Skip to main content
Erschienen in: Sports Medicine 4/2010

01.04.2010 | Review Article

The Maximal Accumulated Oxygen Deficit Method

A Valid and Reliable Measure of Anaerobic Capacity?

Erschienen in: Sports Medicine | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The maximal accumulated oxygen deficit (MAOD) method has been extensively, but unfortunately not very methodically, used; the procedure used to determine the MAOD varies considerably. Therefore, this review evaluates the effect of different numbers and durations of submaximal exercise bouts on the linear power output (PO)-oxygen uptake (V̇O2) relationship and thus the MAOD. Changing the number and duration of the submaximal exercise bouts substantially influences the calculated MAOD when relatively long submaximal exercise bouts are used and no fixed value of the y-intercept is forced into the linear regression line. This is most likely due to non-linearity of the PO-V̇O2 relationship for exercise intensities above the lactate threshold (LT). Non-linearity of the PO-V̇O2 relationship is probably caused by the development of a slow component in V̇O2 during submaximal exercise at intensities above the LT. Thus, it is important to standardize the number, duration and intensity of submaximal exercise bouts necessary to establish the PO-V̇O2 relationship. Beyond changing the number and duration of the submaximal exercise bouts, the effect of different supramaximal exercise bouts on the calculated MAOD has been investigated. While it has become clear that different exercise protocols result in relatively similar values of the MAOD, a closer look at individual data suggests that it may be important to choose an exercise protocol that is representative of the athlete’s event. The validity of the MAOD method was studied by different authors comparing the MAOD with metabolic measurements of anaerobic adenosine triphosphate (ATP) production. The main limitation with the metabolic measurements of anaerobic ATP production from muscle biopsy data is that the active muscle mass is unknown, which makes it hard to accurately study the validity of the MAOD method. From the studies that evaluated the reliability of the MAOD method it is clear that the MAOD method may not be a reliable measure of anaerobic capacity. From these findings it can be concluded that the MAOD method may have limitations as a valid and reliable measure of anaerobic capacity and needs to be further improved. We suggest the use of 10 x 4 minute submaximal exercise bouts and a fixed value of the y-intercept for the construction of the linear PO-V̇O2 relationship, after which the MAOD can be determined during a supramaximal exercise protocol specific for the athlete’s event. This method will lead to a more robust PO-V̇O2 relationship and will therefore result in more valid and reliable results.
Literatur
1.
Zurück zum Zitat Krogh A, Lindhard J. The changes in respiration at the transition from work to rest. J Physiol 1920 May 18; 53 (6): 431–9PubMed Krogh A, Lindhard J. The changes in respiration at the transition from work to rest. J Physiol 1920 May 18; 53 (6): 431–9PubMed
2.
Zurück zum Zitat Hermansen L. Anaerobic energy release. Med Sci Sports Exerc 1969; 1 (1): 32–5CrossRef Hermansen L. Anaerobic energy release. Med Sci Sports Exerc 1969; 1 (1): 32–5CrossRef
3.
Zurück zum Zitat Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988 Jan; 64 (1): 50–60PubMed Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988 Jan; 64 (1): 50–60PubMed
4.
Zurück zum Zitat Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60, and 90 s of maximal cycling on an airbraked ergometer. Eur J Appl Physiol 1991; 63: 354–62CrossRef Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60, and 90 s of maximal cycling on an airbraked ergometer. Eur J Appl Physiol 1991; 63: 354–62CrossRef
5.
Zurück zum Zitat Withers RT, Van der Ploeg G, Finn JP. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an airbraked ergometer. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 185–91PubMedCrossRef Withers RT, Van der Ploeg G, Finn JP. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an airbraked ergometer. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 185–91PubMedCrossRef
6.
Zurück zum Zitat Woolford SM, Withers RT, Craig NP, et al. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol 1999 Sep; 80 (4): 285–91PubMedCrossRef Woolford SM, Withers RT, Craig NP, et al. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists. Eur J Appl Physiol Occup Physiol 1999 Sep; 80 (4): 285–91PubMedCrossRef
7.
Zurück zum Zitat Weber CL, Schneider DA. Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. JAppl Physiol 2002 May; 92 (5): 1795–801 Weber CL, Schneider DA. Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. JAppl Physiol 2002 May; 92 (5): 1795–801
8.
Zurück zum Zitat Weber CL, Schneider DA. Reliability of MAOD measured at 110% and 120% of peak oxygen uptake for cycling. Med Sci Sports Exerc 2001 Jun; 33 (6): 1056–9PubMedCrossRef Weber CL, Schneider DA. Reliability of MAOD measured at 110% and 120% of peak oxygen uptake for cycling. Med Sci Sports Exerc 2001 Jun; 33 (6): 1056–9PubMedCrossRef
9.
Zurück zum Zitat Weber CL, Schneider DA. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 2000 Jul; 82 (4): 255–61PubMedCrossRef Weber CL, Schneider DA. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 2000 Jul; 82 (4): 255–61PubMedCrossRef
10.
Zurück zum Zitat Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med 2000 Feb; 21 (2): 96–101PubMedCrossRef Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. Int J Sports Med 2000 Feb; 21 (2): 96–101PubMedCrossRef
11.
Zurück zum Zitat Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997 Mar; 29 (3): 390–5PubMedCrossRef Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997 Mar; 29 (3): 390–5PubMedCrossRef
12.
Zurück zum Zitat Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 1996 Oct; 28 (10): 1327–30PubMedCrossRef Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 1996 Oct; 28 (10): 1327–30PubMedCrossRef
13.
Zurück zum Zitat Scott CB, Roby FB, Lohman TG, et al. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med Sci Sports Exerc 1991 May; 23 (5): 618–24PubMed Scott CB, Roby FB, Lohman TG, et al. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med Sci Sports Exerc 1991 May; 23 (5): 618–24PubMed
15.
Zurück zum Zitat Roberts AD, Clark SA, Townsend NE, et al. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high/train low altitude exposure. Eur J Appl Physiol 2003 Jan; 88 (4-5): 390–5PubMedCrossRef Roberts AD, Clark SA, Townsend NE, et al. Changes in performance, maximal oxygen uptake and maximal accumulated oxygen deficit after 5, 10 and 15 days of live high/train low altitude exposure. Eur J Appl Physiol 2003 Jan; 88 (4-5): 390–5PubMedCrossRef
16.
Zurück zum Zitat Ravier G, Dugue B, Grappe F, et al. Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int J Sports Med 2006 Oct; 27 (10): 810–7PubMedCrossRef Ravier G, Dugue B, Grappe F, et al. Maximal accumulated oxygen deficit and blood responses of ammonia, lactate and pH after anaerobic test: a comparison between international and national elite karate athletes. Int J Sports Med 2006 Oct; 27 (10): 810–7PubMedCrossRef
17.
Zurück zum Zitat Ramsbottom R, Nevill AM, Nevill ME, et al. Accumulated oxygen deficit and short-distance running performance. J Sports Sci 1994 Oct; 12 (5): 447–53PubMedCrossRef Ramsbottom R, Nevill AM, Nevill ME, et al. Accumulated oxygen deficit and short-distance running performance. J Sports Sci 1994 Oct; 12 (5): 447–53PubMedCrossRef
18.
Zurück zum Zitat Ramsbottom R, Nevill AM, Seager RD, et al. Effect of training on accumulated oxygen deficit and shuttle run performance. J Sports Med Phys Fitness 2001 Sep; 41 (3): 281–90PubMed Ramsbottom R, Nevill AM, Seager RD, et al. Effect of training on accumulated oxygen deficit and shuttle run performance. J Sports Med Phys Fitness 2001 Sep; 41 (3): 281–90PubMed
19.
Zurück zum Zitat Pripstein LP, Rhodes EC, McKenzie DC, et al. Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur J Appl Physiol Occup Physiol 1999 May; 79 (6): 491–4PubMedCrossRef Pripstein LP, Rhodes EC, McKenzie DC, et al. Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur J Appl Physiol Occup Physiol 1999 May; 79 (6): 491–4PubMedCrossRef
20.
Zurück zum Zitat Olesen HL. Accumulated oxygen deficit increases with inclination of uphill running. J Appl Physiol 1992 Sep; 73 (3): 1130–4PubMed Olesen HL. Accumulated oxygen deficit increases with inclination of uphill running. J Appl Physiol 1992 Sep; 73 (3): 1130–4PubMed
21.
Zurück zum Zitat Olesen HL, Raabo E, Bangsbo J, et al. Maximal oxygen deficit of sprint and middle distance runners. Eur J Appl Physiol Occup Physiol 1994; 69: 140–6PubMedCrossRef Olesen HL, Raabo E, Bangsbo J, et al. Maximal oxygen deficit of sprint and middle distance runners. Eur J Appl Physiol Occup Physiol 1994; 69: 140–6PubMedCrossRef
22.
Zurück zum Zitat Pouilly JP, Busso T. Accumulated oxygen deficit during ramp exercise. Int J Sports Med 2008 Jan; 29 (1): 16–20PubMedCrossRef Pouilly JP, Busso T. Accumulated oxygen deficit during ramp exercise. Int J Sports Med 2008 Jan; 29 (1): 16–20PubMedCrossRef
23.
Zurück zum Zitat Pizza FX, Naglieri TA, Holtz RW, et al. Maximal accumulated oxygen deficit of resistance-trained men. Can J Appl Physiol 1996 Oct; 21 (5): 391–402PubMedCrossRef Pizza FX, Naglieri TA, Holtz RW, et al. Maximal accumulated oxygen deficit of resistance-trained men. Can J Appl Physiol 1996 Oct; 21 (5): 391–402PubMedCrossRef
24.
Zurück zum Zitat Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 1996 Aug; 157 (4): 435–41PubMedCrossRef Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 1996 Aug; 157 (4): 435–41PubMedCrossRef
25.
Zurück zum Zitat Ogita F, Onodera T, Tabata I. Effect of hand paddles on anaerobic energy release during supramaximal swimming. Med Sci Sports Exerc 1999 May; 31 (5): 729–35PubMedCrossRef Ogita F, Onodera T, Tabata I. Effect of hand paddles on anaerobic energy release during supramaximal swimming. Med Sci Sports Exerc 1999 May; 31 (5): 729–35PubMedCrossRef
26.
Zurück zum Zitat Ogawa T, Hayashi K, Ichinose M, et al. Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 2007 Jan; 99 (1): 39–46PubMedCrossRef Ogawa T, Hayashi K, Ichinose M, et al. Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 2007 Jan; 99 (1): 39–46PubMedCrossRef
27.
Zurück zum Zitat Nevill AM, Ramsbottom R, Nevill ME, et al. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance. J Sports Med Phys Fitness 2008 Jun; 48 (2): 138–42PubMed Nevill AM, Ramsbottom R, Nevill ME, et al. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance. J Sports Med Phys Fitness 2008 Jun; 48 (2): 138–42PubMed
28.
Zurück zum Zitat Naughton GA, Carlson JS. Anaerobic capacity assessment in male and female children with all-out isokinetic cycling exercise. Aust J Sci Med Sport 1995 Dec; 27 (4): 83–7PubMed Naughton GA, Carlson JS. Anaerobic capacity assessment in male and female children with all-out isokinetic cycling exercise. Aust J Sci Med Sport 1995 Dec; 27 (4): 83–7PubMed
29.
Zurück zum Zitat Naughton GA, Carlson JS, Buttifant DC, et al. Accumulated oxygen deficit measurements during and after highintensity exercise in trained male and female adolescents. Eur J Appl Physiol Occup Physiol 1997; 76 (6): 525–31PubMedCrossRef Naughton GA, Carlson JS, Buttifant DC, et al. Accumulated oxygen deficit measurements during and after highintensity exercise in trained male and female adolescents. Eur J Appl Physiol Occup Physiol 1997; 76 (6): 525–31PubMedCrossRef
30.
Zurück zum Zitat Minahan C, Chia M, Inbar O. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit. Int J Sports Med 2007 Oct; 28 (10): 836–43PubMedCrossRef Minahan C, Chia M, Inbar O. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit. Int J Sports Med 2007 Oct; 28 (10): 836–43PubMedCrossRef
31.
Zurück zum Zitat Minahan C, Wood C. Strength training improves supramaximal cycling but not anaerobic capacity. Eur J Appl Physiol 2008 Apr; 102 (6): 659–66PubMedCrossRef Minahan C, Wood C. Strength training improves supramaximal cycling but not anaerobic capacity. Eur J Appl Physiol 2008 Apr; 102 (6): 659–66PubMedCrossRef
32.
Zurück zum Zitat Maxwell NS, Nimmo MA. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen deficit. Can J Appl Physiol 1996 Feb; 21 (1): 35–47PubMedCrossRef Maxwell NS, Nimmo MA. Anaerobic capacity: a maximal anaerobic running test versus the maximal accumulated oxygen deficit. Can J Appl Physiol 1996 Feb; 21 (1): 35–47PubMedCrossRef
33.
Zurück zum Zitat Marth PD, Woods RR, Hill DW. Influence of time of day on anaerobic capacity. Percept Mot Skills 1998 Apr; 86 (2): 592–4PubMedCrossRef Marth PD, Woods RR, Hill DW. Influence of time of day on anaerobic capacity. Percept Mot Skills 1998 Apr; 86 (2): 592–4PubMedCrossRef
34.
Zurück zum Zitat Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997 Jul; 83 (1): 102–12PubMed Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 1997 Jul; 83 (1): 102–12PubMed
35.
Zurück zum Zitat Glaister M, Stone MH, Stewart AM, et al. Aerobic and anaerobic correlates of multiple sprint cycling performance. J Strength Cond Res 2006 Nov; 20 (4): 792–8PubMed Glaister M, Stone MH, Stewart AM, et al. Aerobic and anaerobic correlates of multiple sprint cycling performance. J Strength Cond Res 2006 Nov; 20 (4): 792–8PubMed
36.
Zurück zum Zitat Glaister M, Stone MH, Stewart AM, et al. The influence of endurance training on multiple sprint cycling performance. J Strength Cond Res 2007 May; 21 (2): 606–12PubMed Glaister M, Stone MH, Stewart AM, et al. The influence of endurance training on multiple sprint cycling performance. J Strength Cond Res 2007 May; 21 (2): 606–12PubMed
37.
Zurück zum Zitat Gastin PB, Costill DL, Lawson DL, et al. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc 1995 Feb; 27 (2): 255–63PubMed Gastin PB, Costill DL, Lawson DL, et al. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med Sci Sports Exerc 1995 Feb; 27 (2): 255–63PubMed
38.
Zurück zum Zitat Gastin PB, Lawson DL. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 321–30PubMedCrossRef Gastin PB, Lawson DL. Influence of training status on maximal accumulated oxygen deficit during all-out cycle exercise. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 321–30PubMedCrossRef
39.
Zurück zum Zitat Gastin PB, Lawson DL. Variable resistance all-out test to generate accumulated oxygen deficit and predict anaerobic capacity. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 331–6PubMedCrossRef Gastin PB, Lawson DL. Variable resistance all-out test to generate accumulated oxygen deficit and predict anaerobic capacity. Eur J Appl Physiol Occup Physiol 1994; 69 (4): 331–6PubMedCrossRef
40.
Zurück zum Zitat Gardner A, Osborne M, D’Auria S, et al. A comparison of two methods for the calculation of accumulated oxygen deficit. J Sports Sci 2003 Mar; 21 (3): 155–62PubMedCrossRef Gardner A, Osborne M, D’Auria S, et al. A comparison of two methods for the calculation of accumulated oxygen deficit. J Sports Sci 2003 Mar; 21 (3): 155–62PubMedCrossRef
41.
Zurück zum Zitat Friedmann B, Frese F, Menold E, et al. Effects of acute moderate hypoxia on anaerobic capacity in endurancetrained runners. Eur J Appl Physiol 2007 Sep; 101 (1): 67–73PubMedCrossRef Friedmann B, Frese F, Menold E, et al. Effects of acute moderate hypoxia on anaerobic capacity in endurancetrained runners. Eur J Appl Physiol 2007 Sep; 101 (1): 67–73PubMedCrossRef
42.
Zurück zum Zitat Faina M, Billat V, Squadrone R, et al. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers. Eur J Appl Physiol Occup Physiol 1997; 76 (1): 13–20PubMedCrossRef Faina M, Billat V, Squadrone R, et al. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers. Eur J Appl Physiol Occup Physiol 1997; 76 (1): 13–20PubMedCrossRef
43.
Zurück zum Zitat Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 150–8PubMedCrossRef Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 150–8PubMedCrossRef
44.
Zurück zum Zitat Calbet JA, Chavarren J, Dorado C. Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 1997; 76 (4): 308–13PubMedCrossRef Calbet JA, Chavarren J, Dorado C. Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 1997; 76 (4): 308–13PubMedCrossRef
45.
Zurück zum Zitat Calbet JA, De Paz JA, Garatachea N, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 2003 Feb; 94 (2): 668–76PubMed Calbet JA, De Paz JA, Garatachea N, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 2003 Feb; 94 (2): 668–76PubMed
46.
Zurück zum Zitat Buck D, Mc Naughton L. Maximal accumulated oxygen deficit must be calculated using 10-min time periods. Med Sci Sports Exerc 1999 Sep; 31 (9): 1346–9PubMedCrossRef Buck D, Mc Naughton L. Maximal accumulated oxygen deficit must be calculated using 10-min time periods. Med Sci Sports Exerc 1999 Sep; 31 (9): 1346–9PubMedCrossRef
47.
Zurück zum Zitat Buck D, Mc Naughton LR. Changing the number of submaximal exercise bouts effects calculation of MAOD. Int J Sports Med 1999 Jan; 20 (1): 28–33PubMedCrossRef Buck D, Mc Naughton LR. Changing the number of submaximal exercise bouts effects calculation of MAOD. Int J Sports Med 1999 Jan; 20 (1): 28–33PubMedCrossRef
48.
Zurück zum Zitat Aisbett B, Le Rossignol P. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test. J Sci Med Sport 2003 Sep; 6 (3): 343–7PubMedCrossRef Aisbett B, Le Rossignol P. Estimating the total energy demand for supra-maximal exercise using the VO2-power regression from an incremental exercise test. J Sci Med Sport 2003 Sep; 6 (3): 343–7PubMedCrossRef
49.
Zurück zum Zitat Aisbett B, Le Rossignol P, Sparrow WA. The influence of pacing during 6-minute supra-maximal cycle ergometer performance. J Sci Med Sport 2003 Jun; 6 (2): 187–98PubMedCrossRef Aisbett B, Le Rossignol P, Sparrow WA. The influence of pacing during 6-minute supra-maximal cycle ergometer performance. J Sci Med Sport 2003 Jun; 6 (2): 187–98PubMedCrossRef
50.
Zurück zum Zitat Medbø JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989 Nov; 67 (5): 1881–6PubMed Medbø JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989 Nov; 67 (5): 1881–6PubMed
51.
Zurück zum Zitat Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 1993 Oct; 75 (4): 1654–60PubMed Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 1993 Oct; 75 (4): 1654–60PubMed
52.
Zurück zum Zitat Craig NP, Norton KI, Conyers RA, et al. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists. Int J Sports Med 1995 Nov; 16 (8): 534–40PubMedCrossRef Craig NP, Norton KI, Conyers RA, et al. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists. Int J Sports Med 1995 Nov; 16 (8): 534–40PubMedCrossRef
53.
Zurück zum Zitat Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. Int J Sports Med 1993 May; 14 (4): 207–13PubMedCrossRef Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. Int J Sports Med 1993 May; 14 (4): 207–13PubMedCrossRef
54.
Zurück zum Zitat Bosquet L, Duchene A, Delhors PR, et al. A comparison of methods to determine maximal accumulated oxygen deficit in running. J Sports Sci 2008 Apr; 26 (6): 663–70PubMedCrossRef Bosquet L, Duchene A, Delhors PR, et al. A comparison of methods to determine maximal accumulated oxygen deficit in running. J Sports Sci 2008 Apr; 26 (6): 663–70PubMedCrossRef
55.
Zurück zum Zitat Doherty M, Smith PM. The reliability of cycling maximal accumulated oxygen deficit (MAOD) and time to exhaustion (T(lim)) in untrained subjects. Med Sci Sports Exerc 2001 Oct; 33 (10): 1794–5PubMedCrossRef Doherty M, Smith PM. The reliability of cycling maximal accumulated oxygen deficit (MAOD) and time to exhaustion (T(lim)) in untrained subjects. Med Sci Sports Exerc 2001 Oct; 33 (10): 1794–5PubMedCrossRef
56.
Zurück zum Zitat Doherty M, Smith PM, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running. J Sports Sci 2000 May; 18 (5): 331–8PubMedCrossRef Doherty M, Smith PM, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running. J Sports Sci 2000 May; 18 (5): 331–8PubMedCrossRef
57.
Zurück zum Zitat Bangsbo J. Is the O2 deficit an accurate quantitative measure of the anaerobic energy production during intense exercise? J Appl Physiol 1992 Sep; 73 (3): 1207–9PubMed Bangsbo J. Is the O2 deficit an accurate quantitative measure of the anaerobic energy production during intense exercise? J Appl Physiol 1992 Sep; 73 (3): 1207–9PubMed
58.
Zurück zum Zitat Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise? Can J Appl Physiol 1996 Oct; 21 (5): 350–63; discussion 64-9PubMedCrossRef Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise? Can J Appl Physiol 1996 Oct; 21 (5): 350–63; discussion 64-9PubMedCrossRef
59.
Zurück zum Zitat Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 1999 Nov; 277 (5Pt1): E890–900 Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 1999 Nov; 277 (5Pt1): E890–900
60.
Zurück zum Zitat Parolin ML, Spriet LL, Hultman E, et al. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol Endocrinol Metab 2000 Mar; 278 (3): E522–34 Parolin ML, Spriet LL, Hultman E, et al. Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. Am J Physiol Endocrinol Metab 2000 Mar; 278 (3): E522–34
61.
Zurück zum Zitat Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989 Jan; 66 (1): 8–13PubMed Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989 Jan; 66 (1): 8–13PubMed
62.
Zurück zum Zitat Putman CT, Jones NL, Lands LC, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol 1995 Sep; 269 (3Pt1): E458–68 Putman CT, Jones NL, Lands LC, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol 1995 Sep; 269 (3Pt1): E458–68
63.
Zurück zum Zitat Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, et al. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans 2002 Apr; 30 (2): 275–80PubMedCrossRef Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, et al. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Biochem Soc Trans 2002 Apr; 30 (2): 275–80PubMedCrossRef
64.
Zurück zum Zitat Gonzalez-Alonso J, Quistorff B, Krustrup P, et al. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 2000 Apr 15; 524 (Pt2): 603–15PubMedCrossRef Gonzalez-Alonso J, Quistorff B, Krustrup P, et al. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 2000 Apr 15; 524 (Pt2): 603–15PubMedCrossRef
65.
Zurück zum Zitat Krustrup P, Ferguson RA, Kjaer M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol 2003; 15: 255–69CrossRef Krustrup P, Ferguson RA, Kjaer M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol 2003; 15: 255–69CrossRef
66.
Zurück zum Zitat Medbø JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc 1990 Aug; 22 (4): 501–7PubMed Medbø JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc 1990 Aug; 22 (4): 501–7PubMed
67.
Zurück zum Zitat Bangsbo J, Gollnick PD, Graham TE, et al. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990 Mar; 422: 539–59PubMed Bangsbo J, Gollnick PD, Graham TE, et al. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990 Mar; 422: 539–59PubMed
68.
Zurück zum Zitat Sloniger MA, Cureton KJ, Prior BM, et al. Anaerobic capacity and muscle activation during horizontal and uphill running. J Appl Physiol 1997 Jul; 83 (1): 262–9PubMed Sloniger MA, Cureton KJ, Prior BM, et al. Anaerobic capacity and muscle activation during horizontal and uphill running. J Appl Physiol 1997 Jul; 83 (1): 262–9PubMed
69.
Zurück zum Zitat Craig IS, Morgan DW. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners. Med Sci Sports Exerc 1998 Nov; 30 (11): 1631–6PubMedCrossRef Craig IS, Morgan DW. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners. Med Sci Sports Exerc 1998 Nov; 30 (11): 1631–6PubMedCrossRef
70.
Zurück zum Zitat Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol 1997 Dec; 83 (6): 2073–9PubMed Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol 1997 Dec; 83 (6): 2073–9PubMed
71.
Zurück zum Zitat Özyener F, Rossiter HB, Ward SA, et al. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans. Eur J Appl Physiol 2003 Sep; 90 (1-2): 185–90PubMedCrossRef Özyener F, Rossiter HB, Ward SA, et al. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans. Eur J Appl Physiol 2003 Sep; 90 (1-2): 185–90PubMedCrossRef
72.
Zurück zum Zitat Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol 2002 Nov; 88 (1-2): 163–9PubMedCrossRef Pringle JS, Carter H, Doust JH, et al. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol 2002 Nov; 88 (1-2): 163–9PubMedCrossRef
73.
Zurück zum Zitat Zoladz JA, Duda K, Majerczak J. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance. Physiol Res 1998; 47 (6): 427–38PubMed Zoladz JA, Duda K, Majerczak J. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance. Physiol Res 1998; 47 (6): 427–38PubMed
74.
Zurück zum Zitat Pringle JS, Doust JH, Carter H, et al. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise. J Appl Physiol 2003 Apr; 94 (4): 1501–7PubMed Pringle JS, Doust JH, Carter H, et al. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise. J Appl Physiol 2003 Apr; 94 (4): 1501–7PubMed
75.
Zurück zum Zitat Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the VO2 slow component in cycling and running in triathletes. Int J Sports Med 1999 Oct; 20 (7): 429–37PubMedCrossRef Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the VO2 slow component in cycling and running in triathletes. Int J Sports Med 1999 Oct; 20 (7): 429–37PubMedCrossRef
76.
Zurück zum Zitat Billat VL, Richard R, Binsse VM, et al. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol 1998 Dec; 85 (6): 2118–24PubMed Billat VL, Richard R, Binsse VM, et al. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol 1998 Dec; 85 (6): 2118–24PubMed
77.
Zurück zum Zitat Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 1972; 33 (3): 351–6PubMed Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 1972; 33 (3): 351–6PubMed
78.
Zurück zum Zitat Barstow TJ, Molé PA. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 1991 Dec; 71 (6): 2099–106PubMed Barstow TJ, Molé PA. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J Appl Physiol 1991 Dec; 71 (6): 2099–106PubMed
79.
Zurück zum Zitat Green S, Dawson BT. Methodological effects on the VO2-power regression and the accumulated O2 deficit. Med Sci Sports Exerc 1996 Mar; 28 (3): 392–7PubMed Green S, Dawson BT. Methodological effects on the VO2-power regression and the accumulated O2 deficit. Med Sci Sports Exerc 1996 Mar; 28 (3): 392–7PubMed
80.
Zurück zum Zitat Doherty M. The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance. Int J Sport Nutr 1998 Jun; 8 (2): 95–104PubMed Doherty M. The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance. Int J Sport Nutr 1998 Jun; 8 (2): 95–104PubMed
81.
Zurück zum Zitat Bickham D, Le Rossignol P, Gibbons C, et al. Re-assessing accumulated oxygen deficit in middle-distance runners. J Sci Med Sport 2002; 5 (4): 372–82PubMedCrossRef Bickham D, Le Rossignol P, Gibbons C, et al. Re-assessing accumulated oxygen deficit in middle-distance runners. J Sci Med Sport 2002; 5 (4): 372–82PubMedCrossRef
82.
Zurück zum Zitat Green S, Dawson BT. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit. Eur J Appl Physiol Occup Physiol 1995; 70 (4): 351–9PubMedCrossRef Green S, Dawson BT. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit. Eur J Appl Physiol Occup Physiol 1995; 70 (4): 351–9PubMedCrossRef
83.
Zurück zum Zitat Green S, Dawson BT, Goodman C, et al. Anaerobic ATP production and accumulated O2 deficit in cyclists. Med Sci Sports Exerc 1996 Mar; 28 (3): 315–21PubMed Green S, Dawson BT, Goodman C, et al. Anaerobic ATP production and accumulated O2 deficit in cyclists. Med Sci Sports Exerc 1996 Mar; 28 (3): 315–21PubMed
84.
Zurück zum Zitat Medbø JI. Is the maximal accumulated oxygen deficit an adequate measure of the anaerobic capacity? Can J Appl Physiol 1996 Oct; 21 (5): 370–83; discussion 84-8PubMedCrossRef Medbø JI. Is the maximal accumulated oxygen deficit an adequate measure of the anaerobic capacity? Can J Appl Physiol 1996 Oct; 21 (5): 370–83; discussion 84-8PubMedCrossRef
85.
Zurück zum Zitat Jacobs I, Bleue S, Goodman J. Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can J Appl Physiol 1997 Jun; 22 (3): 231–43PubMedCrossRef Jacobs I, Bleue S, Goodman J. Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can J Appl Physiol 1997 Jun; 22 (3): 231–43PubMedCrossRef
86.
Zurück zum Zitat Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26 (4): 217–38PubMedCrossRef Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26 (4): 217–38PubMedCrossRef
Metadaten
Titel
The Maximal Accumulated Oxygen Deficit Method
A Valid and Reliable Measure of Anaerobic Capacity?
Publikationsdatum
01.04.2010
Erschienen in
Sports Medicine / Ausgabe 4/2010
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/11530390-000000000-00000

Weitere Artikel der Ausgabe 4/2010

Sports Medicine 4/2010 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.