Skip to main content
Erschienen in: BioDrugs 4/2011

01.08.2011 | Review Article

The Application of Delivery Systems for DNA Methyltransferase Inhibitors

verfasst von: Ms Sue Ping Lim, Paul Neilsen, Raman Kumar, Andrew Abell, David F. Callen

Erschienen in: BioDrugs | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

DNA methylation, which often occurs at the cytosine residue of cytosine-guanine dinucleotides, is critical for the control of gene expression and mitotic inheritance in eukaryotes. DNA methylation silences gene expression either by directly hindering the access of transcription factors to the target DNA, or through recruitment of histone deacetylases to remodel the chromatin structure to an inactive state. Aberrant hypermethylation of tumor suppressor genes is commonly associated with the development of cancer. A number of anti-cancer agents have been developed that function through demethylation, reversing regional hypermethylation to restore the expression of tumor suppressor genes. Azacitidine and decitabine are used in the clinic, but their applications are limited to myelodysplastic syndrome and other blood-related diseases. Despite the potency of these drugs, their broader clinical application is restricted by cytotoxicity, nonspecific targeting, structural instability, catabolism, and poor bioavailability. Further improvements in the delivery systems for these drugs could overcome the issues associated with inefficient bioavailability, whilst facilitating the administration of combinations of demethylating agents and histone deacetylase inhibitors to enhance efficacy. This review focuses on the current limitations of existing demethylating agents and highlights possible approaches using recent developments in drug delivery systems to improve the clinical potential of these drugs.
Literatur
1.
Zurück zum Zitat Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 1948; 175: 315–32PubMed Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 1948; 175: 315–32PubMed
2.
Zurück zum Zitat Wu JC, Santi DV. On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clinic Biol Res 1985; 198: 119–29 Wu JC, Santi DV. On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clinic Biol Res 1985; 198: 119–29
3.
Zurück zum Zitat Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993; 90: 11995–9PubMedCrossRef Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993; 90: 11995–9PubMedCrossRef
4.
Zurück zum Zitat Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 2002; 3 (4): 274–93PubMedCrossRef Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 2002; 3 (4): 274–93PubMedCrossRef
5.
Zurück zum Zitat Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006; 174 (3): 341–8PubMedCrossRef Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006; 174 (3): 341–8PubMedCrossRef
6.
Zurück zum Zitat Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975; 187: 226–32PubMedCrossRef Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975; 187: 226–32PubMedCrossRef
7.
Zurück zum Zitat Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8: 1409–20PubMedCrossRef Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8: 1409–20PubMedCrossRef
9.
Zurück zum Zitat Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–28PubMedCrossRef Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3: 415–28PubMedCrossRef
10.
Zurück zum Zitat de Caceres II, Battagli C, Esteller M, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004; 64 (18): 6476–81CrossRef de Caceres II, Battagli C, Esteller M, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004; 64 (18): 6476–81CrossRef
11.
Zurück zum Zitat Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61 (8): 3225–9PubMed Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61 (8): 3225–9PubMed
12.
Zurück zum Zitat Whitman SP, Hackanson B, Liyanarachchi S, et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008; 112 (5): 2013–6PubMedCrossRef Whitman SP, Hackanson B, Liyanarachchi S, et al. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008; 112 (5): 2013–6PubMedCrossRef
13.
Zurück zum Zitat Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55 (20): 4525–30PubMed Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55 (20): 4525–30PubMed
14.
Zurück zum Zitat Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; 135 (4): 1079–99PubMedCrossRef Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; 135 (4): 1079–99PubMedCrossRef
15.
16.
Zurück zum Zitat Roll JD, Rivenbark A, Jones W, et al. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines [abstract]. Mol Cancer 2008; 7: 15PubMedCrossRef Roll JD, Rivenbark A, Jones W, et al. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines [abstract]. Mol Cancer 2008; 7: 15PubMedCrossRef
17.
Zurück zum Zitat Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. DNMT1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 2002; 22 (7): 2124–35PubMedCrossRef Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. DNMT1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 2002; 22 (7): 2124–35PubMedCrossRef
18.
Zurück zum Zitat Lin R-K, Hsu H-S, Chang J-W, et al. Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer. Lung Cancer 2007; 55 (2): 205–13PubMedCrossRef Lin R-K, Hsu H-S, Chang J-W, et al. Alteration of DNA methyltransferases contributes to 5′CpG methylation and poor prognosis in lung cancer. Lung Cancer 2007; 55 (2): 205–13PubMedCrossRef
19.
20.
Zurück zum Zitat Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483–95PubMedCrossRef Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483–95PubMedCrossRef
21.
Zurück zum Zitat Singal R, Ginder GD. DNA methylation. Blood 1999; 93 (12): 4059–70PubMed Singal R, Ginder GD. DNA methylation. Blood 1999; 93 (12): 4059–70PubMed
22.
Zurück zum Zitat Robert M-F, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2002; 33: 61–5PubMedCrossRef Robert M-F, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2002; 33: 61–5PubMedCrossRef
23.
Zurück zum Zitat Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61 (19): 2571–87PubMedCrossRef Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61 (19): 2571–87PubMedCrossRef
24.
Zurück zum Zitat Penterman J, Uzawa R, Fischer RL. Genetic interactions between DNA demethylation and methylation in arabidopsis. Plant Physiol 2007; 145 (4): 1549–57PubMedCrossRef Penterman J, Uzawa R, Fischer RL. Genetic interactions between DNA demethylation and methylation in arabidopsis. Plant Physiol 2007; 145 (4): 1549–57PubMedCrossRef
25.
Zurück zum Zitat Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010; 11 (9): 607–20PubMedCrossRef Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010; 11 (9): 607–20PubMedCrossRef
26.
Zurück zum Zitat Ooi SKT, Bestor TH. The colorful history of active DNA demethylation. Cell 2008; 133 (7): 1145–8PubMedCrossRef Ooi SKT, Bestor TH. The colorful history of active DNA demethylation. Cell 2008; 133 (7): 1145–8PubMedCrossRef
27.
Zurück zum Zitat Ramchandani S, Bhattacharya SK, Cervoni N, et al. DNA methylation is a reversible biological signal. Proc Nat Acad Sci U S A 1999; 96 (11): 6107–12CrossRef Ramchandani S, Bhattacharya SK, Cervoni N, et al. DNA methylation is a reversible biological signal. Proc Nat Acad Sci U S A 1999; 96 (11): 6107–12CrossRef
28.
Zurück zum Zitat Issa J-PJ. DNA methylation as a therapeutic target in cancer. Clin Cancer Res 2007; 13 (6): 1634–7PubMedCrossRef Issa J-PJ. DNA methylation as a therapeutic target in cancer. Clin Cancer Res 2007; 13 (6): 1634–7PubMedCrossRef
29.
Zurück zum Zitat Lu Q, Qiu X, Hu N, et al. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 2006; 5 (4): 449–67PubMedCrossRef Lu Q, Qiu X, Hu N, et al. Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 2006; 5 (4): 449–67PubMedCrossRef
30.
Zurück zum Zitat Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat 2004; 7: 267–78PubMedCrossRef Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat 2004; 7: 267–78PubMedCrossRef
31.
Zurück zum Zitat Amatori S, Bagaloni I, Donati B, et al. DNA demethylating antineoplastic strategies. Genes Cancer 2010; 1 (3): 197–209PubMedCrossRef Amatori S, Bagaloni I, Donati B, et al. DNA demethylating antineoplastic strategies. Genes Cancer 2010; 1 (3): 197–209PubMedCrossRef
32.
33.
Zurück zum Zitat Li LH, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res 1970; 30: 2760–9PubMed Li LH, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res 1970; 30: 2760–9PubMed
34.
Zurück zum Zitat Sellis D, Provata A, Almirantis Y. Alu and LINE1 distributions in the human chromosomes: evidence of global genomic organization expressed in the form of power laws. Mol Biol Evol 2007; 24 (11): 2385–99PubMedCrossRef Sellis D, Provata A, Almirantis Y. Alu and LINE1 distributions in the human chromosomes: evidence of global genomic organization expressed in the form of power laws. Mol Biol Evol 2007; 24 (11): 2385–99PubMedCrossRef
35.
Zurück zum Zitat Mai A, Altucci L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 2009; 41: 199–213PubMedCrossRef Mai A, Altucci L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 2009; 41: 199–213PubMedCrossRef
36.
Zurück zum Zitat Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 2005; 11: 3604–8PubMedCrossRef Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 2005; 11: 3604–8PubMedCrossRef
37.
Zurück zum Zitat Issa J-PJ, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103 (5): 1635–40PubMedCrossRef Issa J-PJ, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103 (5): 1635–40PubMedCrossRef
38.
Zurück zum Zitat Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123: 8–13PubMedCrossRef Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123: 8–13PubMedCrossRef
39.
Zurück zum Zitat Piskala A, Som F. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect Czech Chem Commun 1964; 29: 2060–76 Piskala A, Som F. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect Czech Chem Commun 1964; 29: 2060–76
40.
Zurück zum Zitat Biard DSF, Cordier A, Sarasin A. Establishment of a human cell line for the detection of demethylating agents. Exp Cell Res 1992; 200 (2): 263–71PubMedCrossRef Biard DSF, Cordier A, Sarasin A. Establishment of a human cell line for the detection of demethylating agents. Exp Cell Res 1992; 200 (2): 263–71PubMedCrossRef
41.
Zurück zum Zitat Caterina M, Emanuela SA, Giuseppa P, et al. Epigenetic therapy in myelodysplastic syndromes. Eur J Haematol 2010; 84 (6): 463–73CrossRef Caterina M, Emanuela SA, Giuseppa P, et al. Epigenetic therapy in myelodysplastic syndromes. Eur J Haematol 2010; 84 (6): 463–73CrossRef
42.
Zurück zum Zitat Christman JK, Mendelsohn N, Herzog D, et al. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocyte leukemia cells (HL-60). Cancer Res 1983; 43 (2): 763–9PubMed Christman JK, Mendelsohn N, Herzog D, et al. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocyte leukemia cells (HL-60). Cancer Res 1983; 43 (2): 763–9PubMed
43.
Zurück zum Zitat Borthakur G, El Ahdab S, Ravandi F, et al. Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk Lymphoma 2008; 49 (4): 690–5PubMedCrossRef Borthakur G, El Ahdab S, Ravandi F, et al. Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk Lymphoma 2008; 49 (4): 690–5PubMedCrossRef
44.
Zurück zum Zitat Creusot F, Acs G, Christman JK. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257: 2041–8PubMed Creusot F, Acs G, Christman JK. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257: 2041–8PubMed
45.
Zurück zum Zitat Lemaire M, Chabot GG, Raynal N, et al. Importance of dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of cancer. BMC Cancer 2008; 8: 1–10CrossRef Lemaire M, Chabot GG, Raynal N, et al. Importance of dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of cancer. BMC Cancer 2008; 8: 1–10CrossRef
46.
Zurück zum Zitat Patel K, Dickson J, Din S, et al. Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucl Acids Res 2010; 38: 187–99CrossRef Patel K, Dickson J, Din S, et al. Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucl Acids Res 2010; 38: 187–99CrossRef
47.
Zurück zum Zitat Beumer JH, Eiseman JL, Parise RA, et al. Pharmacokinetics, metabolism, and oral bioavailability of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine in mice. Cancer Ther Preclin 2006; 12: 7483–91 Beumer JH, Eiseman JL, Parise RA, et al. Pharmacokinetics, metabolism, and oral bioavailability of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine in mice. Cancer Ther Preclin 2006; 12: 7483–91
48.
Zurück zum Zitat Boothman DA, Briggle TV, Greer S. Protective, tumor-selective dual pathway activation of 5-fluoro-2′-deoxycytidine provided by tetrahydrouridine in mice bearing mammary adenocarcinoma-77. Cancer Res 1987; 47: 2344–53PubMed Boothman DA, Briggle TV, Greer S. Protective, tumor-selective dual pathway activation of 5-fluoro-2′-deoxycytidine provided by tetrahydrouridine in mice bearing mammary adenocarcinoma-77. Cancer Res 1987; 47: 2344–53PubMed
49.
Zurück zum Zitat Kaysen J, Spriggs D, Kufe D. Incorporation of 5-fluorodeoxycytidine and metabolites into nucleic acids of human MCF-7 breast carcinoma cells. Cancer Res 1986; 46: 4534–8PubMed Kaysen J, Spriggs D, Kufe D. Incorporation of 5-fluorodeoxycytidine and metabolites into nucleic acids of human MCF-7 breast carcinoma cells. Cancer Res 1986; 46: 4534–8PubMed
50.
Zurück zum Zitat Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 2007; 67 (3): 946–50PubMedCrossRef Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 2007; 67 (3): 946–50PubMedCrossRef
51.
Zurück zum Zitat Valinluck V, Liu P, Kang Jr JI, et al. 5-Halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucl Acids Res 2005; 33 (9): 3057–64PubMedCrossRef Valinluck V, Liu P, Kang Jr JI, et al. 5-Halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucl Acids Res 2005; 33 (9): 3057–64PubMedCrossRef
52.
Zurück zum Zitat Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res 2009; 15 (12): 3938–46PubMedCrossRef Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res 2009; 15 (12): 3938–46PubMedCrossRef
53.
Zurück zum Zitat Smith SS, Kaplan BE, Sowers LC, et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Nat Acad Sci U S A 1992; 89 (10): 4744–8CrossRef Smith SS, Kaplan BE, Sowers LC, et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Nat Acad Sci U S A 1992; 89 (10): 4744–8CrossRef
54.
Zurück zum Zitat Klimasauskas S, Kumar S, Roberts RJ, et al. HhaI methyltransferase flips its target base out of the DNA helix. Cell 1994; 76: 357–69PubMedCrossRef Klimasauskas S, Kumar S, Roberts RJ, et al. HhaI methyltransferase flips its target base out of the DNA helix. Cell 1994; 76: 357–69PubMedCrossRef
55.
Zurück zum Zitat Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 2004; 32: 910–2PubMedCrossRef Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy. Biochem Soc Trans 2004; 32: 910–2PubMedCrossRef
56.
Zurück zum Zitat Yoo CB, Chuang JC, Byun H-M, et al. Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumors in mice. Cancer Prevent Res 2008; 1 (4): 233–40CrossRef Yoo CB, Chuang JC, Byun H-M, et al. Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumors in mice. Cancer Prevent Res 2008; 1 (4): 233–40CrossRef
57.
Zurück zum Zitat Cheng JC, Yoo CB, Weisenberger DJ, et al. Preferential response of cancer cells to zebularine. Cancer Cell 2004; 6 (2): 151–8PubMedCrossRef Cheng JC, Yoo CB, Weisenberger DJ, et al. Preferential response of cancer cells to zebularine. Cancer Cell 2004; 6 (2): 151–8PubMedCrossRef
58.
Zurück zum Zitat Cheng JC, Weisenberger DJ, Gonzales FA, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Bio 2004; 24: 1270–8CrossRef Cheng JC, Weisenberger DJ, Gonzales FA, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Bio 2004; 24: 1270–8CrossRef
59.
Zurück zum Zitat Votruba I, Holy A, Wightman RH. The mechanism of inhibition of DNA synthesis in Escherichia coli by pyrimidin-2-one beta-D-ribofuranoside. Biochim Biophys Acta 1973; 324: 12–23 Votruba I, Holy A, Wightman RH. The mechanism of inhibition of DNA synthesis in Escherichia coli by pyrimidin-2-one beta-D-ribofuranoside. Biochim Biophys Acta 1973; 324: 12–23
60.
Zurück zum Zitat Zhou L, Cheng X, Connolly BA, et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 2002; 321: 591-9 Zhou L, Cheng X, Connolly BA, et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 2002; 321: 591-9
61.
Zurück zum Zitat Cheng JC, Matsen CB, Gonzales FA, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95: 399–409PubMedCrossRef Cheng JC, Matsen CB, Gonzales FA, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95: 399–409PubMedCrossRef
62.
Zurück zum Zitat Kim CH, Marquez VE, Mao DT, et al. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 1986; 29 (8): 1374–80PubMedCrossRef Kim CH, Marquez VE, Mao DT, et al. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 1986; 29 (8): 1374–80PubMedCrossRef
63.
Zurück zum Zitat Champion C, Guianvarc’h D, Sénamaud-Beaufort C, et al. Mechanistic insights on the inhibition of C5 DNA methyltransferases by zebularine [abstract]. PLoS ONE 2010; 5 (8): e12388PubMedCrossRef Champion C, Guianvarc’h D, Sénamaud-Beaufort C, et al. Mechanistic insights on the inhibition of C5 DNA methyltransferases by zebularine [abstract]. PLoS ONE 2010; 5 (8): e12388PubMedCrossRef
64.
Zurück zum Zitat Kurkjian C, Kummar S, Murgo A. DNA methylation: its role in cancer development and therapy. J Curr Probl Cancer 2008; 32: 187–235CrossRef Kurkjian C, Kummar S, Murgo A. DNA methylation: its role in cancer development and therapy. J Curr Probl Cancer 2008; 32: 187–235CrossRef
65.
Zurück zum Zitat Ben-Kasus T, Ben-Zvi Z, Marquez VE, et al. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol 2005; 70: 121–33PubMedCrossRef Ben-Kasus T, Ben-Zvi Z, Marquez VE, et al. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol 2005; 70: 121–33PubMedCrossRef
66.
Zurück zum Zitat Mund C, Hackanson Br, Stresemann C, et al. Characterization of DNA demethylation effects induced by 5-aza-2′-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res 2005; 65 (16): 7086–90PubMedCrossRef Mund C, Hackanson Br, Stresemann C, et al. Characterization of DNA demethylation effects induced by 5-aza-2′-deoxycytidine in patients with myelodysplastic syndrome. Cancer Res 2005; 65 (16): 7086–90PubMedCrossRef
67.
Zurück zum Zitat Sheikhnejad G, Brank A, Christman JK, et al. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol 1999; 285 (5): 2021–34PubMedCrossRef Sheikhnejad G, Brank A, Christman JK, et al. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol 1999; 285 (5): 2021–34PubMedCrossRef
68.
Zurück zum Zitat Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93PubMedCrossRef Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20: 85–93PubMedCrossRef
69.
Zurück zum Zitat Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416 (6880): 552–6PubMedCrossRef Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416 (6880): 552–6PubMedCrossRef
70.
Zurück zum Zitat Howell PM, Liu Z, Khong HT. Demethylating agents in the treatment of cancer. Pharmaceuticals 2010; 3 (7): 2022–44CrossRef Howell PM, Liu Z, Khong HT. Demethylating agents in the treatment of cancer. Pharmaceuticals 2010; 3 (7): 2022–44CrossRef
71.
Zurück zum Zitat Daher GC, Harris BE, Diasio RB. Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 1990; 48 (2): 189–222PubMedCrossRef Daher GC, Harris BE, Diasio RB. Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 1990; 48 (2): 189–222PubMedCrossRef
72.
Zurück zum Zitat Palii SS, Van Emburgh BO, Sankpal UT, et al. DNA methylation inhibitor 5-aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28 (2): 752–71PubMedCrossRef Palii SS, Van Emburgh BO, Sankpal UT, et al. DNA methylation inhibitor 5-aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28 (2): 752–71PubMedCrossRef
73.
Zurück zum Zitat Davidson S, Crowther P, Radley J, et al. Cytotoxicity of 5-aza-2′-deoxycytidine in a mammalian cell system. Eur J Cancer 1992; 28: 362–8PubMedCrossRef Davidson S, Crowther P, Radley J, et al. Cytotoxicity of 5-aza-2′-deoxycytidine in a mammalian cell system. Eur J Cancer 1992; 28: 362–8PubMedCrossRef
74.
Zurück zum Zitat Yang AS, Doshi KD, Choi S-W, et al. DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 2006; 66 (10): 5495–503PubMedCrossRef Yang AS, Doshi KD, Choi S-W, et al. DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 2006; 66 (10): 5495–503PubMedCrossRef
75.
Zurück zum Zitat Stresemann C, Brueckner B, Musch T, et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006; 66 (5): 2794–800PubMedCrossRef Stresemann C, Brueckner B, Musch T, et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 2006; 66 (5): 2794–800PubMedCrossRef
76.
Zurück zum Zitat Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5 (1): 37–50PubMedCrossRef Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5 (1): 37–50PubMedCrossRef
77.
Zurück zum Zitat Issa J-P. Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin N Am 2010; 24 (2): 317–30CrossRef Issa J-P. Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin N Am 2010; 24 (2): 317–30CrossRef
78.
Zurück zum Zitat Issa J-PJ, Kantarjian HM, Kirkpatrick P. Azacitidine. Nat Rev Drug Discov 2005; 4 (4): 275–6PubMedCrossRef Issa J-PJ, Kantarjian HM, Kirkpatrick P. Azacitidine. Nat Rev Drug Discov 2005; 4 (4): 275–6PubMedCrossRef
79.
Zurück zum Zitat Kaminskas E, Farrell AT, Wang Y-C, et al. FDA drug approval summary: azacitidine (5-azacytidine, VidazaTM) for injectable suspension. Oncologist 2005; 10 (3): 176–82PubMedCrossRef Kaminskas E, Farrell AT, Wang Y-C, et al. FDA drug approval summary: azacitidine (5-azacytidine, VidazaTM) for injectable suspension. Oncologist 2005; 10 (3): 176–82PubMedCrossRef
80.
Zurück zum Zitat Blum W. How much? How frequent? How long? A clinical guide to new therapies in myelodysplastic syndromes. Hematology 2010; 1: 314–21CrossRef Blum W. How much? How frequent? How long? A clinical guide to new therapies in myelodysplastic syndromes. Hematology 2010; 1: 314–21CrossRef
81.
Zurück zum Zitat Appleton K, Mackay HJ, Judson I, et al. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007; 25 (29): 4603–9PubMedCrossRef Appleton K, Mackay HJ, Judson I, et al. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007; 25 (29): 4603–9PubMedCrossRef
82.
Zurück zum Zitat Stewart DJ, Issa J-P, Kurzrock R, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009; 15 (11): 3881–8PubMedCrossRef Stewart DJ, Issa J-P, Kurzrock R, et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009; 15 (11): 3881–8PubMedCrossRef
83.
Zurück zum Zitat Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics 2010; 2 (1): 71–86PubMedCrossRef Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics 2010; 2 (1): 71–86PubMedCrossRef
84.
Zurück zum Zitat O’Reilly EM, Abou-Alfa GK. Comparison of gemcitabine plus platinum analog with gemcitabine alone in advanced pancreatic cancer. Nat Clin Prac Oncol 2008; 5 (6): 312–3 O’Reilly EM, Abou-Alfa GK. Comparison of gemcitabine plus platinum analog with gemcitabine alone in advanced pancreatic cancer. Nat Clin Prac Oncol 2008; 5 (6): 312–3
85.
Zurück zum Zitat Castellano S, Kuck D, Sala M, et al. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 2008; 51 (7): 2321–5PubMedCrossRef Castellano S, Kuck D, Sala M, et al. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 2008; 51 (7): 2321–5PubMedCrossRef
86.
Zurück zum Zitat Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes [abstract]. BMC Cancer 2005; 5 (1): 44PubMedCrossRef Zambrano P, Segura-Pacheco B, Perez-Cardenas E, et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes [abstract]. BMC Cancer 2005; 5 (1): 44PubMedCrossRef
87.
Zurück zum Zitat Datta J, Ghoshal K, Denny WA, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009; 69 (10): 4277–85PubMedCrossRef Datta J, Ghoshal K, Denny WA, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009; 69 (10): 4277–85PubMedCrossRef
88.
Zurück zum Zitat Pina IC, Gautschi JT, Wang G-Y-S, et al. Psammaplins from the sponge pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Organ Chem 2003; 68 (10): 3866–73CrossRef Pina IC, Gautschi JT, Wang G-Y-S, et al. Psammaplins from the sponge pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Organ Chem 2003; 68 (10): 3866–73CrossRef
89.
Zurück zum Zitat Cui X, Wakai T, Shirai Y, et al. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 2006; 37: 298–311PubMedCrossRef Cui X, Wakai T, Shirai Y, et al. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 2006; 37: 298–311PubMedCrossRef
90.
Zurück zum Zitat Suzuki T, Tanaka R, Hamada S, et al. Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 2010; 20 (3): 1124–7PubMedCrossRef Suzuki T, Tanaka R, Hamada S, et al. Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 2010; 20 (3): 1124–7PubMedCrossRef
91.
Zurück zum Zitat Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63 (22): 7563–70PubMed Fang MZ, Wang Y, Ai N, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 2003; 63 (22): 7563–70PubMed
92.
Zurück zum Zitat Chuang JC, Yoo CB, Kwan JM, et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 2005; 4 (10): 1515–20PubMedCrossRef Chuang JC, Yoo CB, Kwan JM, et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 2005; 4 (10): 1515–20PubMedCrossRef
93.
Zurück zum Zitat Liu Z, Xie Z, Jones W, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 2009; 19 (3): 706–9PubMedCrossRef Liu Z, Xie Z, Jones W, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 2009; 19 (3): 706–9PubMedCrossRef
94.
Zurück zum Zitat Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14 (14): 4491–9PubMedCrossRef Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14 (14): 4491–9PubMedCrossRef
95.
Zurück zum Zitat Siedlecki P, Boy RG, Musch T, et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 2005; 49 (2): 678–83CrossRef Siedlecki P, Boy RG, Musch T, et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 2005; 49 (2): 678–83CrossRef
96.
Zurück zum Zitat Brueckner B, Garcia Boy R, Siedlecki P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005; 65 (14): 6305–11PubMedCrossRef Brueckner B, Garcia Boy R, Siedlecki P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 2005; 65 (14): 6305–11PubMedCrossRef
97.
Zurück zum Zitat Esteller M. DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 2005; 17 (1): 55–60PubMedCrossRef Esteller M. DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol 2005; 17 (1): 55–60PubMedCrossRef
98.
Zurück zum Zitat Villar-Garea A, Fraga MF, Espada J, et al. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003; 63 (16): 4984–9PubMed Villar-Garea A, Fraga MF, Espada J, et al. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 2003; 63 (16): 4984–9PubMed
99.
Zurück zum Zitat Lee BH, Yegnasubramanian S, Lin X, et al. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 2005; 280: 40749–56PubMedCrossRef Lee BH, Yegnasubramanian S, Lin X, et al. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 2005; 280: 40749–56PubMedCrossRef
100.
Zurück zum Zitat Chatterjee K, Parmley WW, Massie B, et al. Oral hydralazine therapy for chronic refractory heart failure. Circulation 1976; 54 (6): 879–83PubMedCrossRef Chatterjee K, Parmley WW, Massie B, et al. Oral hydralazine therapy for chronic refractory heart failure. Circulation 1976; 54 (6): 879–83PubMedCrossRef
101.
Zurück zum Zitat Cornacchia E, Golbus J, Maybaum J, et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 1988; 140 (7): 2197–200PubMed Cornacchia E, Golbus J, Maybaum J, et al. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 1988; 140 (7): 2197–200PubMed
102.
Zurück zum Zitat Candelaria M, Gallardo-Rincón D, Arce C, et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol 2007; 18 (9): 1529–38PubMedCrossRef Candelaria M, Gallardo-Rincón D, Arce C, et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol 2007; 18 (9): 1529–38PubMedCrossRef
103.
Zurück zum Zitat Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chem Pharmacol 2009; 63 (4): 605–13CrossRef Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chem Pharmacol 2009; 63 (4): 605–13CrossRef
104.
Zurück zum Zitat Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines [abstract]. Cancer Cell Int 2006; 6 (1): 2PubMedCrossRef Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines [abstract]. Cancer Cell Int 2006; 6 (1): 2PubMedCrossRef
105.
Zurück zum Zitat Amato R. Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer 2007; 5 (7): 422–6PubMedCrossRef Amato R. Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer 2007; 5 (7): 422–6PubMedCrossRef
106.
Zurück zum Zitat Klisovic RB, Stock W, Cataland S, et al. A phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 2008; 14 (8): 2444–9PubMedCrossRef Klisovic RB, Stock W, Cataland S, et al. A phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 2008; 14 (8): 2444–9PubMedCrossRef
107.
Zurück zum Zitat Winquist E, Knox J, Ayoub J-P, et al. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 2006; 24 (2): 159–67PubMedCrossRef Winquist E, Knox J, Ayoub J-P, et al. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 2006; 24 (2): 159–67PubMedCrossRef
108.
Zurück zum Zitat Stewart DJ, Donehower RC, Eisenhauer EA, et al. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 2003; 14 (5): 766–74PubMedCrossRef Stewart DJ, Donehower RC, Eisenhauer EA, et al. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Ann Oncol 2003; 14 (5): 766–74PubMedCrossRef
109.
Zurück zum Zitat Shen Z-X, Chen G-Q, Ni J-H, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89 (9): 3354–60PubMed Shen Z-X, Chen G-Q, Ni J-H, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997; 89 (9): 3354–60PubMed
110.
Zurück zum Zitat Florea A-M, Splettstoesser F, Büsselberg D. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol 2007; 220 (3): 292–301PubMedCrossRef Florea A-M, Splettstoesser F, Büsselberg D. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicol Appl Pharmacol 2007; 220 (3): 292–301PubMedCrossRef
111.
Zurück zum Zitat Pham NB, Butler MS, Quinn RJ. Isolation of psammaplin A 11′-sulfate and bisaprasin 11′-sulfate from the marine sponge Aplysinella rhax. J Nat Prod 2000; 63 (3): 393–5PubMedCrossRef Pham NB, Butler MS, Quinn RJ. Isolation of psammaplin A 11′-sulfate and bisaprasin 11′-sulfate from the marine sponge Aplysinella rhax. J Nat Prod 2000; 63 (3): 393–5PubMedCrossRef
112.
Zurück zum Zitat Ahn MY, Jung JH, Na YJ, et al. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gyn Oncol 2008; 108 (1): 27–33CrossRef Ahn MY, Jung JH, Na YJ, et al. A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells. Gyn Oncol 2008; 108 (1): 27–33CrossRef
113.
Zurück zum Zitat Simmons TL, Andrianasolo E, McPhail K, et al. Marine natural products as anticancer drugs. Mol Cancer Ther 2005; 4 (2): 333–42PubMed Simmons TL, Andrianasolo E, McPhail K, et al. Marine natural products as anticancer drugs. Mol Cancer Ther 2005; 4 (2): 333–42PubMed
114.
Zurück zum Zitat Sigalotti L, Covre A, Fratta E, et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med 2010; 8 (1): 56PubMedCrossRef Sigalotti L, Covre A, Fratta E, et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J Transl Med 2010; 8 (1): 56PubMedCrossRef
115.
Zurück zum Zitat Byun H-M, Choi SH, Laird PW, et al. 2′-Deoxy-N4-[2- (4-nitrophenyl) ethoxycarbonyl]-5-azacytidine: a novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Lett 2008; 266 (2): 238–48PubMedCrossRef Byun H-M, Choi SH, Laird PW, et al. 2′-Deoxy-N4-[2- (4-nitrophenyl) ethoxycarbonyl]-5-azacytidine: a novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Lett 2008; 266 (2): 238–48PubMedCrossRef
116.
Zurück zum Zitat Brueckner B, Rius M, Markelova MR, et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther 2010; 9 (5): 1256–64PubMedCrossRef Brueckner B, Rius M, Markelova MR, et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther 2010; 9 (5): 1256–64PubMedCrossRef
117.
Zurück zum Zitat Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007; 67 (13): 6400–8PubMedCrossRef Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 2007; 67 (13): 6400–8PubMedCrossRef
118.
Zurück zum Zitat Chuang JC, Warner SL, Vollmer D, et al. S1 10, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 2010; 9 (5): 1443–50PubMedCrossRef Chuang JC, Warner SL, Vollmer D, et al. S1 10, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 2010; 9 (5): 1443–50PubMedCrossRef
119.
Zurück zum Zitat Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007; 109 (1): 52–7PubMedCrossRef Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 2007; 109 (1): 52–7PubMedCrossRef
120.
Zurück zum Zitat Kantarjian HM, Issa J-PJ. Decitabine dosing schedules. Sem Hematol 2005; 42: S17–22CrossRef Kantarjian HM, Issa J-PJ. Decitabine dosing schedules. Sem Hematol 2005; 42: S17–22CrossRef
121.
Zurück zum Zitat Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hyper-methylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–64 Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hyper-methylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–64
122.
Zurück zum Zitat Marcucci G, Silverman L, Eller M, et al. Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 2005; 45 (5): 597–602PubMedCrossRef Marcucci G, Silverman L, Eller M, et al. Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 2005; 45 (5): 597–602PubMedCrossRef
123.
Zurück zum Zitat Rudek MA, Zhao M, He P, et al. Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J Clin Oncol 2005; 23 (17): 3906–11PubMedCrossRef Rudek MA, Zhao M, He P, et al. Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J Clin Oncol 2005; 23 (17): 3906–11PubMedCrossRef
124.
Zurück zum Zitat Samlowski WE, Leachman SA, Wade M, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23 (17): 3897–905PubMedCrossRef Samlowski WE, Leachman SA, Wade M, et al. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23 (17): 3897–905PubMedCrossRef
125.
Zurück zum Zitat Odenike JEG, van Besien D, Huo P, et al., University of Chicago Phase II Consortium. Phase II trial of decitabine in myelofibrosis with myeloid metaplasia. 2007 ASCO Annual Meeting Proceedings part I; 2007 June 20. J Clin Oncol 2007; 25: 7008 Odenike JEG, van Besien D, Huo P, et al., University of Chicago Phase II Consortium. Phase II trial of decitabine in myelofibrosis with myeloid metaplasia. 2007 ASCO Annual Meeting Proceedings part I; 2007 June 20. J Clin Oncol 2007; 25: 7008
126.
Zurück zum Zitat Chabot GG, Bouchard J, Momparler RL. Kinetics of deamination of 5-aza-2′-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem Pharmacol 1983; 32 (7): 1327–8PubMedCrossRef Chabot GG, Bouchard J, Momparler RL. Kinetics of deamination of 5-aza-2′-deoxycytidine and cytosine arabinoside by human liver cytidine deaminase and its inhibition by 3-deazauridine, thymidine or uracil arabinoside. Biochem Pharmacol 1983; 32 (7): 1327–8PubMedCrossRef
127.
Zurück zum Zitat Lemaire M, Momparler L, Raynal N, et al. Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 2009; 63 (3): 411–6PubMedCrossRef Lemaire M, Momparler L, Raynal N, et al. Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2′-deoxycytidine. Cancer Chemother Pharmacol 2009; 63 (3): 411–6PubMedCrossRef
128.
Zurück zum Zitat Lavelle D, Saunthararajah Y, Vaitkus K, et al. S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis) [abstract]. J Transl Med 2010; 8 (1): 92PubMedCrossRef Lavelle D, Saunthararajah Y, Vaitkus K, et al. S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis) [abstract]. J Transl Med 2010; 8 (1): 92PubMedCrossRef
129.
Zurück zum Zitat Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther 2004; 10 (1): 19–26PubMedCrossRef Pannier AK, Shea LD. Controlled release systems for DNA delivery. Mol Ther 2004; 10 (1): 19–26PubMedCrossRef
130.
Zurück zum Zitat Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 1978; 21: 204–8PubMedCrossRef Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem 1978; 21: 204–8PubMedCrossRef
131.
Zurück zum Zitat Rogstad DK, Herring JL, Theruvathu JA, et al. Chemical decomposition of 5-aza-2′-deoxycytidine (decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 2009; 22 (6): 1194–204PubMedCrossRef Rogstad DK, Herring JL, Theruvathu JA, et al. Chemical decomposition of 5-aza-2′-deoxycytidine (decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 2009; 22 (6): 1194–204PubMedCrossRef
132.
Zurück zum Zitat Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polymer Sci 2007; 32 (8–9): 762–98CrossRef Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polymer Sci 2007; 32 (8–9): 762–98CrossRef
133.
Zurück zum Zitat Knop K, Hoogenboom R, Fischer D, et al. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010; 49 (36): 6288–308PubMedCrossRef Knop K, Hoogenboom R, Fischer D, et al. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010; 49 (36): 6288–308PubMedCrossRef
134.
Zurück zum Zitat Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005; 10 (21): 1451–8PubMedCrossRef Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005; 10 (21): 1451–8PubMedCrossRef
135.
Zurück zum Zitat Argemí A, Vega A, Subra-Paternault P, et al. Characterization of azacytidine/poly (1-lactic) acid particles prepared by supercritical antisolvent precipitation. J Pharm Biomed Anal 2009; 50 (5): 847–52PubMedCrossRef Argemí A, Vega A, Subra-Paternault P, et al. Characterization of azacytidine/poly (1-lactic) acid particles prepared by supercritical antisolvent precipitation. J Pharm Biomed Anal 2009; 50 (5): 847–52PubMedCrossRef
136.
Zurück zum Zitat Young JD, Yao SYM, Sun L, et al. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38 (7–8): 995–1021PubMedCrossRef Young JD, Yao SYM, Sun L, et al. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 2008; 38 (7–8): 995–1021PubMedCrossRef
137.
Zurück zum Zitat Baldwin SA, Yao SYM, Hyde RJ, et al. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 2005; 280 (16): 15880–7PubMedCrossRef Baldwin SA, Yao SYM, Hyde RJ, et al. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 2005; 280 (16): 15880–7PubMedCrossRef
138.
Zurück zum Zitat Qin T, Jelinek J, Si J, et al. Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 2009; 113: 659–67PubMedCrossRef Qin T, Jelinek J, Si J, et al. Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood 2009; 113: 659–67PubMedCrossRef
139.
140.
Zurück zum Zitat Takeda E, Weber G. Role of ribonucleotide reductase in expression of the neoplastic program. Life Sci 1981; 28 (9): 1007–14PubMedCrossRef Takeda E, Weber G. Role of ribonucleotide reductase in expression of the neoplastic program. Life Sci 1981; 28 (9): 1007–14PubMedCrossRef
141.
Zurück zum Zitat Bouffard DY, Laliberté J, Momparler RL. Kinetic studies on 2′, 2′-difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993; 45 (9): 1857–61PubMedCrossRef Bouffard DY, Laliberté J, Momparler RL. Kinetic studies on 2′, 2′-difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993; 45 (9): 1857–61PubMedCrossRef
142.
Zurück zum Zitat Tanaka M, Yoshida S, Saneyoshi M, et al. Utilization of 5-fluoro-2′-deoxyuridine triphosphate and 5-fluoro-2′-deoxycytidine triphosphate in DNA synthesis by DNA polymerases alpha and beta from calf thymus. Cancer Res 1981; 41: 4132–5PubMed Tanaka M, Yoshida S, Saneyoshi M, et al. Utilization of 5-fluoro-2′-deoxyuridine triphosphate and 5-fluoro-2′-deoxycytidine triphosphate in DNA synthesis by DNA polymerases alpha and beta from calf thymus. Cancer Res 1981; 41: 4132–5PubMed
143.
Zurück zum Zitat Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanism of drug resistance and reversal strategies. Leukemia 2001; 15: 875–90PubMedCrossRef Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanism of drug resistance and reversal strategies. Leukemia 2001; 15: 875–90PubMedCrossRef
144.
Zurück zum Zitat Shichijo S, Yamada A, Sagawa K, et al. Induction of MAGE genes in lymphoid cells by demethylating agent 5-aza-2′-deoxycytidine. Jpn J Cancer Res 1996; 87: 751–6PubMedCrossRef Shichijo S, Yamada A, Sagawa K, et al. Induction of MAGE genes in lymphoid cells by demethylating agent 5-aza-2′-deoxycytidine. Jpn J Cancer Res 1996; 87: 751–6PubMedCrossRef
145.
Zurück zum Zitat Szyf M. The role of DNA hypermethylation and demethylation in cancer and cancer therapy. Curr Oncol 2008; 15: 72–5PubMedCrossRef Szyf M. The role of DNA hypermethylation and demethylation in cancer and cancer therapy. Curr Oncol 2008; 15: 72–5PubMedCrossRef
146.
Zurück zum Zitat Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol 2007; 20 (7): 711–21PubMedCrossRef Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol 2007; 20 (7): 711–21PubMedCrossRef
147.
148.
Zurück zum Zitat Hamm CA, Xie H, Costa FF, et al. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2′-deoxycytidine results in increased tumorigenicity [abstract]. PLoS ONE 2009; 4 (12): e8340PubMedCrossRef Hamm CA, Xie H, Costa FF, et al. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2′-deoxycytidine results in increased tumorigenicity [abstract]. PLoS ONE 2009; 4 (12): e8340PubMedCrossRef
149.
Zurück zum Zitat Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300 (5618): 489–92PubMedCrossRef Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300 (5618): 489–92PubMedCrossRef
150.
Zurück zum Zitat Kantarjian H, Issa J-PJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer 2006; 106 (8): 1794–803PubMedCrossRef Kantarjian H, Issa J-PJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer 2006; 106 (8): 1794–803PubMedCrossRef
151.
Zurück zum Zitat Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Japanese J Clin Oncol 2005; 35 (6): 293–301CrossRef Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Japanese J Clin Oncol 2005; 35 (6): 293–301CrossRef
152.
Zurück zum Zitat Senter PD, Beam KS, Mixan B, et al. Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anti-cancer drug. Bioconjug Chem 2001; 12 (6): 1074–80PubMedCrossRef Senter PD, Beam KS, Mixan B, et al. Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anti-cancer drug. Bioconjug Chem 2001; 12 (6): 1074–80PubMedCrossRef
153.
Zurück zum Zitat Jager S, Jahnke A, Wilmes T, et al. Leukemia targeting ligands isolated from phage display peptide libraries. Leukemia 2007; 21 (3): 411–20PubMedCrossRef Jager S, Jahnke A, Wilmes T, et al. Leukemia targeting ligands isolated from phage display peptide libraries. Leukemia 2007; 21 (3): 411–20PubMedCrossRef
154.
Zurück zum Zitat Reece TB, Maxey TS, Kron IL. A prospectus on tissue adhesives. Am J Surg 2001; 182 (2 Suppl. 1): S40–4CrossRef Reece TB, Maxey TS, Kron IL. A prospectus on tissue adhesives. Am J Surg 2001; 182 (2 Suppl. 1): S40–4CrossRef
155.
Zurück zum Zitat Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60 (15): 1638–49PubMedCrossRef Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60 (15): 1638–49PubMedCrossRef
156.
Zurück zum Zitat Blanco MD, Trigo RM, Garcia O, et al. Controlled release of cytarabine from poly (2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels. J Biomaterials Sci Polymer Ed 1997; 8: 709–19CrossRef Blanco MD, Trigo RM, Garcia O, et al. Controlled release of cytarabine from poly (2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels. J Biomaterials Sci Polymer Ed 1997; 8: 709–19CrossRef
157.
Zurück zum Zitat Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351 (1): 19–29PubMedCrossRef Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351 (1): 19–29PubMedCrossRef
158.
Zurück zum Zitat Suri S, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2 (1): 16PubMedCrossRef Suri S, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2 (1): 16PubMedCrossRef
159.
Zurück zum Zitat Liu Y, Pan J, Feng S-S. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 2010; 395 (1–2): 243–50PubMedCrossRef Liu Y, Pan J, Feng S-S. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 2010; 395 (1–2): 243–50PubMedCrossRef
160.
161.
Zurück zum Zitat Galmarini CM, Warren G, Kohli E, et al. Polymeric nanogels containing the triphosphate form of cytotoxic nucleoside analogues show antitumor activity against breast and colorectal cancer cell lines. Mol Cancer Ther 2008; 7: 3373–80PubMedCrossRef Galmarini CM, Warren G, Kohli E, et al. Polymeric nanogels containing the triphosphate form of cytotoxic nucleoside analogues show antitumor activity against breast and colorectal cancer cell lines. Mol Cancer Ther 2008; 7: 3373–80PubMedCrossRef
162.
Zurück zum Zitat Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002; 3: 415–24PubMedCrossRef Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002; 3: 415–24PubMedCrossRef
163.
Zurück zum Zitat Thierry B, Al-Ejeh F, Khatri A, et al. Multifunctional core-shell magnetic cisplatin nanocarriers. Chem Commun 2009; 47: 7348–50CrossRef Thierry B, Al-Ejeh F, Khatri A, et al. Multifunctional core-shell magnetic cisplatin nanocarriers. Chem Commun 2009; 47: 7348–50CrossRef
164.
Zurück zum Zitat Kircheis R, Blessing T, Brunner S, et al. Tumor targeting with surface-shielded ligand-polycation DNA complexes. J Control Release 2001; 72 (1–3): 165–70PubMedCrossRef Kircheis R, Blessing T, Brunner S, et al. Tumor targeting with surface-shielded ligand-polycation DNA complexes. J Control Release 2001; 72 (1–3): 165–70PubMedCrossRef
165.
Zurück zum Zitat Faraasen S, Vörös J, Csúcs G, et al. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly (L-lysine)-grafted polyethylene glycol) conjugate. Pharm Res 2003; 20 (2): 237–46PubMedCrossRef Faraasen S, Vörös J, Csúcs G, et al. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly (L-lysine)-grafted polyethylene glycol) conjugate. Pharm Res 2003; 20 (2): 237–46PubMedCrossRef
Metadaten
Titel
The Application of Delivery Systems for DNA Methyltransferase Inhibitors
verfasst von
Ms Sue Ping Lim
Paul Neilsen
Raman Kumar
Andrew Abell
David F. Callen
Publikationsdatum
01.08.2011
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 4/2011
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/11592770-000000000-00000

Weitere Artikel der Ausgabe 4/2011

BioDrugs 4/2011 Zur Ausgabe