in human livermicrosomes: stereoselective aspects and prediction of the in vivo interaction. Drug Metab Dispos 2001; 29: 656–63PubMed Hemeryck A, De Vriendt CA, Belpaire FM. Metoprolol-paroxetine interaction in human livermicrosomes: stereoselective aspects and prediction of the in vivo interaction. Drug Metab Dispos 2001; 29: 656–63PubMed
411.
Zurück zum Zitat Kim M, Shen DD, Eddy AC, et al. Inhibition of the enantioselective oxidative metabolism of metoprolol by verapamil in human liver microsomes. Drug Metab Dispos 1993; 21: 309–17PubMed Kim M, Shen DD, Eddy AC, et al. Inhibition of the enantioselective oxidative metabolism of metoprolol by verapamil in human liver microsomes. Drug Metab Dispos 1993; 21: 309–17PubMed
412.
Zurück zum Zitat Seeringer A, Brockmoller J, Bauer S, et al. Enantiospecific pharmacokinetics of metoprolol in CYP2D6 ultra-rapid metabolizers and correlation with exercise-induced heart rate. Eur J Clin Pharmacol 2008; 64: 883–8PubMed Seeringer A, Brockmoller J, Bauer S, et al. Enantiospecific pharmacokinetics of metoprolol in CYP2D6 ultra-rapid metabolizers and correlation with exercise-induced heart rate. Eur J Clin Pharmacol 2008; 64: 883–8PubMed
413.
Zurück zum Zitat Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 2002; 72: 429–37PubMed Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 2002; 72: 429–37PubMed
414.
Zurück zum Zitat Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther 2004; 76: 536–44PubMed Zineh I, Beitelshees AL, Gaedigk A, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther 2004; 76: 536–44PubMed
415.
Zurück zum Zitat Fux R, Morike K, Prohmer AM, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther 2005; 78: 378–87PubMed Fux R, Morike K, Prohmer AM, et al. Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study. Clin Pharmacol Ther 2005; 78: 378–87PubMed
416.
Zurück zum Zitat Bijl MJ, Visser LE, van Schaik RH, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in β-blocker users. Clin Pharmacol Ther 2009; 85: 45–50PubMed Bijl MJ, Visser LE, van Schaik RH, et al. Genetic variation in the CYP2D6 gene is associated with a lower heart rate and blood pressure in β-blocker users. Clin Pharmacol Ther 2009; 85: 45–50PubMed
417.
Zurück zum Zitat Talaat RE, Nelson WL. Regioisomeric aromatic dihydroxylation of propranolol: synthesis and identification of 4,6- and 4,8-dihydroxypropranolol as metabolites in the rat and in man. Drug Metab Dispos 1988; 16: 212–6PubMed Talaat RE, Nelson WL. Regioisomeric aromatic dihydroxylation of propranolol: synthesis and identification of 4,6- and 4,8-dihydroxypropranolol as metabolites in the rat and in man. Drug Metab Dispos 1988; 16: 212–6PubMed
418.
Zurück zum Zitat Ward SA, Walle T, Walle UK, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9PubMed Ward SA, Walle T, Walle UK, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9PubMed
419.
Zurück zum Zitat Lennard MS, Jackson PR, Freestone S, et al. The relationship between debrisoquine oxidation phenotype and the pharmacokinetics and pharmacodynamics of propranolol. BrJClin Pharmacol 1984; 17: 679–85 Lennard MS, Jackson PR, Freestone S, et al. The relationship between debrisoquine oxidation phenotype and the pharmacokinetics and pharmacodynamics of propranolol. BrJClin Pharmacol 1984; 17: 679–85
420.
Zurück zum Zitat Lennard MS, Tucker GT, Silas JH, et al. Debrisoquine polymorphism and the metabolism and action of metoprolol, timolol, propranolol and atenolol. Xenobiotica 1986; 16: 435–47PubMed Lennard MS, Tucker GT, Silas JH, et al. Debrisoquine polymorphism and the metabolism and action of metoprolol, timolol, propranolol and atenolol. Xenobiotica 1986; 16: 435–47PubMed
421.
Zurück zum Zitat Raghuram TC, Koshakji RP, Wilkinson GR, et al. Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not β-blockade. Clin Pharmacol Ther 1984; 36: 51–6PubMed Raghuram TC, Koshakji RP, Wilkinson GR, et al. Polymorphic ability to metabolize propranolol alters 4-hydroxypropranolol levels but not β-blockade. Clin Pharmacol Ther 1984; 36: 51–6PubMed
422.
Zurück zum Zitat Lennard MS, Jackson PR, Freestone S, et al. The oral clearance and β-adrenoceptor antagonist activity of propranolol after single dose are not related to debrisoquine oxidation phenotype. Br J Clin Pharmacol 1984; 17 Suppl. 1: 106–7S Lennard MS, Jackson PR, Freestone S, et al. The oral clearance and β-adrenoceptor antagonist activity of propranolol after single dose are not related to debrisoquine oxidation phenotype. Br J Clin Pharmacol 1984; 17 Suppl. 1: 106–7S
423.
Zurück zum Zitat Sowinski KM, Burlew BS. Impact of CYP2D6 poor metabolizer phenotype on propranolol pharmacokinetics and response. Pharmacotherapy 1997; 17: 1305–10PubMed Sowinski KM, Burlew BS. Impact of CYP2D6 poor metabolizer phenotype on propranolol pharmacokinetics and response. Pharmacotherapy 1997; 17: 1305–10PubMed
424.
Zurück zum Zitat Shaheen O, Biollaz J, Koshakji RP, et al. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther 1989; 45: 439–43PubMed Shaheen O, Biollaz J, Koshakji RP, et al. Influence of debrisoquin phenotype on the inducibility of propranolol metabolism. Clin Pharmacol Ther 1989; 45: 439–43PubMed
425.
Zurück zum Zitat Lai ML, Wang SL, Lai MD, et al. Propranolol disposition in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1995; 58: 264–8PubMed Lai ML, Wang SL, Lai MD, et al. Propranolol disposition in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1995; 58: 264–8PubMed
426.
Zurück zum Zitat Zhou HH, Anthony LB, Roden DM, et al. Quinidine reduces clearance of (+)-propranolol more than (−)-propranolol through marked reduction in 4-hydroxylation. Clin Pharmacol Ther 1990; 47: 686–93PubMed Zhou HH, Anthony LB, Roden DM, et al. Quinidine reduces clearance of (+)-propranolol more than (−)-propranolol through marked reduction in 4-hydroxylation. Clin Pharmacol Ther 1990; 47: 686–93PubMed
427.
Zurück zum Zitat Frishman WH, Fuksbrumer MS, Tannenbaum M. Topical ophthalmic β-adrenergic blockade for the treatment of glaucoma and ocular hypertension. J Clin Pharmacol 1994; 34: 795–803PubMed Frishman WH, Fuksbrumer MS, Tannenbaum M. Topical ophthalmic β-adrenergic blockade for the treatment of glaucoma and ocular hypertension. J Clin Pharmacol 1994; 34: 795–803PubMed
428.
Zurück zum Zitat Heel RC, Brogden RN, Speight TM, et al. Timolol: a review of its therapeutic efficacy in the topical treatment of glaucoma. Drugs 1979; 17: 38–55PubMed Heel RC, Brogden RN, Speight TM, et al. Timolol: a review of its therapeutic efficacy in the topical treatment of glaucoma. Drugs 1979; 17: 38–55PubMed
429.
Zurück zum Zitat Nieminen T, Lehtimaki T, Maenpaa J, et al. Ophthalmic timolol: plasma concentration and systemic cardiopulmonary effects. Scand J Clin Lab Invest 2007; 67: 237–45PubMed Nieminen T, Lehtimaki T, Maenpaa J, et al. Ophthalmic timolol: plasma concentration and systemic cardiopulmonary effects. Scand J Clin Lab Invest 2007; 67: 237–45PubMed
430.
Zurück zum Zitat Lama PJ. Systemic adverse effects of β-adrenergic blockers: an evidence-based assessment. Am J Ophthalmol 2002; 134: 749–60PubMed Lama PJ. Systemic adverse effects of β-adrenergic blockers: an evidence-based assessment. Am J Ophthalmol 2002; 134: 749–60PubMed
431.
Zurück zum Zitat Vander Zanden JA, Valuck RJ, Bunch CL, et al. Systemic adverse effects of ophthalmic β-blockers. Ann Pharmacother 2001; 35: 1633–7 Vander Zanden JA, Valuck RJ, Bunch CL, et al. Systemic adverse effects of ophthalmic β-blockers. Ann Pharmacother 2001; 35: 1633–7
432.
Zurück zum Zitat Kaila T, Huupponen R, Karhuvaara S, et al. Beta-blocking effects of timolol at low plasma concentrations. Clin Pharmacol Ther 1991; 49: 53–8PubMed Kaila T, Huupponen R, Karhuvaara S, et al. Beta-blocking effects of timolol at low plasma concentrations. Clin Pharmacol Ther 1991; 49: 53–8PubMed
433.
Zurück zum Zitat Huupponen R, Kaila T, Lahdes K, et al. Systemic absorption of ocular timolol in poor and extensive metabolizers of debrisoquine. J Ocul Pharmacol 1991; 7: 183–7PubMed Huupponen R, Kaila T, Lahdes K, et al. Systemic absorption of ocular timolol in poor and extensive metabolizers of debrisoquine. J Ocul Pharmacol 1991; 7: 183–7PubMed
434.
Zurück zum Zitat Nieminen T, Uusitalo H, Maenpaa J, et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol: a pilot study. Eur J Clin Pharmacol 2005; 61: 811–9PubMed Nieminen T, Uusitalo H, Maenpaa J, et al. Polymorphisms of genes CYP2D6, ADRB1 and GNAS1 in pharmacokinetics and systemic effects of ophthalmic timolol: a pilot study. Eur J Clin Pharmacol 2005; 61: 811–9PubMed
435.
Zurück zum Zitat Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive betablockade following timolol eye drops: potential for oral-ophthalmic drug interaction. JAMA 1995; 274: 1611–3PubMed Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive betablockade following timolol eye drops: potential for oral-ophthalmic drug interaction. JAMA 1995; 274: 1611–3PubMed
Metadaten
Titel
Polymorphism of Human Cytochrome P450 2D6 and Its Clinical Significance
Part I
verfasst von
Shu-Feng Zhou
Publikationsdatum
01.11.2009
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2009
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11318030-000000000-00000