Skip to main content
Erschienen in: CNS Drugs 7/2012

01.07.2012 | Review Article

A Review of Neuroprotection Pharmacology and Therapies in Patients with Acute Traumatic Brain Injury

verfasst von: Kevin W. McConeghy, Jimmi Hatton, Lindsey Hughes, Dr Aaron M. Cook, Pharm.D

Erschienen in: CNS Drugs | Ausgabe 7/2012

Einloggen, um Zugang zu erhalten

Abstract

Traumatic brain injury (TBI) affects 1.6 million Americans annually. The injury severity impacts the overall outcome and likelihood for survival. Current treatment of acute TBI includes surgical intervention and supportive care therapies. Treatment of elevated intracranial pressure and optimizing cerebral perfusion are cornerstones of current therapy. These approaches do not directly address the secondary neurological sequelae that lead to continued brain injury after TBI. Depending on injury severity, a complex cascade of processes are activated and generate continued endogenous changes affecting cellular systems and overall outcome from the initial insult to the brain. Homeostatic cellular processes governing calcium influx, mitochondrial function, membrane stability, redox balance, blood flow and cytoskeletal structure often become dysfunctional after TBI. Interruption of this cascade has been the target of numerous pharmacotherapeutic agents investigated over the last two decades. Many agents such as selfotel, pegorgotein (PEG-SOD), magnesium, deltibant and dexanabinol were ineffective in clinical trials. While progesterone and ciclosporin have shown promise in phase II studies, success in larger phase III, randomized, multicentre, clinical trials is pending. Consequently, no neuroprotective treatment options currently exist that improve neurological outcome after TBI. Investigations to date have extended understanding of the injury mechanisms and sites for intervention. Examination of novel strategies addressing both pathological and pharmacological factors affecting outcome, employing novel trial design methods and utilizing biomarkers validated to be reflective of the prognosis for TBI will facilitate progress in overcoming the obstacles identified from previous clinical trials.
Literatur
1.
2.
Zurück zum Zitat Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA 1999 Sep 8; 282(10): 954–7PubMedCrossRef Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA 1999 Sep 8; 282(10): 954–7PubMedCrossRef
3.
Zurück zum Zitat Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 1999 Dec; 14(6): 602–15PubMedCrossRef Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 1999 Dec; 14(6): 602–15PubMedCrossRef
4.
Zurück zum Zitat Coronado VG, Xu L, Basavaraju SV, et al. Surveillance for traumatic brain injury-related deaths: United States, 1997–2007. MMWR Surveill Summ 2011 May 6; 60(5): 1–32PubMed Coronado VG, Xu L, Basavaraju SV, et al. Surveillance for traumatic brain injury-related deaths: United States, 1997–2007. MMWR Surveill Summ 2011 May 6; 60(5): 1–32PubMed
5.
Zurück zum Zitat Roozenbeek B, Chiu YL, Lingsma H, et al. Predicting 14-day mortality after severe traumatic brain injury: application of the IMPACT models in the Brain Trauma Foundation TBI-trac® New York State database. J Neurotrauma 2012; 29(7): 1306–12PubMedCrossRef Roozenbeek B, Chiu YL, Lingsma H, et al. Predicting 14-day mortality after severe traumatic brain injury: application of the IMPACT models in the Brain Trauma Foundation TBI-trac® New York State database. J Neurotrauma 2012; 29(7): 1306–12PubMedCrossRef
6.
Zurück zum Zitat Clifton GL, Valadka A, Zygun D, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 2011 Feb; 10(2): 131–9PubMedCrossRef Clifton GL, Valadka A, Zygun D, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 2011 Feb; 10(2): 131–9PubMedCrossRef
7.
Zurück zum Zitat Patel HC, Bouamra O, Woodford M, et al. Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 2005 Oct 29–Nov 4; 366(9496): 1538–44PubMedCrossRef Patel HC, Bouamra O, Woodford M, et al. Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 2005 Oct 29–Nov 4; 366(9496): 1538–44PubMedCrossRef
8.
Zurück zum Zitat Marshall LF, Gautille T, Klauber MR, et al. The outcome of severe closed head injury. J Neurosurg 1991; 75(11): S28–36 Marshall LF, Gautille T, Klauber MR, et al. The outcome of severe closed head injury. J Neurosurg 1991; 75(11): S28–36
9.
Zurück zum Zitat Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRCCRASH trial): randomised placebo-controlled trial. Lancet 2004 Oct 9–15; 364(9442): 1321–8PubMedCrossRef Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRCCRASH trial): randomised placebo-controlled trial. Lancet 2004 Oct 9–15; 364(9442): 1321–8PubMedCrossRef
10.
Zurück zum Zitat Mena JH, Sanchez AI, Rubiano AM, et al. Effect of the modified Glasgow Coma Scale score criteria for mild traumatic brain injury on mortality prediction: comparing classic and modified Glasgow Coma Scale score model scores of 13. J Trauma 2011 Nov; 71(5): 1185–92; discussion 93PubMedCrossRef Mena JH, Sanchez AI, Rubiano AM, et al. Effect of the modified Glasgow Coma Scale score criteria for mild traumatic brain injury on mortality prediction: comparing classic and modified Glasgow Coma Scale score model scores of 13. J Trauma 2011 Nov; 71(5): 1185–92; discussion 93PubMedCrossRef
11.
Zurück zum Zitat De Kruijk JR, Leffers P, Menheere PP, et al. Prediction of post-traumatic complaints after mild traumatic brain injury: early symptoms and biochemical markers. J Neurol Neurosurg Psychiatr 2002 Dec; 73(6): 727–32PubMedCrossRef De Kruijk JR, Leffers P, Menheere PP, et al. Prediction of post-traumatic complaints after mild traumatic brain injury: early symptoms and biochemical markers. J Neurol Neurosurg Psychiatr 2002 Dec; 73(6): 727–32PubMedCrossRef
12.
13.
14.
Zurück zum Zitat Guidelines for the management of penetrating brain injury. J Trauma 2001; 51 (2): S1-86 Guidelines for the management of penetrating brain injury. J Trauma 2001; 51 (2): S1-86
15.
Zurück zum Zitat Ling G, Bandak F, Armonda R, et al. Explosive blast neurotrauma. J Neurotrauma 2009 Jun; 26(6): 815–25PubMedCrossRef Ling G, Bandak F, Armonda R, et al. Explosive blast neurotrauma. J Neurotrauma 2009 Jun; 26(6): 815–25PubMedCrossRef
16.
Zurück zum Zitat Sahuquillo J, Poca MA, Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 2001; 7(15): 1475–503PubMedCrossRef Sahuquillo J, Poca MA, Amoros S. Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 2001; 7(15): 1475–503PubMedCrossRef
17.
Zurück zum Zitat Andriessen TM, Jacobs Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2010 Oct; 14(10): 2381–92PubMedCrossRef Andriessen TM, Jacobs Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2010 Oct; 14(10): 2381–92PubMedCrossRef
18.
Zurück zum Zitat Brain Trauma Foundation. Management of severe traumatic brain injury. J Neurotrauma 2007; 24 Suppl. 1: S1–95 Brain Trauma Foundation. Management of severe traumatic brain injury. J Neurotrauma 2007; 24 Suppl. 1: S1–95
19.
Zurück zum Zitat Rhoney DH, Parker Jr D. Considerations in fluids and electrolytes after traumatic brain injury. Nutr Clin Pract 2006; 21(5): 462–78PubMedCrossRef Rhoney DH, Parker Jr D. Considerations in fluids and electrolytes after traumatic brain injury. Nutr Clin Pract 2006; 21(5): 462–78PubMedCrossRef
20.
Zurück zum Zitat Clifton G, Miller E, Choi S, et al. Fluid thresholds and outcome from severe brain injury. Crit Care Med 2002; 30(4): 739–45PubMedCrossRef Clifton G, Miller E, Choi S, et al. Fluid thresholds and outcome from severe brain injury. Crit Care Med 2002; 30(4): 739–45PubMedCrossRef
21.
Zurück zum Zitat Hatton J. Pharmacological treatment of traumatic brain injury. CNS Drugs 2001; 15(7): 553–81PubMedCrossRef Hatton J. Pharmacological treatment of traumatic brain injury. CNS Drugs 2001; 15(7): 553–81PubMedCrossRef
22.
Zurück zum Zitat Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007 Jul; 99(1): 4–9PubMedCrossRef Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth 2007 Jul; 99(1): 4–9PubMedCrossRef
23.
Zurück zum Zitat Enriquez P, Bullock R. Molecular and cellular mechanisms in the pathophysiology of severe head injury. Curr Pharm Des 2004; 10(18): 2131–43PubMedCrossRef Enriquez P, Bullock R. Molecular and cellular mechanisms in the pathophysiology of severe head injury. Curr Pharm Des 2004; 10(18): 2131–43PubMedCrossRef
24.
Zurück zum Zitat Czosnyka M, Smielewski P, Piechnik S, et al. Cerebral auto-regulation following head injury. J Neurosurg 2001 Nov; 95(5): 756–63PubMedCrossRef Czosnyka M, Smielewski P, Piechnik S, et al. Cerebral auto-regulation following head injury. J Neurosurg 2001 Nov; 95(5): 756–63PubMedCrossRef
25.
Zurück zum Zitat Manley G, Knudson MM, Morabito D, et al. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 2001 Oct; 136(10): 1118–23PubMedCrossRef Manley G, Knudson MM, Morabito D, et al. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 2001 Oct; 136(10): 1118–23PubMedCrossRef
26.
Zurück zum Zitat DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 2003 Sep; 20(9): 795–825PubMedCrossRef DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 2003 Sep; 20(9): 795–825PubMedCrossRef
27.
Zurück zum Zitat Steiner LA, Coles JP, Johnston AJ, et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 2003 Oct; 34(10): 2404–9PubMedCrossRef Steiner LA, Coles JP, Johnston AJ, et al. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 2003 Oct; 34(10): 2404–9PubMedCrossRef
28.
Zurück zum Zitat Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol 2004 Apr; 14(2): 195–201PubMedCrossRef Cherian L, Hlatky R, Robertson CS. Nitric oxide in traumatic brain injury. Brain Pathol 2004 Apr; 14(2): 195–201PubMedCrossRef
29.
Zurück zum Zitat Schroder ML, Muizelaar JP, Fatouros P, et al. Early cerebral blood volume after severe traumatic brain injury in patients with early cerebral ischemia. Acta Neurochir Suppl 1998; 71: 127–30PubMed Schroder ML, Muizelaar JP, Fatouros P, et al. Early cerebral blood volume after severe traumatic brain injury in patients with early cerebral ischemia. Acta Neurochir Suppl 1998; 71: 127–30PubMed
30.
Zurück zum Zitat Schroder ML, Muizelaar JP, Kuta AJ, et al. Thresholds for cerebral ischemia after severe head injury: relationship with late CT findings and outcome. J Neurotrauma 1996 Jan; 13(1): 17–23PubMedCrossRef Schroder ML, Muizelaar JP, Kuta AJ, et al. Thresholds for cerebral ischemia after severe head injury: relationship with late CT findings and outcome. J Neurotrauma 1996 Jan; 13(1): 17–23PubMedCrossRef
31.
Zurück zum Zitat Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury: relationship to intracranial hypertension. J Neu-rosurg 1984 Aug; 61(2): 241–53 Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury: relationship to intracranial hypertension. J Neu-rosurg 1984 Aug; 61(2): 241–53
32.
Zurück zum Zitat Overgaard J, Tweed WA. Cerebral circulation after head injury, 1: cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 1974 Nov; 41(5): 531–41PubMedCrossRef Overgaard J, Tweed WA. Cerebral circulation after head injury, 1: cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 1974 Nov; 41(5): 531–41PubMedCrossRef
33.
Zurück zum Zitat Oertel M, Boscardin WJ, Obrist WD, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 2005 Nov; 103(5): 812–24PubMedCrossRef Oertel M, Boscardin WJ, Obrist WD, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 2005 Nov; 103(5): 812–24PubMedCrossRef
34.
Zurück zum Zitat Martin NA, Patwardhan RV, Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 1997 Jul; 87(1): 9–19PubMedCrossRef Martin NA, Patwardhan RV, Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 1997 Jul; 87(1): 9–19PubMedCrossRef
35.
Zurück zum Zitat Langham J, Goldfrad C, Teasdale G, et al. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev 2003; 4: CD000565PubMed Langham J, Goldfrad C, Teasdale G, et al. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev 2003; 4: CD000565PubMed
36.
Zurück zum Zitat Hall ED, Andrus PK, Yonkers PA. Brain hydroxyl radical generation in acute experimental head injury. J Neu-rochem 1993 Feb; 60(2): 588–94CrossRef Hall ED, Andrus PK, Yonkers PA. Brain hydroxyl radical generation in acute experimental head injury. J Neu-rochem 1993 Feb; 60(2): 588–94CrossRef
37.
Zurück zum Zitat Shohami E, Beit-Yannai E, Horowitz M, et al. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cerebral Blood Flow Metab 1997 Oct; 17(10): 1007–19CrossRef Shohami E, Beit-Yannai E, Horowitz M, et al. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cerebral Blood Flow Metab 1997 Oct; 17(10): 1007–19CrossRef
38.
Zurück zum Zitat Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma 2000 Oct; 17(10): 871–90PubMedCrossRef Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma 2000 Oct; 17(10): 871–90PubMedCrossRef
39.
Zurück zum Zitat Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics 2010 Jan; 7(1): 51–61PubMedCrossRef Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. Neurotherapeutics 2010 Jan; 7(1): 51–61PubMedCrossRef
40.
Zurück zum Zitat Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histo-pathol 2002 Oct; 17(4): 1137–52 Ray SK, Dixon CE, Banik NL. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histo-pathol 2002 Oct; 17(4): 1137–52
41.
Zurück zum Zitat Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, et al. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001 Aug-Dec; 24(1–3): 169–81PubMed Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, et al. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001 Aug-Dec; 24(1–3): 169–81PubMed
42.
Zurück zum Zitat Yang L, Tao LY, Chen XP. Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 2007 Sep; 23(5): 307–13PubMedCrossRef Yang L, Tao LY, Chen XP. Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 2007 Sep; 23(5): 307–13PubMedCrossRef
43.
Zurück zum Zitat Ott L, McClain C, Gillespie M, et al. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma 1994; 11(5): 447–72PubMedCrossRef Ott L, McClain C, Gillespie M, et al. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma 1994; 11(5): 447–72PubMedCrossRef
44.
Zurück zum Zitat Royo NC, Wahl F, Stutzmann JM. Kinetics of polymorphonuclear neutrophil infiltration after a traumatic brain injury in rat. Neuroreport 1999 Apr 26; 10(6): 1363–7PubMedCrossRef Royo NC, Wahl F, Stutzmann JM. Kinetics of polymorphonuclear neutrophil infiltration after a traumatic brain injury in rat. Neuroreport 1999 Apr 26; 10(6): 1363–7PubMedCrossRef
45.
Zurück zum Zitat Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 1998 Aug; 27(3): 243–56PubMedCrossRef Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 1998 Aug; 27(3): 243–56PubMedCrossRef
46.
Zurück zum Zitat Baldwin SA, Fugaccia I, Brown DR, et al. Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 1996 Sep; 85(3): 476–81PubMedCrossRef Baldwin SA, Fugaccia I, Brown DR, et al. Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 1996 Sep; 85(3): 476–81PubMedCrossRef
47.
Zurück zum Zitat Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 2007; 22(5): 1–10CrossRef Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 2007; 22(5): 1–10CrossRef
48.
Zurück zum Zitat Venero JL, Machado A, Cano J. Importance of aquaporins in the physiopathology of brain edema. Curr Pharm Des 2004; 10(18): 2153–61PubMedCrossRef Venero JL, Machado A, Cano J. Importance of aquaporins in the physiopathology of brain edema. Curr Pharm Des 2004; 10(18): 2153–61PubMedCrossRef
49.
Zurück zum Zitat Young W. Role of calcium in central nervous system injuries. J Neurotrauma 1992 Mar; 9 Suppl. 1: S9–25PubMed Young W. Role of calcium in central nervous system injuries. J Neurotrauma 1992 Mar; 9 Suppl. 1: S9–25PubMed
50.
Zurück zum Zitat Kawamata T, Katayama Y, Hovda DA, et al. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 1995 Mar 20; 674(2): 196–204PubMedCrossRef Kawamata T, Katayama Y, Hovda DA, et al. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 1995 Mar 20; 674(2): 196–204PubMedCrossRef
51.
Zurück zum Zitat Mazzeo AT, Beat A, Singh A, et al. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp Neurol 2009 Aug; 218(2): 363–70PubMedCrossRef Mazzeo AT, Beat A, Singh A, et al. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp Neurol 2009 Aug; 218(2): 363–70PubMedCrossRef
52.
Zurück zum Zitat Sullivan PG, Rabchevsky AG, Waldmeier PC, et al. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 2005; 79(1–2): 231–9PubMedCrossRef Sullivan PG, Rabchevsky AG, Waldmeier PC, et al. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 2005; 79(1–2): 231–9PubMedCrossRef
53.
Zurück zum Zitat Kampfl A, Posmantur RM, Zhao X, et al. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy — a review and update. J Neurotrauma 1997 Mar; 14(3): 121–34PubMedCrossRef Kampfl A, Posmantur RM, Zhao X, et al. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy — a review and update. J Neurotrauma 1997 Mar; 14(3): 121–34PubMedCrossRef
54.
Zurück zum Zitat Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol 2004 Apr; 14(2): 215–22PubMedCrossRef Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol 2004 Apr; 14(2): 215–22PubMedCrossRef
55.
Zurück zum Zitat Sarnaik AA, Conley YP, Okonkwo DO, et al. Influence of PARP-1 polymorphisms in patients after traumatic brain injury. J Neurotrauma 2010 Mar; 27(3): 465–71PubMedCrossRef Sarnaik AA, Conley YP, Okonkwo DO, et al. Influence of PARP-1 polymorphisms in patients after traumatic brain injury. J Neurotrauma 2010 Mar; 27(3): 465–71PubMedCrossRef
56.
Zurück zum Zitat Hatton J, Kryscio R, Ryan M, et al. Systemic metabolic effects of combined insulin-like growth factor-I and growth hormone therapy in patients who have sustained acute traumatic brain injury. J Neurosurg 2006 Dec; 105(6): 843–52PubMedCrossRef Hatton J, Kryscio R, Ryan M, et al. Systemic metabolic effects of combined insulin-like growth factor-I and growth hormone therapy in patients who have sustained acute traumatic brain injury. J Neurosurg 2006 Dec; 105(6): 843–52PubMedCrossRef
57.
Zurück zum Zitat Neff NT, Prevette D, Houenou LJ, et al. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 1993 Dec; 24(12): 1578–88PubMedCrossRef Neff NT, Prevette D, Houenou LJ, et al. Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol 1993 Dec; 24(12): 1578–88PubMedCrossRef
58.
Zurück zum Zitat Saenger S, Goeldner C, Frey JR, et al. PEGylation enhances the therapeutic potential for insulin-like growth factor I in central nervous system disorders. Growth Horm IGF Res 2011 Oct; 21(5): 292–303PubMedCrossRef Saenger S, Goeldner C, Frey JR, et al. PEGylation enhances the therapeutic potential for insulin-like growth factor I in central nervous system disorders. Growth Horm IGF Res 2011 Oct; 21(5): 292–303PubMedCrossRef
59.
Zurück zum Zitat Aberg ND, Brywe KG, Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 2006; 6: 53–80CrossRef Aberg ND, Brywe KG, Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 2006; 6: 53–80CrossRef
60.
Zurück zum Zitat Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 2008; 70: 191–212PubMedCrossRef Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 2008; 70: 191–212PubMedCrossRef
61.
Zurück zum Zitat Zeger M, Popken G, Zhang J, et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007 Mar; 55(4): 400–11PubMedCrossRef Zeger M, Popken G, Zhang J, et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007 Mar; 55(4): 400–11PubMedCrossRef
62.
Zurück zum Zitat Kazanis I, Giannakopoulou M, Philippidis H, et al. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 2004 Apr; 186(2): 221–34PubMedCrossRef Kazanis I, Giannakopoulou M, Philippidis H, et al. Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 2004 Apr; 186(2): 221–34PubMedCrossRef
63.
Zurück zum Zitat Saatman KE, Contreras PC, Smith DH, et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 1997; 147(2): 418–27PubMedCrossRef Saatman KE, Contreras PC, Smith DH, et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 1997; 147(2): 418–27PubMedCrossRef
64.
Zurück zum Zitat Rockich KT, Hatton JC, Kryscio RJ, et al. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy 1999; 19(12): 1432–6PubMedCrossRef Rockich KT, Hatton JC, Kryscio RJ, et al. Effect of recombinant human growth hormone and insulin-like growth factor-1 administration on IGF-1 and IGF-binding protein-3 levels in brain injury. Pharmacotherapy 1999; 19(12): 1432–6PubMedCrossRef
65.
Zurück zum Zitat Metzger F, Sajid W, Saenger S, et al. Separation of fast from slow anabolism by site-specific PEGylation of insulinlike growth factor I (IGF-I). J Biol Chem 2011 Jun 3; 286(22): 19501–10PubMedCrossRef Metzger F, Sajid W, Saenger S, et al. Separation of fast from slow anabolism by site-specific PEGylation of insulinlike growth factor I (IGF-I). J Biol Chem 2011 Jun 3; 286(22): 19501–10PubMedCrossRef
66.
Zurück zum Zitat Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am 2002; 13(3): 371–83PubMedCrossRef Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am 2002; 13(3): 371–83PubMedCrossRef
67.
Zurück zum Zitat Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 2007; 13(2): 134–42PubMedCrossRef Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 2007; 13(2): 134–42PubMedCrossRef
68.
Zurück zum Zitat Bullock MR, Lyeth BG, Muizelaar JP. Current status of neuroprotection trials for traumatic brain injury: Lessons from animal models and clinical studies. Neurosurgery 1999; 45(2): 207–20PubMedCrossRef Bullock MR, Lyeth BG, Muizelaar JP. Current status of neuroprotection trials for traumatic brain injury: Lessons from animal models and clinical studies. Neurosurgery 1999; 45(2): 207–20PubMedCrossRef
69.
Zurück zum Zitat Tolias CM, Bullock MR. Critical appraisal of neuroprotection trials in head injury: what have we learned? Neu-roRx 2004; 1(1): 71–9CrossRef Tolias CM, Bullock MR. Critical appraisal of neuroprotection trials in head injury: what have we learned? Neu-roRx 2004; 1(1): 71–9CrossRef
70.
Zurück zum Zitat Dixon CE, Clifton GL, Lighthall JW, et al. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991 Oct; 39(3): 253–62PubMedCrossRef Dixon CE, Clifton GL, Lighthall JW, et al. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 1991 Oct; 39(3): 253–62PubMedCrossRef
71.
Zurück zum Zitat Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 2005; 136(4): 971–89PubMedCrossRef Morales DM, Marklund N, Lebold D, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience 2005; 136(4): 971–89PubMedCrossRef
72.
Zurück zum Zitat Sullivan PG, Rabchevsky AG, Hicks RR, et al. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 2000; 101(2): 289–95PubMedCrossRef Sullivan PG, Rabchevsky AG, Hicks RR, et al. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 2000; 101(2): 289–95PubMedCrossRef
73.
Zurück zum Zitat Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed Lee G, Dallas S, Hong M, et al. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569–96PubMed
74.
Zurück zum Zitat Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nature Rev Neurosci 2005; 6(8): 591–602CrossRef Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nature Rev Neurosci 2005; 6(8): 591–602CrossRef
75.
Zurück zum Zitat Boucher BA, Hanes SD. Pharmacokinetic alterations after severe head injury. Clin Pharmacokinet 1998; 35(3): 209–21PubMedCrossRef Boucher BA, Hanes SD. Pharmacokinetic alterations after severe head injury. Clin Pharmacokinet 1998; 35(3): 209–21PubMedCrossRef
76.
Zurück zum Zitat McKindley DS, Boucher BA, Hess MM, et al. Effect of acute phase response on phenytoin metabolism in neurotrauma patients. J Clin Pharmacol 1997; 37(2): 129–39PubMedCrossRef McKindley DS, Boucher BA, Hess MM, et al. Effect of acute phase response on phenytoin metabolism in neurotrauma patients. J Clin Pharmacol 1997; 37(2): 129–39PubMedCrossRef
77.
Zurück zum Zitat Baraldo M, Ferraccioli G, Pea F, et al. Cyclosporine A pharmacokinetics in rheumatoid arthritis patients after 6 months of methotrexate therapy. Pharmacol Res 1999; 40(6): 483–6PubMedCrossRef Baraldo M, Ferraccioli G, Pea F, et al. Cyclosporine A pharmacokinetics in rheumatoid arthritis patients after 6 months of methotrexate therapy. Pharmacol Res 1999; 40(6): 483–6PubMedCrossRef
78.
Zurück zum Zitat Kovarik JM, Koelle EU. Cyclosporin pharmacokinetics in the elderly. Drugs Aging 1999; 15(3): 197–205PubMedCrossRef Kovarik JM, Koelle EU. Cyclosporin pharmacokinetics in the elderly. Drugs Aging 1999; 15(3): 197–205PubMedCrossRef
79.
Zurück zum Zitat Ptachcinski RJ, Venkataramanan R, Rosenthal JT, et al. Cyclosporine kinetics in renal transplantation. Clin Pharmacol Ther 1985; 38: 296–300PubMedCrossRef Ptachcinski RJ, Venkataramanan R, Rosenthal JT, et al. Cyclosporine kinetics in renal transplantation. Clin Pharmacol Ther 1985; 38: 296–300PubMedCrossRef
80.
Zurück zum Zitat Yee GC, Salomon DR. Cyclosporine. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Baltimore (MD): Lippincott Williams & Wilkins; 1992; 28.1–28.40 Yee GC, Salomon DR. Cyclosporine. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Baltimore (MD): Lippincott Williams & Wilkins; 1992; 28.1–28.40
81.
Zurück zum Zitat Cook AM, Whitlow J, Hatton J, et al. Cyclosporin A neuroprotection: establishing dosing guidelines for safe and effective use. Expert Opin Drug Saf 2009; 8(4): 411–9PubMedCrossRef Cook AM, Whitlow J, Hatton J, et al. Cyclosporin A neuroprotection: establishing dosing guidelines for safe and effective use. Expert Opin Drug Saf 2009; 8(4): 411–9PubMedCrossRef
82.
Zurück zum Zitat Empey PE, McNamara PJ, Young B, et al. Cyclosporin A disposition following acute traumatic brain injury. J Neurotrauma 2006; 23(1): 109–16PubMedCrossRef Empey PE, McNamara PJ, Young B, et al. Cyclosporin A disposition following acute traumatic brain injury. J Neurotrauma 2006; 23(1): 109–16PubMedCrossRef
84.
Zurück zum Zitat Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007; 6(1): 29–38PubMedCrossRef Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007; 6(1): 29–38PubMedCrossRef
85.
Zurück zum Zitat Wright DW, Kellermann AL, Hertzberg VS, et al. Pro-TECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007; 49(4): 391–402PubMedCrossRef Wright DW, Kellermann AL, Hertzberg VS, et al. Pro-TECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007; 49(4): 391–402PubMedCrossRef
86.
Zurück zum Zitat Guilfoyle MR, Seeley HM, Corteen E, et al. Assessing quality of life after traumatic brain injury: examination of the short form 36 health survey. J Neurotrauma 2010 Dec; 27(12): 2173–81PubMedCrossRef Guilfoyle MR, Seeley HM, Corteen E, et al. Assessing quality of life after traumatic brain injury: examination of the short form 36 health survey. J Neurotrauma 2010 Dec; 27(12): 2173–81PubMedCrossRef
87.
Zurück zum Zitat von Steinbuchel N, Wilson L, Gibbons H, et al. Quality of Life after Brain Injury (QOLIBRI): scale validity and correlates of quality of life. J Neurotrauma 2010 Jul; 27(7): 1157–65CrossRef von Steinbuchel N, Wilson L, Gibbons H, et al. Quality of Life after Brain Injury (QOLIBRI): scale validity and correlates of quality of life. J Neurotrauma 2010 Jul; 27(7): 1157–65CrossRef
88.
Zurück zum Zitat Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007 Feb; 24(2): 354–66PubMedCrossRef Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 2007 Feb; 24(2): 354–66PubMedCrossRef
89.
Zurück zum Zitat Manley GT, Diaz-Arrastia R, Brophy M, et al. Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 2010 Nov; 91(11): 1667–72PubMedCrossRef Manley GT, Diaz-Arrastia R, Brophy M, et al. Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 2010 Nov; 91(11): 1667–72PubMedCrossRef
90.
Zurück zum Zitat Ottens AK, Bustamante L, Golden EC, et al. Neuropro-teomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010 Oct; 27(10): 1837–52PubMedCrossRef Ottens AK, Bustamante L, Golden EC, et al. Neuropro-teomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010 Oct; 27(10): 1837–52PubMedCrossRef
91.
Zurück zum Zitat Kochanek PM, Berger RP, Bayir H, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care 2008 Apr; 14(2): 135–41PubMedCrossRef Kochanek PM, Berger RP, Bayir H, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care 2008 Apr; 14(2): 135–41PubMedCrossRef
92.
Zurück zum Zitat Maas AI, Murray G, Henney III H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006; 5: 38–45PubMedCrossRef Maas AI, Murray G, Henney III H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006; 5: 38–45PubMedCrossRef
94.
Zurück zum Zitat Marmarou A, Guy M, Murphey L, et al. A single dose, three-arm, placebo-controlled, phase I study of the bradykinin B2 receptor antagonist Anatibant (LF160687Ms) in patients with severe traumatic brain injury. J Neurotrauma 2005 Dec; 22(12): 1444–55PubMedCrossRef Marmarou A, Guy M, Murphey L, et al. A single dose, three-arm, placebo-controlled, phase I study of the bradykinin B2 receptor antagonist Anatibant (LF160687Ms) in patients with severe traumatic brain injury. J Neurotrauma 2005 Dec; 22(12): 1444–55PubMedCrossRef
95.
Zurück zum Zitat Hatton J, Rosbolt B, Empey P, et al. Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 2008; 109: 699–707PubMedCrossRef Hatton J, Rosbolt B, Empey P, et al. Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 2008; 109: 699–707PubMedCrossRef
96.
Zurück zum Zitat Marmarou A, Nichols J, Burgess J, et al. Effects of the bradykinin antagonist Bradycor (deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Study Group. J Neurotrauma 1999 Jun; 16(6): 431–44PubMedCrossRef Marmarou A, Nichols J, Burgess J, et al. Effects of the bradykinin antagonist Bradycor (deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Study Group. J Neurotrauma 1999 Jun; 16(6): 431–44PubMedCrossRef
97.
Zurück zum Zitat Young B, Runge JW, Waxman KS, et al. Effects of pe-gorgotein on neurologic outcome of patients with severe head injury: a multicenter, randomized controlled trial. JAMA 1996 Aug; 276(7): 538–43PubMedCrossRef Young B, Runge JW, Waxman KS, et al. Effects of pe-gorgotein on neurologic outcome of patients with severe head injury: a multicenter, randomized controlled trial. JAMA 1996 Aug; 276(7): 538–43PubMedCrossRef
98.
Zurück zum Zitat Muizelaar JP, Marmarou A, Young HF, et al. Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg 1993; 78(3): 375–82PubMedCrossRef Muizelaar JP, Marmarou A, Young HF, et al. Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg 1993; 78(3): 375–82PubMedCrossRef
99.
Zurück zum Zitat Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 2008; 12(2): R61PubMedCrossRef Xiao G, Wei J, Yan W, et al. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 2008; 12(2): R61PubMedCrossRef
100.
Zurück zum Zitat Merchant RE, Bullock MR, Carmack CA, et al. A doubleblind, placebo-controlled study of the safety, tolerability and pharmacokinetics of CP-101, 606 in patients with a mild or moderate traumatic brain injury. Ann N Y Acad Sci 1999; 890: 42–50PubMedCrossRef Merchant RE, Bullock MR, Carmack CA, et al. A doubleblind, placebo-controlled study of the safety, tolerability and pharmacokinetics of CP-101, 606 in patients with a mild or moderate traumatic brain injury. Ann N Y Acad Sci 1999; 890: 42–50PubMedCrossRef
101.
Zurück zum Zitat Yurkewicz L, Weaver J, Bullock MR, et al. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 2005 Dec; 22(12): 1428–43PubMedCrossRef Yurkewicz L, Weaver J, Bullock MR, et al. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 2005 Dec; 22(12): 1428–43PubMedCrossRef
102.
Zurück zum Zitat Maas AI, Murray G, Henney 3rd H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006 Jan; 5(1): 38–45PubMedCrossRef Maas AI, Murray G, Henney 3rd H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006 Jan; 5(1): 38–45PubMedCrossRef
103.
Zurück zum Zitat Natale JE, Guerguerian AM, Joseph JG, et al. Pilot study to determine the hemodynamic safety and feasibility of magnesium sulfate infusion in children with severe traumatic brain injury. Pediatr Crit Care Med 2007; 8(1): 1–9PubMedCrossRef Natale JE, Guerguerian AM, Joseph JG, et al. Pilot study to determine the hemodynamic safety and feasibility of magnesium sulfate infusion in children with severe traumatic brain injury. Pediatr Crit Care Med 2007; 8(1): 1–9PubMedCrossRef
104.
Zurück zum Zitat Bailey I, Bell A, Gray J, et al. A trial of the effect of nimodipine on outcome after head injury. Acta Neurochir (Wien) 1991; 110(3–4): 97–105CrossRef Bailey I, Bell A, Gray J, et al. A trial of the effect of nimodipine on outcome after head injury. Acta Neurochir (Wien) 1991; 110(3–4): 97–105CrossRef
105.
Zurück zum Zitat Teasdale G, Bailey I, Bell A, et al. A randomized trial of nimodipine in severe head injury: HIT I. British/Finnish Co-operative Head Injury Trial Group. J Neurotruama 1992; 9 Suppl. (2): S545–50 Teasdale G, Bailey I, Bell A, et al. A randomized trial of nimodipine in severe head injury: HIT I. British/Finnish Co-operative Head Injury Trial Group. J Neurotruama 1992; 9 Suppl. (2): S545–50
106.
Zurück zum Zitat Murray GD, Teasdale GM, Schmitz H. Nimodipine in traumatic subarachnoid haemorrhage: a re-analysis of the HIT I and HIT II trials. Acta Neurochir (Wien) 1996; 138(10): 1163–7CrossRef Murray GD, Teasdale GM, Schmitz H. Nimodipine in traumatic subarachnoid haemorrhage: a re-analysis of the HIT I and HIT II trials. Acta Neurochir (Wien) 1996; 138(10): 1163–7CrossRef
107.
Zurück zum Zitat The European Study Group on Nimodipine in Severe Head Injury. A multicenter trial of the efficacy of nimodipine on outcome after severe head injury. The European Study Group on Nimodipine in Severe Head Injury. J Neurosurg 1994; 80(5): 797–804CrossRef The European Study Group on Nimodipine in Severe Head Injury. A multicenter trial of the efficacy of nimodipine on outcome after severe head injury. The European Study Group on Nimodipine in Severe Head Injury. J Neurosurg 1994; 80(5): 797–804CrossRef
108.
Zurück zum Zitat Pillai SV, Kolluri VR, Mohanty A, et al. Evaluation of nimodipine in the treatment of severe diffuse head injury: a double-blind placebo-controlled trial. Neurol India 2003; 51(3): 361–3PubMed Pillai SV, Kolluri VR, Mohanty A, et al. Evaluation of nimodipine in the treatment of severe diffuse head injury: a double-blind placebo-controlled trial. Neurol India 2003; 51(3): 361–3PubMed
109.
Zurück zum Zitat Zhou XE, Wang XY, Xu RX, et al. Effects of nimodipine on the cerebrovascular hemodynamics in patients with severe head injuries. Di Yi Jun Yi Da Xue Xue Bao 2002; 22(6): 527–9PubMed Zhou XE, Wang XY, Xu RX, et al. Effects of nimodipine on the cerebrovascular hemodynamics in patients with severe head injuries. Di Yi Jun Yi Da Xue Xue Bao 2002; 22(6): 527–9PubMed
110.
Zurück zum Zitat Tapia-Perez JH, Sanchez-Aguilar M, Torres-Corzo JG, et al. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J Neurotrauma 2008; 25(8): 1011–7PubMedCrossRef Tapia-Perez JH, Sanchez-Aguilar M, Torres-Corzo JG, et al. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J Neurotrauma 2008; 25(8): 1011–7PubMedCrossRef
111.
Zurück zum Zitat Morris GF, Bullock R, Marshall SB, et al. Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 1999; 91(5): 737–43PubMedCrossRef Morris GF, Bullock R, Marshall SB, et al. Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 1999; 91(5): 737–43PubMedCrossRef
112.
Zurück zum Zitat Marshall LF, Maas AI, Marshall SB, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 1998; 89(4): 519–25PubMedCrossRef Marshall LF, Maas AI, Marshall SB, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 1998; 89(4): 519–25PubMedCrossRef
113.
Zurück zum Zitat LaPlaca MC, Zhang J, Raghupathi R, et al. Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma 2001; 18(4): 369–76PubMedCrossRef LaPlaca MC, Zhang J, Raghupathi R, et al. Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma 2001; 18(4): 369–76PubMedCrossRef
114.
Zurück zum Zitat Hoane MR, Pierce JL, Kaufman NA, et al. Variation in chronic nicotinamide treatment after traumatic brain injury can alter components of functional recovery independent of histological damage. Oxid Med Cell Longev 2008; 1(1): 46–53PubMedCrossRef Hoane MR, Pierce JL, Kaufman NA, et al. Variation in chronic nicotinamide treatment after traumatic brain injury can alter components of functional recovery independent of histological damage. Oxid Med Cell Longev 2008; 1(1): 46–53PubMedCrossRef
115.
Zurück zum Zitat Goffus AM, Anderson GD, Hoane M. Sustained delivery of nicotinamide limits cortical injury and improves functional recovery following traumatic brain injury. Oxid Med Cell Longev 2010; 3(2): 145–52PubMedCrossRef Goffus AM, Anderson GD, Hoane M. Sustained delivery of nicotinamide limits cortical injury and improves functional recovery following traumatic brain injury. Oxid Med Cell Longev 2010; 3(2): 145–52PubMedCrossRef
116.
Zurück zum Zitat Swan AA, Chandrashekar R, Beare J, et al. Preclinical efficacy testing in middle-aged rats: nicotinamide, a novel neuroprotectant, demonstrates diminished preclinical efficacy after controlled cortical impact. J Neurotrauma 2011; 28(3): 431–40PubMedCrossRef Swan AA, Chandrashekar R, Beare J, et al. Preclinical efficacy testing in middle-aged rats: nicotinamide, a novel neuroprotectant, demonstrates diminished preclinical efficacy after controlled cortical impact. J Neurotrauma 2011; 28(3): 431–40PubMedCrossRef
117.
Zurück zum Zitat Hoane MR, Tan AA, Pierce JL, et al. Nicotinamide treatment reduces behavioral impairments and provides cortical protection after fluid percussion injury in the rat. J Neurotrauma 2006; 23(10): 1535–48PubMedCrossRef Hoane MR, Tan AA, Pierce JL, et al. Nicotinamide treatment reduces behavioral impairments and provides cortical protection after fluid percussion injury in the rat. J Neurotrauma 2006; 23(10): 1535–48PubMedCrossRef
118.
Zurück zum Zitat Holland MA, Tan AA, Smith DC, et al. Nicotinamide treatment provides acute neuroprotection and GFAP regulation following fluid percussion injury. J Neurotruama 2008; 25(2): 140–52CrossRef Holland MA, Tan AA, Smith DC, et al. Nicotinamide treatment provides acute neuroprotection and GFAP regulation following fluid percussion injury. J Neurotruama 2008; 25(2): 140–52CrossRef
119.
Zurück zum Zitat Hoane MR, Pierce JL, Holland MA, et al. Nicotinamide treatment induces behavioral recovery when administered up to 4 hours following cortical contusion injury in the rat. Neuroscience 2008; 154(3): 861–8PubMedCrossRef Hoane MR, Pierce JL, Holland MA, et al. Nicotinamide treatment induces behavioral recovery when administered up to 4 hours following cortical contusion injury in the rat. Neuroscience 2008; 154(3): 861–8PubMedCrossRef
120.
Zurück zum Zitat Su X, Wang H, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-kappaB pathway after traumatic brain injury in the rat. Mediators Inflamm. Epub 2011 Jun 16 Su X, Wang H, Zhao J, et al. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-kappaB pathway after traumatic brain injury in the rat. Mediators Inflamm. Epub 2011 Jun 16
121.
Zurück zum Zitat Abdel Baki SG, Schwab Haber M, et al. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE 2010; 5(8): e12490PubMedCrossRef Abdel Baki SG, Schwab Haber M, et al. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE 2010; 5(8): e12490PubMedCrossRef
122.
Zurück zum Zitat Chen G, Shi J, Hu Z, et al. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008; 2008: 716458PubMedCrossRef Chen G, Shi J, Hu Z, et al. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008; 2008: 716458PubMedCrossRef
123.
Zurück zum Zitat Khan M, Sakakima H, Dhammu TS, et al. S-Nitro-soglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats. J Neuroinflammation 2011 July 6; 8: 78PubMedCrossRef Khan M, Sakakima H, Dhammu TS, et al. S-Nitro-soglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats. J Neuroinflammation 2011 July 6; 8: 78PubMedCrossRef
124.
Zurück zum Zitat Khan M, Im YB, Shunmugavel A, et al. Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009 Nov 4; 6: 32PubMedCrossRef Khan M, Im YB, Shunmugavel A, et al. Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009 Nov 4; 6: 32PubMedCrossRef
125.
Zurück zum Zitat Qu Mahmood A, Ning R, et al. The treatment of traumatic brain injury with velcade. J Neurotrauma 2010; 27(9): 1625–34CrossRef Qu Mahmood A, Ning R, et al. The treatment of traumatic brain injury with velcade. J Neurotrauma 2010; 27(9): 1625–34CrossRef
126.
Zurück zum Zitat Arun P, Ariyannur PS, Moffett JR, et al. Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotruama 2010; 27(1): 293–8CrossRef Arun P, Ariyannur PS, Moffett JR, et al. Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotruama 2010; 27(1): 293–8CrossRef
127.
Zurück zum Zitat Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma 2009; 26(4): 497–506PubMedCrossRef Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma 2009; 26(4): 497–506PubMedCrossRef
128.
Zurück zum Zitat Pike BR, Hamm RJ. Post-injury administration of BIBN 99, a selective muscarinic M2 receptor antagonist, improves cognitive performance following traumatic brain injury in rats. Brain Res 1995; 686(1): 37–43PubMedCrossRef Pike BR, Hamm RJ. Post-injury administration of BIBN 99, a selective muscarinic M2 receptor antagonist, improves cognitive performance following traumatic brain injury in rats. Brain Res 1995; 686(1): 37–43PubMedCrossRef
129.
Zurück zum Zitat Durmaz R, Ertilav K, Akyüz F, et al. Lazaroid U-74389G attenuates edema in rat brain subjected to post-ischemic reperfusion injury. J Neurol Sci 2003 Nov 15; 215(1–2): 87–93PubMedCrossRef Durmaz R, Ertilav K, Akyüz F, et al. Lazaroid U-74389G attenuates edema in rat brain subjected to post-ischemic reperfusion injury. J Neurol Sci 2003 Nov 15; 215(1–2): 87–93PubMedCrossRef
130.
Zurück zum Zitat Durmaz R, Kanbak G, Akyüz F, et al. Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci 2003 May; 30(2): 143–9PubMed Durmaz R, Kanbak G, Akyüz F, et al. Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci 2003 May; 30(2): 143–9PubMed
131.
Zurück zum Zitat Lu XC, Chen RW, Yao et al. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26(1): 141–54PubMedCrossRef Lu XC, Chen RW, Yao et al. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J Neurotrauma 2009; 26(1): 141–54PubMedCrossRef
132.
Zurück zum Zitat Wei HH, Lu XC, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating bal-listic-like brain injury in rats. J Neuroinflammation 2009 August 7; 6: 19PubMedCrossRef Wei HH, Lu XC, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating bal-listic-like brain injury in rats. J Neuroinflammation 2009 August 7; 6: 19PubMedCrossRef
133.
Zurück zum Zitat Berman RF, Verweij BH, Muizelaar JP. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J Neurosurg 2000; 93(5): 821–8PubMedCrossRef Berman RF, Verweij BH, Muizelaar JP. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J Neurosurg 2000; 93(5): 821–8PubMedCrossRef
134.
Zurück zum Zitat Verweij BH, Muizelaar JP, Vinas FC, et al. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker ziconotide in experimental brain injury. J Neurosurg 2000; 93(5): 829–34PubMedCrossRef Verweij BH, Muizelaar JP, Vinas FC, et al. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker ziconotide in experimental brain injury. J Neurosurg 2000; 93(5): 829–34PubMedCrossRef
135.
Zurück zum Zitat Faden AI, O’Leary DM, Fan L, et al. Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp Neurol 2001; 167(2): 435–44PubMedCrossRef Faden AI, O’Leary DM, Fan L, et al. Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp Neurol 2001; 167(2): 435–44PubMedCrossRef
136.
Zurück zum Zitat Movsesyan VA, O’Leary DM, Fan L, et al. mGluR5 antagonists 2-methyl-6-(phenylethynyl)-pyridine and (E)-2-methyl-6-(2-phenylethenyl)-pyridine reduce traumatic neuronal injury in vitro and in vivo by antagonizing N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 2001; 296(1): 41–7PubMed Movsesyan VA, O’Leary DM, Fan L, et al. mGluR5 antagonists 2-methyl-6-(phenylethynyl)-pyridine and (E)-2-methyl-6-(2-phenylethenyl)-pyridine reduce traumatic neuronal injury in vitro and in vivo by antagonizing N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 2001; 296(1): 41–7PubMed
137.
Zurück zum Zitat Barbre AB, Hoane MR. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res Bull 2006; 69(6): 639–46PubMedCrossRef Barbre AB, Hoane MR. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res Bull 2006; 69(6): 639–46PubMedCrossRef
138.
Zurück zum Zitat Hoane MR, Wolyniak JG, Akstulewicz SL. Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury. J Neurotrauma 2005; 22(10): 1112–22PubMedCrossRef Hoane MR, Wolyniak JG, Akstulewicz SL. Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury. J Neurotrauma 2005; 22(10): 1112–22PubMedCrossRef
139.
Zurück zum Zitat Belayev L, Becker DA, Alonso OF, et al. Stilbazulenyl nitrone, a novel azulenyl nitrone antioxidant: improved neurological deficit and reduced contusion size after traumatic brain injury in rats. J Neurosurg 2002; 96(6): 1077–83PubMedCrossRef Belayev L, Becker DA, Alonso OF, et al. Stilbazulenyl nitrone, a novel azulenyl nitrone antioxidant: improved neurological deficit and reduced contusion size after traumatic brain injury in rats. J Neurosurg 2002; 96(6): 1077–83PubMedCrossRef
140.
Zurück zum Zitat Guluma KZ, Saatman KE, Brown A, et al. Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone. J Neurotrauma 1999; 16(4): 311–21PubMedCrossRef Guluma KZ, Saatman KE, Brown A, et al. Sequential pharmacotherapy with magnesium chloride and basic fibroblast growth factor after fluid percussion brain injury results in less neuromotor efficacy than that achieved with magnesium alone. J Neurotrauma 1999; 16(4): 311–21PubMedCrossRef
141.
Zurück zum Zitat Dietrich WD, Alonso OF, Busto R, et al. Posttreatment with intravenous basic fibroblast growth factor reduces histo-pathological damage following fluid-percussion brain injury in rats. J Neurotrauma 1996; 13(6): 309–16PubMed Dietrich WD, Alonso OF, Busto R, et al. Posttreatment with intravenous basic fibroblast growth factor reduces histo-pathological damage following fluid-percussion brain injury in rats. J Neurotrauma 1996; 13(6): 309–16PubMed
142.
Zurück zum Zitat McDermott KL, Raghupathi R, Fernandez SC, et al. Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in the rat. J Neurotrauma 1997; 14(4): 191–200PubMedCrossRef McDermott KL, Raghupathi R, Fernandez SC, et al. Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in the rat. J Neurotrauma 1997; 14(4): 191–200PubMedCrossRef
143.
Zurück zum Zitat Sun D, Bullock MR, McGinn MJ, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 2009; 216(1): 56–65PubMedCrossRef Sun D, Bullock MR, McGinn MJ, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 2009; 216(1): 56–65PubMedCrossRef
144.
Zurück zum Zitat Cernak I, O’Connor C, Vink R. Inhibition of cyclooxy-genase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res 2002; 147(2): 193–9PubMedCrossRef Cernak I, O’Connor C, Vink R. Inhibition of cyclooxy-genase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res 2002; 147(2): 193–9PubMedCrossRef
145.
Zurück zum Zitat Wahl F, Grosjean-Piot O, Bareyre F, et al. Enoxaparin reduces brain edema, cerebral lesions, and improves motor and cognitive impairments induced by a traumatic brain injury in rats. J Neurotrauma 2000 Nov; 17(11): 1055–65PubMedCrossRef Wahl F, Grosjean-Piot O, Bareyre F, et al. Enoxaparin reduces brain edema, cerebral lesions, and improves motor and cognitive impairments induced by a traumatic brain injury in rats. J Neurotrauma 2000 Nov; 17(11): 1055–65PubMedCrossRef
146.
Zurück zum Zitat Stutzmann JM, Mary V, Wahl F, et al. Neuroprotective profile of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury in rats: a review. CNS Drug Rev 2002 Spring; 8(1): 1–30PubMedCrossRef Stutzmann JM, Mary V, Wahl F, et al. Neuroprotective profile of enoxaparin, a low molecular weight heparin, in in vivo models of cerebral ischemia or traumatic brain injury in rats: a review. CNS Drug Rev 2002 Spring; 8(1): 1–30PubMedCrossRef
147.
Zurück zum Zitat Bye N, Habgood MD, Callaway JK, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007 Mar; 204(1): 220–33PubMedCrossRef Bye N, Habgood MD, Callaway JK, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007 Mar; 204(1): 220–33PubMedCrossRef
148.
Zurück zum Zitat Crack PJ, Gould J, Bye N, et al. The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. J Neural Transm 2009 Jan; 116(1): 1–12PubMedCrossRef Crack PJ, Gould J, Bye N, et al. The genomic profile of the cerebral cortex after closed head injury in mice: effects of minocycline. J Neural Transm 2009 Jan; 116(1): 1–12PubMedCrossRef
149.
Zurück zum Zitat Homsi S, Federico F, Croci N, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 2009 Sep 29; 1291: 122–32PubMedCrossRef Homsi S, Federico F, Croci N, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 2009 Sep 29; 1291: 122–32PubMedCrossRef
150.
Zurück zum Zitat Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 2010 May; 27(5): 911–21PubMedCrossRef Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 2010 May; 27(5): 911–21PubMedCrossRef
151.
Zurück zum Zitat Stover JF, Beyer TF, Unterberg AW. Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. J Neurotrauma 2000; 17(12): 1171–8PubMedCrossRef Stover JF, Beyer TF, Unterberg AW. Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. J Neurotrauma 2000; 17(12): 1171–8PubMedCrossRef
152.
Zurück zum Zitat Zhang C, Raghupathi R, Saatman KE, et al. Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 1998; 52(3): 342–9PubMedCrossRef Zhang C, Raghupathi R, Saatman KE, et al. Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 1998; 52(3): 342–9PubMedCrossRef
153.
Zurück zum Zitat Zhang Y, Xiong Y, Mahmood A, et al. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res 2009; 1294: 153–64PubMedCrossRef Zhang Y, Xiong Y, Mahmood A, et al. Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res 2009; 1294: 153–64PubMedCrossRef
154.
Zurück zum Zitat Zhang Y, Xiong Y, Mahmood A, et al. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 2010; 1353: 249–57PubMedCrossRef Zhang Y, Xiong Y, Mahmood A, et al. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 2010; 1353: 249–57PubMedCrossRef
155.
Zurück zum Zitat Liao ZB, Zhi XG, Shi QH, et al. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008; 15(2): 140–9PubMedCrossRef Liao ZB, Zhi XG, Shi QH, et al. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008; 15(2): 140–9PubMedCrossRef
156.
Zurück zum Zitat Zhao J, Li G, Zhang Y, et al. The potential role of JAK2/STAT3 pathway on the anti-apoptotic effect of recombinant human erythropoietin (rhEPO) after experimental traumatic brain injury of rats. Cytokine 2011; 56(2): 343–50PubMedCrossRef Zhao J, Li G, Zhang Y, et al. The potential role of JAK2/STAT3 pathway on the anti-apoptotic effect of recombinant human erythropoietin (rhEPO) after experimental traumatic brain injury of rats. Cytokine 2011; 56(2): 343–50PubMedCrossRef
157.
Zurück zum Zitat Hartley CE, Varma M, Fischer JP, et al. Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J Neurosurg 2008; 109(4): 708–14PubMedCrossRef Hartley CE, Varma M, Fischer JP, et al. Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J Neurosurg 2008; 109(4): 708–14PubMedCrossRef
158.
Zurück zum Zitat Grasso G, Sfacteria A, Meli F, et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res 2007; 1182: 99–105PubMedCrossRef Grasso G, Sfacteria A, Meli F, et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res 2007; 1182: 99–105PubMedCrossRef
159.
Zurück zum Zitat Chen G, Shi JX, Hang CH, et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 2007; 425(3): 177–82PubMedCrossRef Chen G, Shi JX, Hang CH, et al. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 2007; 425(3): 177–82PubMedCrossRef
160.
Zurück zum Zitat Liao ZB, Jiang GY, Tang ZH, et al. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats. Neurol India 2009; 57(6): 722–8PubMedCrossRef Liao ZB, Jiang GY, Tang ZH, et al. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats. Neurol India 2009; 57(6): 722–8PubMedCrossRef
161.
Zurück zum Zitat Mammis A, McIntosh TK, Maniker AH. Erythropoietin as a neuroprotective agent in traumatic brain injury. Surg Neurol 2009; 71(5): 527–31PubMedCrossRef Mammis A, McIntosh TK, Maniker AH. Erythropoietin as a neuroprotective agent in traumatic brain injury. Surg Neurol 2009; 71(5): 527–31PubMedCrossRef
162.
Zurück zum Zitat Xiong Y, Mahmood A, Zhang Y, et al. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 2011; 114(2): 549–59PubMedCrossRef Xiong Y, Mahmood A, Zhang Y, et al. Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 2011; 114(2): 549–59PubMedCrossRef
163.
Zurück zum Zitat Xiong Y, Mahmood A, Meng Y, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 2010; 113(3): 598–608PubMedCrossRef Xiong Y, Mahmood A, Meng Y, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 2010; 113(3): 598–608PubMedCrossRef
164.
Zurück zum Zitat Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000; 97(19): 10526–31PubMedCrossRef Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000; 97(19): 10526–31PubMedCrossRef
165.
Zurück zum Zitat Kuypers NJ, Hoane MR. Pyridoxine administration improves behavioral and anatomical outcome after unilateral contusion injury in the rat. J Neurotrauma 2010; 27(7): 1275–82PubMedCrossRef Kuypers NJ, Hoane MR. Pyridoxine administration improves behavioral and anatomical outcome after unilateral contusion injury in the rat. J Neurotrauma 2010; 27(7): 1275–82PubMedCrossRef
166.
Zurück zum Zitat Kleindienst A, Harvey HB, Rice AC, et al. Intraventricular infusion of the neurotrophic protein S100B improves cognitive recovery after fluid percussion injury in the rat. J Neurotrauma 2004; 21(5): 541–7PubMedCrossRef Kleindienst A, Harvey HB, Rice AC, et al. Intraventricular infusion of the neurotrophic protein S100B improves cognitive recovery after fluid percussion injury in the rat. J Neurotrauma 2004; 21(5): 541–7PubMedCrossRef
167.
Zurück zum Zitat Kleindienst A, McGinn MJ, Harvey HB, et al. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotruama 2005; 22(6): 645–55CrossRef Kleindienst A, McGinn MJ, Harvey HB, et al. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotruama 2005; 22(6): 645–55CrossRef
168.
Zurück zum Zitat Kline AE, Massucci JL, Marion DW, et al. Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact. J Neurotrauma 2002; 19(4): 415–25PubMedCrossRef Kline AE, Massucci JL, Marion DW, et al. Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact. J Neurotrauma 2002; 19(4): 415–25PubMedCrossRef
169.
Zurück zum Zitat Mauler F, Hinz V, Augstein KH, et al. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res 2003; 989(1): 99–111PubMedCrossRef Mauler F, Hinz V, Augstein KH, et al. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res 2003; 989(1): 99–111PubMedCrossRef
170.
Zurück zum Zitat Mauler F, Horváth E, De Vry J, et al. BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev 2003; 9(4): 343–58PubMedCrossRef Mauler F, Horváth E, De Vry J, et al. BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev 2003; 9(4): 343–58PubMedCrossRef
171.
Zurück zum Zitat Mesenge C, Verrecchia C, Allix M, et al. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma 1996; 13(1): 11–6PubMedCrossRef Mesenge C, Verrecchia C, Allix M, et al. Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma 1996; 13(1): 11–6PubMedCrossRef
172.
Zurück zum Zitat Hogg S, Sanger DJ, Moser PC. Mild traumatic lesion of the right parietal cortex in the rat: characterisation of a conditioned freezing deficit and its reversal by dizocilpine. Behav Brain Res 1998; 93(1–2): 157–65PubMedCrossRef Hogg S, Sanger DJ, Moser PC. Mild traumatic lesion of the right parietal cortex in the rat: characterisation of a conditioned freezing deficit and its reversal by dizocilpine. Behav Brain Res 1998; 93(1–2): 157–65PubMedCrossRef
173.
Zurück zum Zitat Bernert H, Turski L. Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline. Proc Natl Acad Sci USA 1996; 93(11): 5235–40PubMedCrossRef Bernert H, Turski L. Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline. Proc Natl Acad Sci USA 1996; 93(11): 5235–40PubMedCrossRef
174.
Zurück zum Zitat Ikonomidou C, Turski L. Prevention of trauma-induced neurodegeneration in infant and adult rat brain: glutamate antagonists. Metab Brain Dis 1996; 11(2): 125–41PubMedCrossRef Ikonomidou C, Turski L. Prevention of trauma-induced neurodegeneration in infant and adult rat brain: glutamate antagonists. Metab Brain Dis 1996; 11(2): 125–41PubMedCrossRef
175.
Zurück zum Zitat Pohl D, Bittigau P, Ishimaru MJ, et al. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA 1999; 96(5): 2508–13PubMedCrossRef Pohl D, Bittigau P, Ishimaru MJ, et al. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci USA 1999; 96(5): 2508–13PubMedCrossRef
176.
Zurück zum Zitat McIntosh TK, Vink R, Soares H, et al. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem 1999; 55(4): 1170–9CrossRef McIntosh TK, Vink R, Soares H, et al. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem 1999; 55(4): 1170–9CrossRef
177.
Zurück zum Zitat Okiyama K, Smith DH, White WF, et al. Effects of the NMDA antagonist CP-98,113 on regional cerebral edema and cardiovascular, cognitive, and neurobehavioral function following experimental brain injury in the rat. Brain Res 1998; 792(2): 291–8PubMedCrossRef Okiyama K, Smith DH, White WF, et al. Effects of the NMDA antagonist CP-98,113 on regional cerebral edema and cardiovascular, cognitive, and neurobehavioral function following experimental brain injury in the rat. Brain Res 1998; 792(2): 291–8PubMedCrossRef
178.
Zurück zum Zitat Kroppenstedt SN, Schneider GH, Thomale UW, et al. Protective effects of aptiganel HCl (Cerestat) following controlled cortical impact injury in the rat. J Neurotrauma 1998; 15(3): 191–7PubMedCrossRef Kroppenstedt SN, Schneider GH, Thomale UW, et al. Protective effects of aptiganel HCl (Cerestat) following controlled cortical impact injury in the rat. J Neurotrauma 1998; 15(3): 191–7PubMedCrossRef
179.
Zurück zum Zitat Toulmond S, Serrano A, Benavides J, et al. Prevention by eliprodil (SL 82.0715) of traumatic brain damage in the rat: existence of a large (18 h) therapeutic window. Brain Res 1993; 620(1): 32–41PubMedCrossRef Toulmond S, Serrano A, Benavides J, et al. Prevention by eliprodil (SL 82.0715) of traumatic brain damage in the rat: existence of a large (18 h) therapeutic window. Brain Res 1993; 620(1): 32–41PubMedCrossRef
180.
Zurück zum Zitat Hogg S, Perron C, Barnéoud P, et al. Neuroprotective effect of eliprodil: attenuation of a conditioned freezing deficit induced by traumatic injury of the right parietal cortex in the rat. J Neurotrauma 1998; 15(7): 545–53PubMedCrossRef Hogg S, Perron C, Barnéoud P, et al. Neuroprotective effect of eliprodil: attenuation of a conditioned freezing deficit induced by traumatic injury of the right parietal cortex in the rat. J Neurotrauma 1998; 15(7): 545–53PubMedCrossRef
181.
Zurück zum Zitat Mueller AL, Artman LD, Balandrin MF, et al. NPS 1506, a moderate affinity uncompetitive NMDA receptor antagonist: preclinical summary and clinical experience. Amino Acids 2000; 19(1): 177–9PubMedCrossRef Mueller AL, Artman LD, Balandrin MF, et al. NPS 1506, a moderate affinity uncompetitive NMDA receptor antagonist: preclinical summary and clinical experience. Amino Acids 2000; 19(1): 177–9PubMedCrossRef
182.
Zurück zum Zitat Dohi K, Satoh K, Mihara Y, et al. Alkoxyl radical-scavengin activity of edaravone in patients with traumatic brain injury. J Neurotrauma 2006; 23(11): 1591–9PubMedCrossRef Dohi K, Satoh K, Mihara Y, et al. Alkoxyl radical-scavengin activity of edaravone in patients with traumatic brain injury. J Neurotrauma 2006; 23(11): 1591–9PubMedCrossRef
183.
Zurück zum Zitat Itoh T, Satou T, Nishida S, et al. Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem Res 2010; 35(2): 348–55PubMedCrossRef Itoh T, Satou T, Nishida S, et al. Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem Res 2010; 35(2): 348–55PubMedCrossRef
184.
Zurück zum Zitat Wang GH, Jiang ZL, Li YC, et al. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J Neurotrauma 2011; 28(10): 2123–34PubMedCrossRef Wang GH, Jiang ZL, Li YC, et al. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J Neurotrauma 2011; 28(10): 2123–34PubMedCrossRef
185.
Zurück zum Zitat Belayev L, Alonso OF, Liu Y, et al. Talampanel, a novel noncompetitive AMPA antagonist, is neuroprotective after traumatic brain injury in rats. J Neurotrauma 2001; 18(10): 1031–8PubMedCrossRef Belayev L, Alonso OF, Liu Y, et al. Talampanel, a novel noncompetitive AMPA antagonist, is neuroprotective after traumatic brain injury in rats. J Neurotrauma 2001; 18(10): 1031–8PubMedCrossRef
186.
Zurück zum Zitat Kline AE, Yu J, Horváth E, et al. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2001; 106(3): 547–55PubMedCrossRef Kline AE, Yu J, Horváth E, et al. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2001; 106(3): 547–55PubMedCrossRef
187.
Zurück zum Zitat Mauler F, Horváth E. Neuroprotective efficacy of repinotan HCl, a 5-HT1A receptor agonist, in animal models of stroke and traumatic brain injury. J Cereb Blood Flow Metab 2005; 25(4): 451–9PubMedCrossRef Mauler F, Horváth E. Neuroprotective efficacy of repinotan HCl, a 5-HT1A receptor agonist, in animal models of stroke and traumatic brain injury. J Cereb Blood Flow Metab 2005; 25(4): 451–9PubMedCrossRef
188.
Zurück zum Zitat Cheng JP, Aslam HA, Hoffman AN, et al. The neurobe-havioral benefit conferred by a single systemic administration of 8-OH-DPAT after brain trauma is confined to a narrow therapeutic window. Neurosci Lett 2007; 416(2): 165–8PubMedCrossRef Cheng JP, Aslam HA, Hoffman AN, et al. The neurobe-havioral benefit conferred by a single systemic administration of 8-OH-DPAT after brain trauma is confined to a narrow therapeutic window. Neurosci Lett 2007; 416(2): 165–8PubMedCrossRef
189.
Zurück zum Zitat Cheng JP, Hoffman AN, Zafonte RD, et al. A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning. Behav Brain Res 2008; 194(1): 79–85PubMedCrossRef Cheng JP, Hoffman AN, Zafonte RD, et al. A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning. Behav Brain Res 2008; 194(1): 79–85PubMedCrossRef
190.
Zurück zum Zitat Kline AE, Wagner AK, Westergom BP, et al. Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobe-havioral benefit after experimental brain trauma. Behav Brain Res 2007; 177(2): 186–94PubMedCrossRef Kline AE, Wagner AK, Westergom BP, et al. Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobe-havioral benefit after experimental brain trauma. Behav Brain Res 2007; 177(2): 186–94PubMedCrossRef
191.
Zurück zum Zitat Kline AE, Massucci JL, Dixon CE, et al. The therapeutic efficacy conferred by the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after experimental traumatic brain injury is not mediated by concomitant hypothermia. J Neurotrauma 2004; 21(2): 175–85PubMedCrossRef Kline AE, Massucci JL, Dixon CE, et al. The therapeutic efficacy conferred by the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after experimental traumatic brain injury is not mediated by concomitant hypothermia. J Neurotrauma 2004; 21(2): 175–85PubMedCrossRef
192.
Zurück zum Zitat Kline AE, McAloon RL, Henderson KA, et al. Evaluation of a combined therapeutic regimen of 8-OH-DPAT and environmental enrichment after experimental traumatic brain injury. J Neurotruama 2010; 27(11): 2021–32CrossRef Kline AE, McAloon RL, Henderson KA, et al. Evaluation of a combined therapeutic regimen of 8-OH-DPAT and environmental enrichment after experimental traumatic brain injury. J Neurotruama 2010; 27(11): 2021–32CrossRef
193.
Zurück zum Zitat Kline AE, Yu J, Massucci JL, et al. Protective effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin against traumatic brain injury-induced cognitive deficits and neuropathology in adult male rats. Neurosci Lett 2002; 333(3): 179–82PubMedCrossRef Kline AE, Yu J, Massucci JL, et al. Protective effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin against traumatic brain injury-induced cognitive deficits and neuropathology in adult male rats. Neurosci Lett 2002; 333(3): 179–82PubMedCrossRef
194.
Zurück zum Zitat Ma H, Yu B, Kong L, et al. Transplantation of neural stem cells enhances expression of synaptic protein and promotes functional recovery in a rat model of traumatic brain injury. Mol Med Rep 2011; 4(5): 849–56PubMed Ma H, Yu B, Kong L, et al. Transplantation of neural stem cells enhances expression of synaptic protein and promotes functional recovery in a rat model of traumatic brain injury. Mol Med Rep 2011; 4(5): 849–56PubMed
195.
Zurück zum Zitat Wallenquist U, Brännvall K, Clausen F, et al. Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restor Neurol Neurosci 2009; 2009(27): 323–34 Wallenquist U, Brännvall K, Clausen F, et al. Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restor Neurol Neurosci 2009; 2009(27): 323–34
196.
Zurück zum Zitat Harting MT, Sloan LE, Jimenez F, et al. Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 2009; 153(2): 188–94PubMedCrossRef Harting MT, Sloan LE, Jimenez F, et al. Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 2009; 153(2): 188–94PubMedCrossRef
197.
Zurück zum Zitat Shohami E, Bass R, Wallach D, et al. Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 1996; 16(3): 378–84PubMedCrossRef Shohami E, Bass R, Wallach D, et al. Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 1996; 16(3): 378–84PubMedCrossRef
198.
Zurück zum Zitat Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010; 115(4): 921–9PubMedCrossRef Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010; 115(4): 921–9PubMedCrossRef
199.
Zurück zum Zitat Treggiari-Venzi MM, Suter PM, Romand JA. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery 2001 Feb; 48(2): 249–61; discussion 61–2PubMed Treggiari-Venzi MM, Suter PM, Romand JA. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery 2001 Feb; 48(2): 249–61; discussion 61–2PubMed
200.
Zurück zum Zitat Kinoshita K, Kraydieh S, Alonso O, et al. Effect of posttraumatic hyperglycemia on contusion volume and neutrophil accumulation after moderate fluid-percussion brain injury in rats. J Neurotrauma 2002; 19(6): 681–92PubMedCrossRef Kinoshita K, Kraydieh S, Alonso O, et al. Effect of posttraumatic hyperglycemia on contusion volume and neutrophil accumulation after moderate fluid-percussion brain injury in rats. J Neurotrauma 2002; 19(6): 681–92PubMedCrossRef
201.
Zurück zum Zitat Liu-DeRyke X, Collingridge DS, Orme J, et al. Clinical impact of early hyperglycemia during acute phase of traumatic brain injury. Neurocrit Care 2009; 11(2): 151–7PubMedCrossRef Liu-DeRyke X, Collingridge DS, Orme J, et al. Clinical impact of early hyperglycemia during acute phase of traumatic brain injury. Neurocrit Care 2009; 11(2): 151–7PubMedCrossRef
202.
Zurück zum Zitat Rovlias A, Kotsou S. The Influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 2000; 46(2): 342–3CrossRef Rovlias A, Kotsou S. The Influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 2000; 46(2): 342–3CrossRef
203.
Zurück zum Zitat Salim A, Hadjizacharia P, Dubose J, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg 2009; 75(1): 25–9PubMed Salim A, Hadjizacharia P, Dubose J, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg 2009; 75(1): 25–9PubMed
204.
Zurück zum Zitat Diaz-Parejo P, Stahl N, Xu W, et al. Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 2003; 29(4): 544–50PubMed Diaz-Parejo P, Stahl N, Xu W, et al. Cerebral energy metabolism during transient hyperglycemia in patients with severe brain trauma. Intensive Care Med 2003; 29(4): 544–50PubMed
205.
Zurück zum Zitat Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev 2005 Jan 25; 1: CD000196PubMed Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev 2005 Jan 25; 1: CD000196PubMed
206.
Zurück zum Zitat Mazzeo AT, Alves OL, Gilman CB, et al. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008; 150(10): 1019–31CrossRef Mazzeo AT, Alves OL, Gilman CB, et al. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008; 150(10): 1019–31CrossRef
207.
Zurück zum Zitat Mazzeo AT, Brophy GM, Gilman CB, et al. Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 2009 Dec; 26(12): 2195–206PubMedCrossRef Mazzeo AT, Brophy GM, Gilman CB, et al. Safety and tolerability of cyclosporin a in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 2009 Dec; 26(12): 2195–206PubMedCrossRef
208.
Zurück zum Zitat Knoller N, Levi L, Shoshan I, et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 2002; 30(3): 548–54PubMedCrossRef Knoller N, Levi L, Shoshan I, et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 2002; 30(3): 548–54PubMedCrossRef
209.
Zurück zum Zitat McIntosh TK, Faden AI, Yamakami I, et al. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J Neurotrauma 1988; 5(1): 17–31PubMedCrossRef McIntosh TK, Faden AI, Yamakami I, et al. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies. J Neurotrauma 1988; 5(1): 17–31PubMedCrossRef
210.
Zurück zum Zitat Lee JS, Han YM, Yoo DS, et al. A molecular basis for the efficacy of magnesium treatment following traumatic brain injury in rats. J Neurotrauma 2004; 21(5): 549–61PubMedCrossRef Lee JS, Han YM, Yoo DS, et al. A molecular basis for the efficacy of magnesium treatment following traumatic brain injury in rats. J Neurotrauma 2004; 21(5): 549–61PubMedCrossRef
211.
Zurück zum Zitat Hoane MR. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor Neurol Neurosci 2005; 23(2): 67–77PubMed Hoane MR. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor Neurol Neurosci 2005; 23(2): 67–77PubMed
212.
Zurück zum Zitat Wagstaff A, Teasdale GM, Clifton G, et al. The cerebral hemodynamic and metabolic effects of the noncompetitive NMD A antagonist CNS 1102 in humans with severe head injury. Ann N Y Acad Sci 1995 Sep 15; 15: 332–3CrossRef Wagstaff A, Teasdale GM, Clifton G, et al. The cerebral hemodynamic and metabolic effects of the noncompetitive NMD A antagonist CNS 1102 in humans with severe head injury. Ann N Y Acad Sci 1995 Sep 15; 15: 332–3CrossRef
213.
Zurück zum Zitat Bullock MR, Merchant RE, Carmack CA, et al. An open-label study of CP-101, 606 in subjects with a severe traumatic head injury or spontaneous intracerebral hemorrhage. Ann N Y Acad Sci 1999: 51–8 Bullock MR, Merchant RE, Carmack CA, et al. An open-label study of CP-101, 606 in subjects with a severe traumatic head injury or spontaneous intracerebral hemorrhage. Ann N Y Acad Sci 1999: 51–8
214.
Zurück zum Zitat Stein DG. Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 2008; 57(2): 386–97PubMedCrossRef Stein DG. Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 2008; 57(2): 386–97PubMedCrossRef
216.
Zurück zum Zitat Weant KA, Cook AM. Potential roles for statins in critically ill patients. Pharmacotherapy 2007; 27(9): 1279–96PubMedCrossRef Weant KA, Cook AM. Potential roles for statins in critically ill patients. Pharmacotherapy 2007; 27(9): 1279–96PubMedCrossRef
217.
Zurück zum Zitat Young B, Ott L, Kasarskis E, et al. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma 1996; 13(1): 25–34PubMedCrossRef Young B, Ott L, Kasarskis E, et al. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma 1996; 13(1): 25–34PubMedCrossRef
218.
Zurück zum Zitat Menon DK. Unique challenges in clinical trials in traumatic brain injury. Crit Care Med 2009 Jan; 37(1 Suppl.): S129–35PubMedCrossRef Menon DK. Unique challenges in clinical trials in traumatic brain injury. Crit Care Med 2009 Jan; 37(1 Suppl.): S129–35PubMedCrossRef
219.
Zurück zum Zitat Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma 2002 May; 19(5): 503–57PubMedCrossRef Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma 2002 May; 19(5): 503–57PubMedCrossRef
220.
Zurück zum Zitat McHugh GS, Butcher I, Steyerberg EW, et al. Statistical approaches to the univariate prognostic analysis of the IMPACT database on traumatic brain injury. J Neurotrauma 2007 Feb; 24(2): 251–8PubMedCrossRef McHugh GS, Butcher I, Steyerberg EW, et al. Statistical approaches to the univariate prognostic analysis of the IMPACT database on traumatic brain injury. J Neurotrauma 2007 Feb; 24(2): 251–8PubMedCrossRef
Metadaten
Titel
A Review of Neuroprotection Pharmacology and Therapies in Patients with Acute Traumatic Brain Injury
verfasst von
Kevin W. McConeghy
Jimmi Hatton
Lindsey Hughes
Dr Aaron M. Cook, Pharm.D
Publikationsdatum
01.07.2012
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 7/2012
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/11634020-000000000-00000

Weitere Artikel der Ausgabe 7/2012

CNS Drugs 7/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.