Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2011

01.02.2011 | Review Article

The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients

verfasst von: Marta Ulldemolins, Dr Jason A. Roberts, Jordi Rello, David L. Paterson, Jeffrey Lipman

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Low serum albumin levels are very common in critically ill patients, with reported incidences as high as 40–50%. This condition appears to be associated with alterations in the degree of protein binding of many highly protein-bound antibacterials, which lead to altered pharmacokinetics and pharmacodynamics, although this topic is infrequently considered in daily clinical practice. The effects of hypoalbuminaemia on pharmacokinetics are driven by the decrease in the extent of antibacterial bound to albumin, which increases the unbound fraction of the drug. Unlike the fraction bound to plasma proteins, the unbound fraction is the only fraction available for distribution and clearance from the plasma (central compartment). Hence, hypoalbuminaemia is likely to increase the apparent total volume of distribution (Vd) and clearance (CL) of a drug, which would translate to lower antibacterial exposures that might compromise the attainment of pharmacodynamic targets, especially for time-dependent antibacterials. The effect of hypoalbuminaemia on unbound concentrations is also likely to have an important impact on pharmacodynamics, but there is very little information available on this area.
The objectives of this review were to identify the original research papers that report variations in the highly protein-bound antibacterial pharmacokinetics (mainly Vd and CL) in critically ill patients with hypoalbuminaemia and without renal failure, and subsequently to interpret the consequences for antibacterial dosing. All relevant articles that described the pharmacokinetics and/or pharmacodynamics of highly protein-bound antibacterials in critically ill patients with hypoalbuminaemia and conserved renal function were reviewed.
We found that decreases in the protein binding of antibacterials in the presence of hypoalbuminaemia are frequently observed in critically ill patients. For example, the Vd and CL of ceftriaxone (85–95% protein binding) in hypoalbuminaemic critically ill patients were increased 2-fold. A similar phenomenon was reported with ertapenem (85–95% protein binding), which led to failure to attain pharmacodynamic targets (40% time for which the concentration of unbound [free] antibacterial was maintained above the minimal inhibitory concentration [fT>MIC] of the bacteria throughout the dosing interval). The Vd and CL of other highly protein-bound antibacterials such as teicoplanin, aztreonam, fusidic acid or daptomycin among others were significantly increased in critically ill patients with hypoalbuminaemia compared with healthy subjects.
Increased antibacterial Vd appeared to be the most significant pharmacokinetic effect of decreased albumin binding, together with increased CL. These pharmacokinetic changes may result in decreased achievement of pharmacodynamic targets especially for time-dependent antibacterials, resulting in sub-optimal treatment. The effects on concentration-dependent antibacterial pharmacodynamics are more controversial due to the lack of data on this topic. In conclusion, altered antibacterial-albumin binding in the presence of hypoalbuminaemia is likely to produce significant variations in the pharmacokinetics of many highly protein-bound antibacterials. Dose adjustments of these antibacterials in critically ill patients with hypoalbuminaemia should be regarded as another step for antibacterial dosing optimization. Moreover, some of the new antibacterials in development exhibit a high level of protein binding although hypoalbuminaemia is rarely considered in clinical trials in critically ill patients. Further research that defines dosing regimens that account for such altered pharmacokinetics is recommended.
Literatur
1.
Zurück zum Zitat Roberts JA, Lipman J. Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 2006; 45(8): 755–73PubMedCrossRef Roberts JA, Lipman J. Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 2006; 45(8): 755–73PubMedCrossRef
2.
Zurück zum Zitat Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37(3): 840–51PubMedCrossRef Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 2009; 37(3): 840–51PubMedCrossRef
3.
Zurück zum Zitat Craig WA, Suh B. Changes in protein binding during disease. Scand J Infect Dis Suppl 1978; (14): 239–44PubMed Craig WA, Suh B. Changes in protein binding during disease. Scand J Infect Dis Suppl 1978; (14): 239–44PubMed
4.
Zurück zum Zitat Suh B, Craig WA, England AC, et al. Effect of free fatty acids on protein binding of antimicrobial agents. J Infect Dis 1981; 143(4): 609–16PubMedCrossRef Suh B, Craig WA, England AC, et al. Effect of free fatty acids on protein binding of antimicrobial agents. J Infect Dis 1981; 143(4): 609–16PubMedCrossRef
5.
Zurück zum Zitat Friend R, Hatchett L, Wadhwa NK, et al. Serum albumin and depression in end-stage renal disease. Adv Perit Dial 1997; 13: 155–7PubMed Friend R, Hatchett L, Wadhwa NK, et al. Serum albumin and depression in end-stage renal disease. Adv Perit Dial 1997; 13: 155–7PubMed
6.
Zurück zum Zitat Novak M, Polacek K, Melichar V. Competition between bilirubin and non-esterified fatty acids for binding to albumin. Biol Neonat 1962; 4: 310–5PubMedCrossRef Novak M, Polacek K, Melichar V. Competition between bilirubin and non-esterified fatty acids for binding to albumin. Biol Neonat 1962; 4: 310–5PubMedCrossRef
7.
Zurück zum Zitat Finfer S, Bellomo R, McEvoy S, et al. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the Saline versus Albumin Fluid Evaluation (SAFE) study. BMJ 2006; 333(7577): 1044PubMedCrossRef Finfer S, Bellomo R, McEvoy S, et al. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the Saline versus Albumin Fluid Evaluation (SAFE) study. BMJ 2006; 333(7577): 1044PubMedCrossRef
8.
Zurück zum Zitat Merrikin DJ, Briant J, Rolinson GN. Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother 1983; 11(3): 233–8PubMedCrossRef Merrikin DJ, Briant J, Rolinson GN. Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother 1983; 11(3): 233–8PubMedCrossRef
9.
Zurück zum Zitat Liu P, Derendorf H. Antimicrobial tissue concentrations. Infect Dis Clin North Am 2003; 17(3): 599–613PubMedCrossRef Liu P, Derendorf H. Antimicrobial tissue concentrations. Infect Dis Clin North Am 2003; 17(3): 599–613PubMedCrossRef
10.
Zurück zum Zitat Goldstein A. The interactions of drugs and plasma proteins. J Pharmacol Exp Ther 1949; 95 Pt. 2 (4): 102–65PubMed Goldstein A. The interactions of drugs and plasma proteins. J Pharmacol Exp Ther 1949; 95 Pt. 2 (4): 102–65PubMed
11.
Zurück zum Zitat Tillement JP, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clin Pharmacokinet 1978; 3(2): 144–54PubMedCrossRef Tillement JP, Lhoste F, Giudicelli JF. Diseases and drug protein binding. Clin Pharmacokinet 1978; 3(2): 144–54PubMedCrossRef
12.
Zurück zum Zitat Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 1(8432): 781–4PubMedCrossRef Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 1(8432): 781–4PubMedCrossRef
13.
Zurück zum Zitat Jarnum S. Turnover of plasma proteins. J Clin Pathol Suppl (Assoc Clin Pathol) 1975; 6: 13–21CrossRef Jarnum S. Turnover of plasma proteins. J Clin Pathol Suppl (Assoc Clin Pathol) 1975; 6: 13–21CrossRef
14.
15.
Zurück zum Zitat Kirsch R, Frith L, Black E, et al. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature 1968; 217(5128): 578–9PubMedCrossRef Kirsch R, Frith L, Black E, et al. Regulation of albumin synthesis and catabolism by alteration of dietary protein. Nature 1968; 217(5128): 578–9PubMedCrossRef
16.
Zurück zum Zitat Heyland DK, Tougas G, King D, et al. Impaired gastric emptying in mechanically ventilated, critically ill patients. Intensive Care Med 1996; 22(12): 1339–44PubMedCrossRef Heyland DK, Tougas G, King D, et al. Impaired gastric emptying in mechanically ventilated, critically ill patients. Intensive Care Med 1996; 22(12): 1339–44PubMedCrossRef
17.
Zurück zum Zitat Cooper JK, Gardner C. Effect of aging on serum albumin. J Am Geriatr Soc 1989; 37(11): 1039–42PubMed Cooper JK, Gardner C. Effect of aging on serum albumin. J Am Geriatr Soc 1989; 37(11): 1039–42PubMed
18.
Zurück zum Zitat Mariani G, Strober W, Keiser H, et al. Pathophysiology of hypoalbuminemia associated with carcinoid tumor. Cancer 1976; 38(2): 854–60PubMedCrossRef Mariani G, Strober W, Keiser H, et al. Pathophysiology of hypoalbuminemia associated with carcinoid tumor. Cancer 1976; 38(2): 854–60PubMedCrossRef
19.
Zurück zum Zitat Burkhardt O, Kumar V, Katterwe D, et al. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 2007; 59(2): 277–84PubMedCrossRef Burkhardt O, Kumar V, Katterwe D, et al. Ertapenem in critically ill patients with early-onset ventilator-associated pneumonia: pharmacokinetics with special consideration of free-drug concentration. J Antimicrob Chemother 2007; 59(2): 277–84PubMedCrossRef
20.
Zurück zum Zitat Joynt GM, Lipman J, Gomersall CD, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 2001; 47(4): 421–9PubMedCrossRef Joynt GM, Lipman J, Gomersall CD, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 2001; 47(4): 421–9PubMedCrossRef
21.
Zurück zum Zitat Lindow J, Wijdicks EF. Phenytoin toxicity associated with hypoalbuminemia in critically ill patients. Chest 1994; 105(2): 602–4PubMedCrossRef Lindow J, Wijdicks EF. Phenytoin toxicity associated with hypoalbuminemia in critically ill patients. Chest 1994; 105(2): 602–4PubMedCrossRef
22.
Zurück zum Zitat Rello J, Gallego M, Mariscal D, et al. The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 1997; 156(1): 196–200PubMed Rello J, Gallego M, Mariscal D, et al. The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 1997; 156(1): 196–200PubMed
23.
Zurück zum Zitat Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34(6): 1589–96PubMedCrossRef Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34(6): 1589–96PubMedCrossRef
24.
Zurück zum Zitat Udy AA, Roberts JA, Boots RJ, et al. Augmented renal clearance: implications for antibiotic dosing in the critically ill. Clin Pharmacokinet 2009; 49(1): 1–16CrossRef Udy AA, Roberts JA, Boots RJ, et al. Augmented renal clearance: implications for antibiotic dosing in the critically ill. Clin Pharmacokinet 2009; 49(1): 1–16CrossRef
25.
Zurück zum Zitat Mimoz O, Soreda S, Padoin C, et al. Ceftriaxone pharmacokinetics during iatrogenic hydroxyethyl starch-induced hypoalbuminemia: a model to explore the effects of decreased protein binding capacity on highly bound drugs. Anesthesiology 2000; 93(3): 735–43PubMedCrossRef Mimoz O, Soreda S, Padoin C, et al. Ceftriaxone pharmacokinetics during iatrogenic hydroxyethyl starch-induced hypoalbuminemia: a model to explore the effects of decreased protein binding capacity on highly bound drugs. Anesthesiology 2000; 93(3): 735–43PubMedCrossRef
26.
Zurück zum Zitat Donnelly AJ, Baughman VL, Gonzales JP, et al. Anesthesiology & critical care drug handbook. 8th ed. Hudson (OH): Lexi-Comp, 2008 Donnelly AJ, Baughman VL, Gonzales JP, et al. Anesthesiology & critical care drug handbook. 8th ed. Hudson (OH): Lexi-Comp, 2008
28.
Zurück zum Zitat Dalley AJ, Deans R, Lipman J, et al. Unbound cephalothin pharmacokinetics in adult burn patients are related to the elapsed time after injury. Antimicrob Agents Chemother 2009; 53(12): 5303–5PubMedCrossRef Dalley AJ, Deans R, Lipman J, et al. Unbound cephalothin pharmacokinetics in adult burn patients are related to the elapsed time after injury. Antimicrob Agents Chemother 2009; 53(12): 5303–5PubMedCrossRef
29.
Zurück zum Zitat Ulldemolins M, Roberts J, Wallis S, et al. Flucloxacillin dosing in critically ill patients with hypoalbuminemia: special emphasis on unbound pharmacokinetics. J Antimicrob Chemother 2010; 65(8): 1771–8PubMedCrossRef Ulldemolins M, Roberts J, Wallis S, et al. Flucloxacillin dosing in critically ill patients with hypoalbuminemia: special emphasis on unbound pharmacokinetics. J Antimicrob Chemother 2010; 65(8): 1771–8PubMedCrossRef
30.
Zurück zum Zitat Boselli E, Breilh D, Saux MC, et al. Pharmacokinetics and lung concentrations of ertapenem in patients with ventilator-associated pneumonia. Intensive Care Med 2006; 32(12): 2059–62PubMedCrossRef Boselli E, Breilh D, Saux MC, et al. Pharmacokinetics and lung concentrations of ertapenem in patients with ventilator-associated pneumonia. Intensive Care Med 2006; 32(12): 2059–62PubMedCrossRef
31.
Zurück zum Zitat Brink AJ, Richards GA, Schillack V, et al. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents 2009; 33(5): 432–6PubMedCrossRef Brink AJ, Richards GA, Schillack V, et al. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents 2009; 33(5): 432–6PubMedCrossRef
32.
Zurück zum Zitat Seguin P, Verdier MC, Chanavaz C, et al. Plasma and peritoneal concentration following continuous infusion of cefotaxime in patients with secondary peritonitis. J Antimicrob Chemother 2009; 63(3): 564–7PubMedCrossRef Seguin P, Verdier MC, Chanavaz C, et al. Plasma and peritoneal concentration following continuous infusion of cefotaxime in patients with secondary peritonitis. J Antimicrob Chemother 2009; 63(3): 564–7PubMedCrossRef
33.
Zurück zum Zitat Bubalo JS, Munar MY, Cherala G, et al. Daptomycin pharmacokinetics in adult oncology patients with neutropenic fever. Antimicrob Agents Chemother 2009; 53(2): 428–34PubMedCrossRef Bubalo JS, Munar MY, Cherala G, et al. Daptomycin pharmacokinetics in adult oncology patients with neutropenic fever. Antimicrob Agents Chemother 2009; 53(2): 428–34PubMedCrossRef
34.
Zurück zum Zitat Mimoz O, Rolland D, Adoun M, et al. Steady-state trough serum and epithelial lining fluid concentrations of teicoplanin 12 mg/kg per day in patients with ventilator-associated pneumonia. Intensive Care Med 2006; 32(5): 775–9PubMedCrossRef Mimoz O, Rolland D, Adoun M, et al. Steady-state trough serum and epithelial lining fluid concentrations of teicoplanin 12 mg/kg per day in patients with ventilator-associated pneumonia. Intensive Care Med 2006; 32(5): 775–9PubMedCrossRef
35.
Zurück zum Zitat Swabb EA, Leitz MA, Pilkiewicz FG, et al. Pharmacokinetics of the mono-bactam SQ 26,776 after single intravenous doses in healthy subjects. J Antimicrob Chemother 1981; 8 Suppl. E: 131–40PubMedCrossRef Swabb EA, Leitz MA, Pilkiewicz FG, et al. Pharmacokinetics of the mono-bactam SQ 26,776 after single intravenous doses in healthy subjects. J Antimicrob Chemother 1981; 8 Suppl. E: 131–40PubMedCrossRef
36.
Zurück zum Zitat Janicke DM, Cafarell RF, Parker SW, et al. Pharmacokinetics of aztreonam in patients with Gram-negative infections. Antimicrob Agents Chemother 1985; 27(1): 16–20PubMedCrossRef Janicke DM, Cafarell RF, Parker SW, et al. Pharmacokinetics of aztreonam in patients with Gram-negative infections. Antimicrob Agents Chemother 1985; 27(1): 16–20PubMedCrossRef
37.
Zurück zum Zitat Friedrich LV, White RL, Kays MB, et al. Aztreonam pharmacokinetics in burn patients. Antimicrob Agents Chemother 1991; 35(1): 57–61PubMedCrossRef Friedrich LV, White RL, Kays MB, et al. Aztreonam pharmacokinetics in burn patients. Antimicrob Agents Chemother 1991; 35(1): 57–61PubMedCrossRef
38.
Zurück zum Zitat Stoeckel K, McNamara PJ, Brandt R, et al. Effects of concentration-dependent plasma protein binding on ceftriaxone kinetics. Clin Pharmacol Ther 1981; 29(5): 650–7PubMedCrossRef Stoeckel K, McNamara PJ, Brandt R, et al. Effects of concentration-dependent plasma protein binding on ceftriaxone kinetics. Clin Pharmacol Ther 1981; 29(5): 650–7PubMedCrossRef
39.
Zurück zum Zitat Van Dalen R, Vree TB, Baars IM. Influence of protein binding and severity of illness on renal elimination of four cephalosporin drugs in intensive-care patients. Pharm Weekbl Sci 1987; 9(2): 98–103PubMedCrossRef Van Dalen R, Vree TB, Baars IM. Influence of protein binding and severity of illness on renal elimination of four cephalosporin drugs in intensive-care patients. Pharm Weekbl Sci 1987; 9(2): 98–103PubMedCrossRef
40.
Zurück zum Zitat Landersdorfer CB, Kirkpatrick CM, Kinzig-Schippers M, et al. Population pharmacokinetics at two dose levels and pharmacodynamic profiling of flucloxacillin. Antimicrob Agents Chemother 2007; 51(9): 3290–7PubMedCrossRef Landersdorfer CB, Kirkpatrick CM, Kinzig-Schippers M, et al. Population pharmacokinetics at two dose levels and pharmacodynamic profiling of flucloxacillin. Antimicrob Agents Chemother 2007; 51(9): 3290–7PubMedCrossRef
41.
Zurück zum Zitat Pletz MW, Rau M, Bulitta J, et al. Ertapenem pharmacokinetics and impact on intestinal microflora, in comparison to those of ceftriaxone, after multiple dosing in male and female volunteers. Antimicrob Agents Chemother 2004; 48(10): 3765–72PubMedCrossRef Pletz MW, Rau M, Bulitta J, et al. Ertapenem pharmacokinetics and impact on intestinal microflora, in comparison to those of ceftriaxone, after multiple dosing in male and female volunteers. Antimicrob Agents Chemother 2004; 48(10): 3765–72PubMedCrossRef
42.
Zurück zum Zitat Outman WR, Nightingale CH, Sweeney KR, et al. Teicoplanin pharmacokinetics in healthy volunteers after administration of intravenous loading and maintenance doses. Antimicrob Agents Chemother 1990; 34(11): 2114–7PubMedCrossRef Outman WR, Nightingale CH, Sweeney KR, et al. Teicoplanin pharmacokinetics in healthy volunteers after administration of intravenous loading and maintenance doses. Antimicrob Agents Chemother 1990; 34(11): 2114–7PubMedCrossRef
43.
Zurück zum Zitat Barbot A, Venisse N, Rayeh F, et al. Pharmacokinetics and pharmacodynamics of sequential intravenous and subcutaneous teicoplanin in critically ill patients without vasopressors. Intensive Care Med 2003; 29(9): 1528–34PubMedCrossRef Barbot A, Venisse N, Rayeh F, et al. Pharmacokinetics and pharmacodynamics of sequential intravenous and subcutaneous teicoplanin in critically ill patients without vasopressors. Intensive Care Med 2003; 29(9): 1528–34PubMedCrossRef
44.
Zurück zum Zitat Healy DP, Polk RE, Garson ML, et al. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob Agents Chemother 1987 Mar; 31(3): 393–7PubMedCrossRef Healy DP, Polk RE, Garson ML, et al. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob Agents Chemother 1987 Mar; 31(3): 393–7PubMedCrossRef
45.
Zurück zum Zitat Fernandez de Gatta Garcia M, Revilla N, Calvo MV, et al. Pharmacokinetic/ pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 2007; 33(2): 279–85CrossRef Fernandez de Gatta Garcia M, Revilla N, Calvo MV, et al. Pharmacokinetic/ pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med 2007; 33(2): 279–85CrossRef
46.
Zurück zum Zitat Dvorchik BH, Brazier D, DeBruin MF, et al. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 2003; 47(4): 1318–23PubMedCrossRef Dvorchik BH, Brazier D, DeBruin MF, et al. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 2003; 47(4): 1318–23PubMedCrossRef
47.
Zurück zum Zitat Mohr 3rd JF, Ostrosky-Zeichner L, Wainright DJ, et al. Pharmacokinetic evaluation of single-dose intravenous daptomycin in patients with thermal burn injury. Antimicrob Agents Chemother 2008; 52(5): 1891–3PubMedCrossRef Mohr 3rd JF, Ostrosky-Zeichner L, Wainright DJ, et al. Pharmacokinetic evaluation of single-dose intravenous daptomycin in patients with thermal burn injury. Antimicrob Agents Chemother 2008; 52(5): 1891–3PubMedCrossRef
48.
Zurück zum Zitat Taburet AM, Guibert J, Kitzis MD, et al. Pharmacokinetics of sodium fusidate after single and repeated infusions and oral administration of a new formulation. J Antimicrob Chemother 1990; 25 Suppl. B: 23–31PubMedCrossRef Taburet AM, Guibert J, Kitzis MD, et al. Pharmacokinetics of sodium fusidate after single and repeated infusions and oral administration of a new formulation. J Antimicrob Chemother 1990; 25 Suppl. B: 23–31PubMedCrossRef
49.
Zurück zum Zitat Peter JD, Jehl F, Pottecher T, et al. Pharmacokinetics of intravenous fusidic acid in patients with cholestasis. Antimicrob Agents Chemother 1993; 37(3): 501–6PubMedCrossRef Peter JD, Jehl F, Pottecher T, et al. Pharmacokinetics of intravenous fusidic acid in patients with cholestasis. Antimicrob Agents Chemother 1993; 37(3): 501–6PubMedCrossRef
50.
Zurück zum Zitat Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRef
51.
Zurück zum Zitat Perry TR, Schentag JJ. Clinical use of ceftriaxone: a pharmacokinetic-pharmacodynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin Pharmacokinet 2001; 40(9): 685–94PubMedCrossRef Perry TR, Schentag JJ. Clinical use of ceftriaxone: a pharmacokinetic-pharmacodynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin Pharmacokinet 2001; 40(9): 685–94PubMedCrossRef
52.
Zurück zum Zitat Jungbluth GL, Pasko MT, Beam TR, et al. Ceftriaxone disposition in open-heart surgery patients. Antimicrob Agents Chemother 1989; 33(6): 850–6PubMedCrossRef Jungbluth GL, Pasko MT, Beam TR, et al. Ceftriaxone disposition in open-heart surgery patients. Antimicrob Agents Chemother 1989; 33(6): 850–6PubMedCrossRef
53.
Zurück zum Zitat Bonate PL. Pathophysiology and pharmacokinetics following burn injury. Clin Pharmacokinet 1990; 18(2): 118–30PubMedCrossRef Bonate PL. Pathophysiology and pharmacokinetics following burn injury. Clin Pharmacokinet 1990; 18(2): 118–30PubMedCrossRef
54.
Zurück zum Zitat Brogard JM, Haegele P, Kohler JJ, et al. The biliary excretion of cephalothin. Chemotherapy 1973; 18(4): 212–21PubMedCrossRef Brogard JM, Haegele P, Kohler JJ, et al. The biliary excretion of cephalothin. Chemotherapy 1973; 18(4): 212–21PubMedCrossRef
55.
Zurück zum Zitat Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev 2004; 2(4): 289–300CrossRef Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev 2004; 2(4): 289–300CrossRef
56.
Zurück zum Zitat Leroy A, Fillastre JP, Borsa-Lebas F, et al. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother 1992; 36(12): 2794–8PubMedCrossRef Leroy A, Fillastre JP, Borsa-Lebas F, et al. Pharmacokinetics of meropenem (ICI 194,660) and its metabolite (ICI 213,689) in healthy subjects and in patients with renal impairment. Antimicrob Agents Chemother 1992; 36(12): 2794–8PubMedCrossRef
58.
Zurück zum Zitat Boswell FJ, Ashby JP, Andrews JM, et al. Effect of protein binding on the in vitro activity and pharmacodynamics of faropenem. J Antimicrob Chemother 2002; 50(4): 525–32PubMedCrossRef Boswell FJ, Ashby JP, Andrews JM, et al. Effect of protein binding on the in vitro activity and pharmacodynamics of faropenem. J Antimicrob Chemother 2002; 50(4): 525–32PubMedCrossRef
59.
Zurück zum Zitat Soy D, Lopez E, Ribas J. Teicoplanin population pharmacokinetic analysis in hospitalized patients. Ther Drug Monit 2006; 28(6): 737–43PubMedCrossRef Soy D, Lopez E, Ribas J. Teicoplanin population pharmacokinetic analysis in hospitalized patients. Ther Drug Monit 2006; 28(6): 737–43PubMedCrossRef
60.
Zurück zum Zitat Godtfredsen WO, Vangedal S. On the metabolism of fusidic acid in man. Acta Chem Scand 1966; 20(6): 1599–607PubMedCrossRef Godtfredsen WO, Vangedal S. On the metabolism of fusidic acid in man. Acta Chem Scand 1966; 20(6): 1599–607PubMedCrossRef
62.
Zurück zum Zitat Brink AJ, Richards GA, Cummins RR, et al. Recommendations to achieve rapid therapeutic teicoplanin plasma concentrations in adult hospitalised patients treated for sepsis. Int J Antimicrob Agents 2008; 32(5): 455–8PubMedCrossRef Brink AJ, Richards GA, Cummins RR, et al. Recommendations to achieve rapid therapeutic teicoplanin plasma concentrations in adult hospitalised patients treated for sepsis. Int J Antimicrob Agents 2008; 32(5): 455–8PubMedCrossRef
63.
Zurück zum Zitat MacGowan AP. Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 1998; 20(5): 473–7PubMedCrossRef MacGowan AP. Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 1998; 20(5): 473–7PubMedCrossRef
Metadaten
Titel
The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients
verfasst von
Marta Ulldemolins
Dr Jason A. Roberts
Jordi Rello
David L. Paterson
Jeffrey Lipman
Publikationsdatum
01.02.2011
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2011
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11539220-000000000-00000

Weitere Artikel der Ausgabe 2/2011

Clinical Pharmacokinetics 2/2011 Zur Ausgabe